智能融合终端产品手册-智芯公司
台区智能融合终端交付操作指南

台区智能融合终端交付操作指南
1. 简介
本文档将提供台区智能融合终端交付的操作指南,旨在帮助用户正确完成交付过程。
台区智能融合终端是一种具有智能化功能的终端设备,用于实现高效能的业务运营和管理。
2. 交付准备
在进行终端交付之前,需要进行以下准备工作:
- 确定交付的终端数量及型号;
- 确保终端配备了所需的软件和配置;
- 确保交付地点和时间与用户协商一致。
3. 交付步骤
按照以下步骤执行终端交付:
3.1 终端检查
在交付前,对终端进行检查,确保其性能完好无损,并且与用户的需求一致。
3.2 终端配置
根据用户的需求,对终端进行相应的配置,例如安装特定软件、设置网络连接等。
3.3 功能测试
在进行交付之前,对终端的各项功能进行测试,确保其正常运作。
3.4 交付文件
将终端交付给用户时,同时提供相应的交付文件,包括终端的
说明书、保修卡等。
3.5 用户培训
如果需要,对用户进行相关培训,教授终端的操作方法和注意
事项。
4. 交付完成确认
在交付完成后,用户和交付人员共同确认交付的终端数量和配
置是否符合协议要求。
5. 售后支持
为了提供更好的售后服务,确保用户能够正常使用终端,建议用户与我们保持联系,并及时报告任何问题。
6. 其他注意事项
- 在交付过程中,应注意维护终端的机密性和安全性;
- 严禁私自更改终端配置;
- 在遇到问题或疑问时,及时与我们联系。
以上为台区智能融合终端交付操作指南的内容,请在交付过程中参考并遵守相应步骤和注意事项。
如有任何疑问,请及时与我们联系。
融合终端的标准

融合终端的标准
融合终端是指能够融合多种功能的终端设备,如手机、平板电脑、智能手表等。
融合终端的标准包括以下几个方面:
1. 硬件标准:包括硬件接口标准、电池容量标准、重量和尺寸标准等,以确保不同厂商的融合终端之间的兼容性和互操作性。
2. 操作系统标准:要求融合终端使用标准化的操作系统,如Android、iOS等,以提供统一的用户界面和应用程序生态系统。
3. 数据传输标准:要求融合终端支持多种数据传输方式,如蜂窝网络、Wi-Fi、蓝牙等,以实现高速稳定的数据传输。
4. 安全标准:融合终端应具备一定的安全防护机制,如用户身份验证、数据加密等,以保护用户信息和隐私的安全。
5. 电池寿命标准:融合终端应具备较长的电池寿命,以支持用户长时间的使用。
6. 生态系统标准:要求融合终端能够与各类应用程序和服务进行无缝集成,以提供更加丰富和便捷的用户体验。
以上是一些常见的融合终端标准,通过遵循这些标准,可以提高融合终端的互操作性和用户体验,并推动融合终端市场的发展。
台区智能融合终端-调试指导

2、终端连接
2.1 终端接线
2、终端连接
2.2维护软件连接终端
首先打开融合终端维护工具软件
,选择电脑IP地址192.168.10.99(提前
将电脑IP设为192.168.10.99与192.168.1.130两个地址,因河南地区送检终端均设置
10网段及1网段两个地址,且10网段地址在前)点击 “OK”进行连接。
6、主站参数设置
设置实际主站IP地址及端口号:按照步骤5将所有终端均导入正式Ukey后, 将所有终端网线再次接入交换机。待所有终端IP均在设备列表中出现后,勾选 “是都批量操作”,点击“参数设置”-“安全代理”,将实际主站ip和端口写 入“业务主站IP”与“业务主站端口”处,点击下方的“参数设置”进行设置
3、APP程序安装
4、APN参数配置
勾选是都批量操作后,选择“参数设置”-“4G模块”,先在“添 加”栏输入以下鹤壁地区配自卡APN信息,最后点击添加完成APN的批量 添加。
5、正式密钥管理
安全代理配置文件更改,导入正式Ukey:勾选“是否批量操作”后依 次点击“参数设置”-“安全代理”,在参数设置下方“业务容器端口” 栏输入 “2404”,点击“参数设置”,最后弹出设置参数成功,如下图。
台区智能融合终端 调试指导
北京智芯微电子科技有限公司
一
概述
二
终端连接
目录
CONTENT
三
APP程序安装
四
APN参数配置
五
正式密钥管理
六
主站参数设置
七
静态路由设置W
台区智能融合终端 调试指导
1、概述
台区智能融合终端调试是为了保证台区智能融合终端上下行数 据传动稳定和准确。
芯麦通信有限公司芯麦遥控卫星终端RST100产品介绍说明书

The Beam Remote Satellite Terminal RST100 provides reliable and convenient global telecommunications access voice, data & messaging services via the Iridium satellite network.By using the add on TrackALERT terminal enables the Beam Remote Satellite terminal to support a Ship Security Alert System (SSAS) along with tracking and monitoring applications.For years the maritime market has been the largest user of satellite communications and today is no exception. In providing alert, monitoring and tracking solution access to a high quality communication service is essential to maritime users all over the world.Beam provides solutions for the following key maritime applications;• Voice calling • Data services • Crew calling • Alert Systems • Tracking / MonitoringIridium Satellite SystemIridium is the only provider of truly global satellite voice and data solutions with complete coverage of the earth. Iridium delivers essential communications services to and from remote areas where no other form of communication is available.The Iridium system is the largest fully meshed satellite network constellation in the world and consists of 66 low-earth orbiting (LEO), cross-linked satellites and has multiple in-orbit sparesShip Security Alert System2/6 mandated SSAS regulations.Requirementsare as follows;• Covert alert notification• No physical signs of alert raised • At least 2 alert buttons • Full test of the system• Notification to multiple parties • Alert to specify ship details • Alert to specify location data • System cannot be locally reset •Continuous alerting until resetCost Benefitsspecifically for the SSAS system.Key Features & Benefits• Fully compliant with Solas XI-2/6 • Simple installation / configuration • Global access pole to pole • Local & Remote configuration • Remote Diagnostics & testing • Passcode protected• Support multiple alert buttons • Support simultaneous tracking • Multiple alert notifications • Can support Ships NMEA feed • Support separate GPS antenna • No additional monthly feesAlert Systems ApplicationsAs the TrackALERT input is designed to provide support for multiple applications, it is possible to also combine the tracking and reporting functionality with an emergency alert system.The TrackALERT interface can handle multiple alarm activation points. These activation points can be from physical buttons or digital /analog