霍尔效应及其应用实验报告
霍尔效应及其应用实验报告

霍尔效应及其应用实验报告一、实验目的。
本实验旨在通过实验观察和数据分析,探究霍尔效应的基本原理及其在实际应用中的意义和作用。
二、实验原理。
霍尔效应是指当导电体中有电流通过时,放置在导电体中的磁场中,会在导电体的横向产生电动势。
这一现象被称为霍尔效应,其数学表达式为E=KBI,其中E为霍尔电动势,K为霍尔系数,B为磁感应强度,I为电流。
三、实验仪器和材料。
1. 霍尔元件。
2. 恒定电流源。
3. 磁场调节装置