inputs.Secure Alert ResetThe TrackALERT terminal is programmed to have a security Passcode. Once this is set this is the only way an alert can be deactivated. This can be performed locally or remotely using SMS commands.Alert NotificationWhen an alarm is raised this will automatically generate the delivery of an alert notification to the predetermined destination. This delivery destination can be to another Iridium service, another mobile service (Selected Service Providers) or to any email address as specified. RST100 –Alert & Tracking SolutionsSSAS_TRACK_0608Alert PriorityWhilst Beam gives you the flexibility to use the Remote Satellite Terminal for other Iridium Services, in the event of an emergency, the Beam terminal intelligence will always give priority to alerts and terminate any active Voice or Data calls in order to transmit the SSAS alert notification when used with the Beam RST100System TestingThe TrackALERT system can be easily tested locally or remotely. The test enables a full test of the security system including the real alert buttons and delivery notification protocols, whilst not sending alerts to the Emergency Response centre.Tracking ApplicationsThe TrackALERT interface provides an intelligent vessel tracking interface and enables you to configure individual reporting fields such as long/lat/speed/direction/height as well as the status of alarms or other digital / analog inputs as configured on the terminal.Movement ReportingFor tracking applications the intelligent system also allows the unit to be configured so that position reports are only sent when the vessel is moving; this is a great cost saving measure. However, at anytime the unit can still be remotely polled for a current position as required.InstallationThe TrackALERT terminal can be easily installed either as a standalone terminal connected to the communication device or in the case when used with the RST100 it can be simply joined to the main interface using the mounting brackets.The TrackALERT InterfaceThe Beam TrackALERT, alert and monitoring interface, delivers a highly intelligent tracking, monitoring and alert system for various applications.Specifically the interface supports the Ship Security Alert System (SSAS) and enables anyone to easily and covertly transmit an emergency distress signal to the ship owner and any nominated Authority.intelligent voice, data and tracking solution using the Beam Remote Satellite Terminal RST100.Intelligent Configurationprocessor onboard the terminal. settings, notification addresses, notification intervals, loop configuration, remote control as well as remote polling when required. All parameters can be configured remotely via SMS and retrieved by either SMS or SBD.Inbuilt GPSGPS antenna. The terminal will also take a GPS input from any NMEA feed.inputs.GPS Antenna Optionsinterface units.SSAS & TrackALERT Features•Supports multiple GPS inputs • Active GPS antenna •Ships NMEA inputMultiple notification methods• SMS • Short Burst Data (SBD) • SBD to 5 email addresses •SMS to emailSSAS / Equipment test•Full Test Remote or Local •Configurable delivery adviceIntelligent Tracking• Remote Polling on Demand• Periodic Transmission •Movement ActivatedIntelligent Processor• Fully configurable • GPS signal monitoring • Remote test of SSAS • Remote software download •SMS confirmationConfigurable Settings• SSAS Information • Alert notification•Remote or local alert resetLED Status•GPS signal•Power / AntennaIntelligent alarm buttons• 4 Individual loops• Used for Alarm/ Monitoring • Multiple buttons per loop • Up to 500m cable lengthTechnical SpecificationsPower SpecificationsPhysical Specifications Unit only Packed Power input voltage DC 7.5 V DCDimensions - mm 110 x 225 x 45 300 x 283 x 63 Powered from RST100 TerminalDimensions - inches 4.3 x 8.8 x 1.712.9 x 11.1 x 2.4Power ConsumptionWeight - kg 0.8 1.1 @ 7.5V DC200mA1.5WWeight - lbs1.72.4Environment Specifications SSAS SpecificationTemperature Degrees ˚C Degrees ˚F Supports multiple alarm inputs Operating Range -15 to +55 +5 to +131 GPS Storage -30 to +70 -22 to 158 GPS - Inbuilt Garmin GPS module Humidity 93% non condensing GPS - Support external NMEA feed Vibration 2 Hz - 13.2 Hz & 13.2 Hx - 100 hzMessage delivery via SBD or SMS Corrosion Remote or local system test40 ˚C with 90% - 95% relative humidity after 2h salt sprayPasscode protectedConnectors / Interfaces CertificationLog Port RS232 Serial Interface Germanischer Lloyd Connection to RST100 RS232 Serial Interface American Bureau of Shipping Serial Data Port NMEA RS232 Serial Interface RTTEGPS Antenna SMA United States Coast Guard Antenna Selection Not Used IEC6045 including Vibration/Corrosion Loops 1,2,3 & 4 4-way Terminal Block C tick Analog Output 6-way Terminal Block CE Compliance Kit Contents LED / Display RST030 Main terminal Power Green Serial data cable to connect to RST100 GPS Antenna Data Red / Green Mounting Brackets Serial NMEA Data Green SSAS Software AccessoriesBeam Management System - Configuration software GPS Antenna - Mast Mount RST909 User & Installation Manual GPS Antenna - Patch mountRST901 CD - Beam Management System, AT Commands, Manuals Dual Mode Iridium Helix / GPS Patch antenna RST902 GPS Antenna Cable - 6m / 18' RST942 GPS Antenna Cable - 30m / 90' RST941Ease of UseThe Beam equipment provides the ability Intelligent Handset InterfaceThe optional Intelligentvoice and SMSThe handset is compact,hang-up cup and inbuiltringer. The unit supportsfull SMS functionality aswell as an easy menusystem to access phoneWith Iridium prepaid services, users have a cost-effective communications system at their fingertips, eliminating the headaches of monthly bills or subscription fees. Unused minutes carry forward so your minutes can be used in future months. Prepaid SIM’s are ideal for situations withData & Messaging Service (SMS)The Iridium SMS can send and receiveBeam Communications Pty Ltd 8 Anzed Court, Mulgrave, Victoria Australia 3170T: +61 3 9560 9999 F: +61 3 9560 9055E:*********************Technical SpecificationsIridium NetworkSatellite Constellation L-Band transceiver frequency 1616 - 1625 MHz Intersatellite Links 23.18-23.38 GHz, Ka-band Compressed Data2.4 kbps Ground Segment Links Voice / data modulation 10 - 12 kbps Downlinks19.4-19.6 GHz, Ka-bandUplinks29.1-29.3 GHz, Ka-band RST100 - Remote Satellite TerminalPower Specifications Physical Specifications Unit only Packed Power input voltage 11 - 32 V DC Dimensions - mm 225 x 271 x 45 400 x 325 x 90 Power Consumption ( AMPS ) 12 V DC 24 V DC Dimensions - inches 8.8 x 10.6 x 1.215.7 x 12.8 x 3.5Stand-by 0.35 0.16 Weight - kg 2.25 3.25 Transmit 0.51 0.25 Weight - lbs 4.9 7.1 Stand-by - inc handset 0.47 0.22Transmit - inc handset 0.59 0.29 Environment Specifications Certifications Temperature Degrees ˚C Degrees ˚F IEC60945 Operating Range -15 to +55 +5 to +131 Germanischer Lloyd Storage -30 to +70 -22 to 158 American bureau of Shipping Humidity 93% non condensing electrical Safety Vibration 2 Hz - 13.2 Hz & 13.2 Hx - 100 hz EMC ComplianceCorrosion 40 ˚C with 90% - 95% relative humidity after 2h salt sprayConnectors / Interfaces LED / DisplayIntelligent Handset RJ45 DPL BUS Power Green Telephone / POTS RJ-11 2 -wire / TN12 or 600Ω Signal 3 Colour Data Port RS232 Serial Interface Call Yellow Log Port RS232 Serial Interface Voicemail Green Power 2 Pin screw type Kit Contents AccessoriesRST100 Main terminal Mast mount antenna RST910 Mounting Brackets Intelligent handset RST970 AC 110/240V Plug Pack TrackALERT- SSAS Unit RST030 DC 1.5m Power Cable 6 m / 18 f RST932 Data Cable 9 m / 27 f RST930 User & Installation Manual 12 m / 36 f RST933 CD - Beam Management System, AT Commands, Manuals SSAS / TrackALERT RST030 External ringer / alarm RST952。
ALINX 2023 SOM产品手册说明书

SOM产品手册SOM Product Guide2023关于我们官方合作伙伴业务范围芯驿电子科技(上海)有限公司,成立于2012年,总部位于上海松江临港科技城,是一家车载智能产品和FPGA 技术方案公司,拥有“AUMO”和“ALINX”两大品牌,其中AUMO 品牌专注车载智能产品,ALINX 品牌专注于FPGA 产品和方案定制。
经历十年发展,公司产品已经远销海外30多个国家。
2018年,公司通过高新技术企业认证,并通过ISO9001质量体系认证;2019年,荣获上海市松江区九亭镇“科技创新奖”;2020年,荣获上海市“专精特新企业“称号;2021年,申请通过上海市科技型中小企业技术创新资金项目,通过了国家级科技型中小企业认定,并通过了高新技术企业认证复审;2022年获得上海市张江国家自主创新示范区专项发展资金并通过“上海市创新型中小企业”认证。
ALINX 是全球的FPGA 芯片龙头企业XILINX 官方合作伙伴,国内FPGA 芯片龙头企业紫光同创官方合作伙伴,同时作为百度AI 合作伙伴,为百度定制了国产AI飞桨系统的Edgeboard 系列边缘设备。
通过多年的研发投入,已经推出100多款FPGA SoM 模组和配套板卡,积累了1000多家企业批量用户,上万个独立开发者,市场占有率遥遥领先。
通过产品+定制化服务的经营方式,ALINX 将继续加大对产品研发和技术研究的投入,不断与垂直行业客户合作,聚焦高端设备领域,协助客户解决行业的技术难题。
主要聚焦于FPGA + AI 解决方案,FPGA 国产化,FPGA 开发套件, ALINX 自有品牌产品。
公司提供的设计解决方案涉及人工智能、自动驾驶、轨道交通、半导体、5G 通信、医疗设备、工业互联、仪器仪表、数据中心、机器视觉、视频图像处理等行业。
紫光同创国内唯一的FPGA 板卡官方合作伙伴,XILINX 官方重要合作伙伴,百度AI合作伙伴。
轨道交通医疗设备半导体自动驾驶智能制造AI人工智能产品定制简介产品定制业务主要针对企业和研究院所,根据客户的需求进行产品的软硬件设计。
ZTEA10-T600 技术手册

版本更新说明
产品版本 V1.0.1
资料版本 20070630-R1.0
资料编号 sjzl20071734
手册第一次发行
更新说明
ቤተ መጻሕፍቲ ባይዱ
本书约定
介绍符号的约定、键盘操作约定、鼠标操作约定以及四类标志。
1. 符号约定
带尖括号“< >”表示键名、按钮名以及操作员从终端输入的信息;带方 括号“[ ]”表示人机界面、菜单条、数据表和字段名等,多级菜单用“→” 隔开。如[文件→新建→文件夹]多级菜单表示[文件]菜单下的[新建] 子菜单下的[文件夹]菜单项。
第 2 章 ZXA10 综合业务接入设备介绍 ..................................................................................................2-1 2.1 设备组成概述 .................................................................................................................................2-1 2.2 T600 设备介绍.................................................................................................................................2-2 2.2.1 硬件结构 ...............................................................................................................................2-2 2.2.2 系统软件 ...............................................................................................................................2-7 2.2.3 系统特点 ...............................................................................................................................2-8 2.3 U300 设备介绍 ................................................................................................................................2-9 2.3.1 系统硬件 ...............................................................................................................................2-9 2.3.2 系统软件 .............................................................................................................................2-17 2.3.3 系统特点 .............................................................................................................................2-18 2.4 传输设备介绍 ...............................................................................................................................2-19 2.4.1 系统硬件 .............................................................................................................................2-19 2.4.2 系统软件 .............................................................................................................................2-26 2.4.3 系统特点 .............................................................................................................................2-27
台区智能融合终端用户安装指导手册

台区智能融合终端用户安装指导手册一、编制目的为了保证台区智能融合终端项目顺利实施及工程施工按期完成,有效指导施工人员的设备安装,以求优质、安全、高效、低耗完成施工任务,确保安装到达最佳效果。
二、编制依据GB/T18857-2008配电线路带电作业技术导则Q/GDW 520-2010 1 0kV 架空配电线路带电作业管理规范GB17622-2008带电作业用绝缘手套GB/T13035-2008带电作业用绝缘绳索GB/T12168-2006带电作业用遮蔽罩GB/T13034-2008带电作业用绝缘滑车DL/T803-2002 带电作业用绝缘毯DL 778—2001 带电作业用绝缘袖套DL/1125-2009 带电作业用绝缘服DL/975-2005带电作业用防机械刺穿手套DL/T676-1999带电作业绝缘鞋(靴)通用技术条件GB/T18037-2008带电作业工具基本技术要求与设计导则DL/T972-2005带电作业工具、装置和设备的质量保证导则DL/T976-2005带电作业工具、装置和设备预防性试验规程DL/T854-2004带电作业用绝缘斗臂车的保养维护及在使用中的试验GB18269-2008交流1kv、直流1.5kv及以下电压带电作业用绝缘手工工具国家电网2007-751《带电作业工作管理规定》国家电网公司电业安全工作规程(电力线路部分)国家电网公司现场标准化作业指导书编制导则配电自动化技术导则国家电网公司配电自动化功能规范配电自动化建设改造技术规定运维管理规范配电自动化系统(主站、总线、平台)技术规范书电监安全【2006】34号电力二次系统安全防护总体方案国家电力监管委员会第5号令电力二次系统安全防护规定国家电网生配电【2009】124号生产管理系统配网业务需求功能规范(2009版)国家电网生配电【2009】196号配电自动化试点建设与改造技术原则GB/T 13729 远动终端通用技术条件GB 50173 电器装置安装工程35kV及以下架空电力线路施工及验收规范DL/T 5161 电器装置安装工程质量检验及评定规程三、物料准备智能融合终端现场前,需要提前准备安装所需的设备、耗材,以便于设备正常安装,具体安装设备及耗材见表1。
智能融合cSoC:使用ACE与PDMA说明书

Application Note AC352January 20131© 2013 Microsemi Corporation SmartFusion cSoC: Using ACE with PDMATable of ContentsIntroductionThe SmartFusion ® customizable system-on-chip (cSoC) device contains a hard embeddedmicrocontroller subsystem (MSS), programmable analog circuitry, and FPGA fabric consisting of logictiles, static random access memory (SRAM), and phase-locked loops (PLLs). The MSS consists of a 100MHz ARM ® Cortex™-M3 processor, advanced high-performance bus (AHB) matrix, system registers,Ethernet MAC, DMA engine, real-time counter (RTC), embedded nonvolatile memory (eNVM),embedded SRAM (eSRAM), fabric interface controller (FIC), the Philips Inter-Integrated Circuit (I 2C),serial peripheral interface (SPI), and external memory controller (EMC).The SmartFusion cSoC’s programmable analog section contains the analog computing engine (ACE)and analog front-end (AFE) blocks. The SmartFusion cSoC devices have a versatile AFE that provides avery useful complement to the ARM Cortex-M3 microcontroller and general-purpose FPGA fabric. TheSmartFusion cSoC devices have a sophisticated controller for the AFE called the ACE, which configuresand sequences analog functions and post-processes the results, all independent of the Cortex-M3processor, allowing it to work on other tasks. The SmartFusion cSoC devices have multiple analog-to-digital converters (ADCs) and digital-to-analog converters (DACs). The A2F200 has two of each, and theA2F500 has three of each. The SmartFusion DACs are the one-bit sigma-delta type. The ACE has abuilt-in first-order sigma-delta modulator that feeds each one-bit DAC. The DAC can be operated ineither Voltage or Current Output mode. Refer to the SmartFusion Programmable Analog User’s Guide formore details on programmable analog.The peripheral DMA engine in MSS, which supports eight channels, facilitates data movement from ACEto an MSS memory location such as eSRAM. Alternatively, data can be moved to SRAM in the FPGAfabric. An APB master such as the Cortex-M3 processor, and the fabric master can always access theregisters and SRAM in ACE (SSE and PPE) to move data themselves. However, this is very inefficientand wastes processor power. Instead, the dedicated PDMA engine should be used for moving data andthe APB master should process only the moved PDMA data from the destination location. Refer to theSmartFusion Microcontroller Subsystem (MSS) User's Guide for more details on MSS Peripheral DMA.In the ACE, RAW ADC data or PPE filtered data or PPE processed data is made available for the PDMAto transfer to other memory locations in the MSS or the FPGA fabric. This can be configured in theSmartDesign MSS configurator. Refer to the MSS ACE Configuration User's Guide for further details onthe configuration. The PDMA data is available in the 32x32 dedicated FIFO in the ACE. This FIFO iswritten by PPE with RAW, filtered, processed data based on your selection. The ADC samples analogdata at the pads, while the ADC datavalid is used as the write signal into the ADC FIFO (4 deep x 16width). This ADC FIFO contains 12-bit raw ADC data and a 5-bit channel number. The PPE monitors thebusy signals on ADC FIFOs in a round robin fashion, and starts processing as soon as it detects a non-empty ADC. The PPE microcode is responsible for pushing various data into the PDMA FIFO. If youhave selected the check box in MSS ACE configurator, then the first thing the PPE does is to take thedata from the ADC FIFO and puts it into the PDMA FIFO.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Design Example Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Running the Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Appendix A – Design Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8SmartFusion cSoC: Using ACE with PDMA2This application note and associated design files explain how to use PDMA to move ADC data from ACEto embedded SRAM. The Cortex-M3 processor is used as the APB master.Design Example OverviewIn the design example, PDMA is used to move ADC data from the ACE to MSS eSRAM. The Cortex-M3processor acts as the APB master and processes the ADC data and extracts ADC results. The result iswritten to HyperTerminal interfaced with the UART0 peripheral. The application code resides in theeNVM.Figure 1 shows the design example used with this application note to demonstrate using PDMA withACE.This application note covers the following:1.Configuring the hardware platform2.Customizing software application3.Configuring PDMA the channel for ADC data transfer4.Processing of ADC data to extract ADC resultConfiguring HardwareThe MSS ACE configurator generates analog configuration multiplexer (ACM), SSE, and PPE microcodespecific to the application, based on your configuration of the analog services. The microcode isprogrammed into the eNVM along with system boot code when the SmartFusion cSoC device isprogrammed. On system start-up, the analog configuration is written into ACM (0x40020200-0x400203FC) and microcode is copied from the eNVM into SSE and PPE SRAMs by the Cortex-M3processor as part of the system boot. This step customizes the hardware platform.In the design example used with the application note, ACE is configured to monitor direct ADC input.ADC translates the analog input to digital values and stores it in ADC FIFO. In the MSS ACEconfigurator, select send raw ADC result to DMA . This results in PPE microcode, which moves datafrom ADC FIFO to PDMA FIFO.Figure 1 • ACE PDMA Data Flow with MSS eSRAMDesign Example Overview3Design files provided with this application note have Verilog and VHDL projects. You must have STAPLfiles ready to program the SmartFusion cSoC devices.Customizing SoftwareThe ACE configuration information is written into customized header files and source files. These filesreside in the folder <Libero_Project/Firmware/drivers_config/mss_ace>. These files contain thecustomization information you specified to the ACE, such as logical channel names, flag names,threshold values, and filtering. These files are referred to as driver configuration files.The information contained in these files is used by the drivers to access and process data from thededicated SRAMs, and appropriate registers in SSE and PPE. Refer to the following user’s guides:•SmartFusion MSS ACE Driver User’s Guide •SmartFusion MSS PDMA Driver User’s Guide •MSS ACE Configuration User’s GuideDesign files provided with this application note contain a SoftConsole project built with drivers and driverconfiguration files corresponding to the Libero ® System-on-Chip (SoC) software projects.Note:It is very important that you copy the ACE driver configuration files into the software project andprogram the target hardware with the generated eNVM content; otherwise the hardware platformand software application would be out of synchronization, resulting in unexpected behavior.Figure 2 • ACE Configuration with PDMA OptionSmartFusion cSoC: Using ACE with PDMA4Configuring PDMA Channel for ADC Data TransferSetting up PDMA involves the following steps. These are implemented in the c file main.c, which is part of the application project provided in the design files. The following sections provide an overview of these configuration steps.PDMA InitializationThe PDMA engine must be initialized. Use the PDMA driver function PDMA_init() for this. This function resets PDMA and also clears any pending PDMA interrupts in the Cortex-M3 processor interrupt controller.Usage:PDMA_init():Configuring one of the PDMA Channels with ACE as SourceThe function PDMA_configure() is used for this purpose. In this case, PDMA channel 0 is configured with ACE as source for PDMA data transfer.Usage:PDMA_configure(PDMA_CHANNEL_0,PDMA_FROM_ACE,PDMA_LOW_PRIORITY | PDMA_WORD_TRANSFER |PDMA_INC_DEST_FOUR_BYTES, PDMA_DEFAULT_WRITE_ADJ);Managing PDMA TransferActual PDMA transfer for the configured PDMA channel is managed using the function PDMA_start(). The source address for the PDMA is the ACE PDMA FIFO, which is a predefined source in the driver files.The destination address for the PDMA is a buffer in MSS eSRAM, defined in the application. Usage:PDMA_start(PDMA_CHANNEL_0,/* Source for PDMA */(uint32_t) PDMA_ACE_PPE_DATAOUT,/* Destination for PDMA */(uint32_t) g_samples_buffer[g_pdma_buffer_idx],SAMPLES_BUFFER_SIZE);Setting up InterruptsPDMA_set_irq_handler() function is used to associate the ISR function for interrupts generated on the completion of a transfer on the PDMA channel specified. This function enables the PDMA interrupt both in the PDMA controller and in the Cortex-M3 processor interrupt controller.Usage:PDMA_set_irq_handler(PDMA_CHANNEL_0, ace_pdma_handler);Processing of ADC Data to Extract ADC ResultOnce the data has been received by the PDMA in the destination memory location, the application must extract the ADC number, channel number, and the raw data from the 32-bit data received. The ACE driver function ACE_translate_pdma_value() is used to decode the ACE data received by the PDMA. Refer to the PDMA data format table in the MSS ACE Configuration User's Guide for details on the data format.Usage:volatile uint16_t raw_value;raw_value = ACE_translate_pdma_value(g_samples_buffer[proc_buffer_idx][i], 0);Running the Design5Running the DesignBoard SettingsThe design example works on the SmartFusion Development Kit Board and the SmartFusion EvaluationKit Board with default board settings. Refer to the following user's guides for default board settings:•SmartFusion Development Kit User’s Guide •SmartFusion Evaluation Kit User’s GuideProgram the DesignProgram the SmartFusion Evaluation Kit Board (A2F-EVAL-KIT) or the SmartFusion Development KitBoard (A2F-DEV-KIT) with the provided STAPL file (refer to "Appendix A – Design Files" on page 7) usingFlashPro and then power cycle the board.The direct ADC input is assigned to pin W8, which is connected to the POT on the A2F-EVAL-KIT andA2F-DEV-KIT. Rotating the POT changes the input voltage applied at the ADC input. Refer to theSmartFusion Evaluation Kit User's Guide or the SmartFusion Development Kit User's Guide forschematics and pin mapping.Running the ApplicationInvoke the SoftConsole IDE from the Libero SoC project (refer to "Appendix A – Design Files" on page 7)and launch the debugger. Start a HyperTerminal with 57600 baud rate, 8 data bits, 1 stop bit, no parity,and no flow control. If your PC does not have the HyperTerminal program, use any free serial terminalemulation program like PuTTY or Tera Term. Refer to the Configuring Serial Terminal EmulationPrograms tutorial for configuring the HyperTerminal, Tera Term, and PuTTY .SmartFusion cSoC: Using ACE with PDMA6When you run the debugger in SoftConsole, the HyperTerminal window displays a menu that allowscontrolling ADC result display (Figure 3).Figure 3 • Menu Selection of ADC Result DisplayConclusion7Type y to start the display of the ADC result. Note that as the POT is rotated, the display varies. You canstop the display by pressing s and resume the display by pressing y .Release ModeThe release mode programming file (STAPL) is also provided. Refer to the Readme.txt file included in theprogramming file for more information. Refer to the Building Executable Image in Release Mode andLoading into eNVM tutorial for more information on building an application in release mode.ConclusionThis application note and design example demonstrate usage of PDMA with ACE to showcase theoffload capability in SmartFusion cSoC devices.Appendix A – Design FilesYou can download the design files from the Microsemi SoC Products Group website:/soc/download/rsc/?f=A2F_AC352_DF .The design file consists of Libero SoC projects and programming file (*.stp) for A2F500 and A2F200.Refer to the Readme.txt file included in the design file for directory structure and description.You can download the programming files (*.stp) in release mode from the Microsemi SoC ProductsGroup website: /soc/download/rsc/?f=A2F_AC352_PF.The programming file consists of STAPL programming files (*.stp) for A2F500 and A2F200, and aReadme.txt file.Figure 4 • ADC Result DisplaySmartFusion cSoC: Using ACE with PDMA 8List of ChangesThe following table lists critical changes that were made in each revision of the document.Revision*Changes Page Revision 4(January 2013)Added "Board Settings" section (SAR 43469).5Revision 3(February 2012)Removed ".zip" extension in the Design files link (SAR 36763).7Revision 2(January 2012)Modified the "Configuring Hardware" section (SAR 35790).2Modified the "Customizing Software" section (SAR 35790).3Modified the "Program the Design" section (SAR 35790).5Modified the "Running the Application" section (SAR 35790).5Added section called "Release Mode" (SAR 35790).7Modified the "Appendix A – Design Files" section (SAR 35790).7Revision 1(May 2011)Modified "Conclusion" and "Appendix A – Design Files" sections.7Note:*The revision number is located in the part number after the hyphen. The part number is displayed at the bottomof the last page of the document. The digits following the slash indicate the month and year of publication.51900220-4/01.13© 2013 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at .Microsemi Corporate HeadquartersOne Enterprise, Aliso Viejo CA 92656 USAWithin the USA: +1 (949) 380-6100Sales: +1 (949) 380-6136Fax: +1 (949) 215-4996。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能融合终端使用说明书北京智芯微电子科技有限公司2019年制目录1 产品概述.......................................................................................................................- 1 -1.1 产品简介................................................................................................................- 1 -1.2 智能融合终端架构及应用场景............................................................................- 2 -1.3 执行标准................................................................................................................- 2 -2 主要技术指标...............................................................................................................-3 -2.1 工作电源................................................................................................................- 3 -2.2 后备电源................................................................................................................- 3 -2.3 环境指标................................................................................................................- 3 -2.4 接口........................................................................................................................- 4 -2.5 通信协议................................................................................................................- 5 -2.6 系统及软件要求...............................................................................................- 5 -3 业务功能要求...............................................................................................................- 6 -3.1 数据采集功能...................................................................................................- 6 -3.2 基本业务功能...................................................................................................- 8 -3.3 高级应用功能................................................................................................ - 11 -4 安装............................................................................................................................ - 12 -4.1 外形图纸............................................................................................................. - 12 -4.2指示灯与端子定义.............................................................................................. - 13 -4.3 安装与准备......................................................................................................... - 16 -5 运输与储存................................................................................................................ - 17 -6 售后服务.................................................................................................................... - 17 - 附录A 常见问题及故障分析 .......................................................................................... - 18 -1产品概述1.1 1.1 产品简介智能融合终端是智慧物联体系“云管边端”架构的边缘设备,具备信息采集、物联代理及边缘计算功能,支撑营销、配电及新兴业务。
采用硬件平台化、功能软件化、结构模块化、软硬件解耦、通信协议自适配设计,满足高性能并发、大容量存储、多采集对象需求,集配电台区供用电信息采集、各采集终端或电能表数据收集、设备状态监测及通讯组网、就地化分析决策、协同计算等功能于一体的智能化融合终端设备。
智能融合终端产品主控模块基于“国网芯”SCM701主控芯片设计,采用Cortex-A7架构单芯4核处理器、主频1.2GHz,外围集成2GB DDR3和8GB FLASH存储器,为硬件平台化奠定坚强基础,同时采用实时嵌入式Linux操作系统(Linux3.10),搭建了一个可靠性高、速度快、存储容量大、开放性强的智能配用电台区终端平台。
智能融合终端支持配电和用采系统通信协议,远程通信支持以太网、4G公网及微功率无线的通信方式将数据分别上送配电主站和用采主站,下行通过电力线载波、RS-485与电能表及一次设备进行通信,支持远程升级。
外围功能模块采用专用通信、采集、计量、控制等芯片,配合低功耗MCU实现无线通信、电力线载波通信、状态量采集和控制等功能。
计量采用工业级交流采集测量芯片ATT7022E,保证了宽温度范围内的精度要求。
终端定位于低压配用电物联网核心,采用平台化硬件设计和边缘计算架构,支持就地化数据存储与决策分析。
终端采用模块化、可扩展、低功耗、免维护的设计标准,适应复杂运行环境,具有高可靠性和稳定性。
终端采用统一标准的系统开发环境,实现软、硬件解耦。
终端功能以应用软件方式实现,满足配网业务的灵活、快速发展需求。
1.2 1.2 智能融合终端架构及应用场景图1:智能融合终端架构及应用场景1.3 1.3 执行标准⏹配电台区信息采集终端融合技术方案⏹GB/T2423.1-2008 电工电子产品环境试验第2部分:试验方法试验A:低温⏹GB/T2423.2-2008 电工电子产品环境试验第2部分:试验方法试验B:高温⏹GB/T 2423.3 电工电子产品环境试验第2部分:试验方法试验C: 恒温湿热方法⏹GB/T 2423.9-2001 电工电子产品环境试验第2部分:试验方法试验Cb:设备用恒定湿热⏹GB-T 2423.10-2008试验Fc和导则:振动(正弦)⏹GB/T 4208 外壳防护等级(IP代码)⏹GB/T 5095电子设备用机电元件基本试验规程及测量方法⏹GB/T 11022 高压开关设备和控制设备标准的共用技术要求⏹GB/T 13729 远动终端设备⏹GB/T 14285 继电保护和安全自动装置技术规程⏹GB/T 14285 继电保护和安全自动装置技术规程⏹GB/T 14598 量度继电器和保护装置⏹GB/T 15153远动设备及系统⏹GB/T 17626电磁兼容试验和测量技术⏹DL/T 500 电压监测仪使用技术条件⏹DL/T 645多功能电能表通信协议⏹DL/T 721配电网自动化系统远方终端⏹Q/GDW 1639-2014 配电自动化终端设备检测规程⏹Q/GDW 1376.1-2013 电力用户用电信息采集系统通信协议第1部分:主站与采集终端通信协议⏹Q/GDW 1376.2-2013 电力用户用电信息采集系统通信协议第2部分:集中器本地通信模块接口协议⏹国家电网公司配电自动化DLT 634.5101-2002规约实施细则⏹国家电网公司配电自动化DLT 634.5104-2009规约实施细则⏹国家发展和改革委员会第14号令《电力监控系统安全防护规定》⏹国家能源局国能安全[2015]36号《电力监控系统安全防护总体方案》2主要技术指标2.1工作电源智能融合终端:使用交流三相四线制供电,在系统故障(三相四线供电时任断二相电)时,交流电源可供终端正常工作。
1)额定电压:AC220V/380V,50Hz;2)允许偏差:-20%~+20%;3)终端上电、断电、电源电压缓慢上升或缓慢下降,均不误动或误发信号,当电源恢复正常后自动恢复正常运行;4)电源恢复后保存数据不丢失,内部时钟正常运行。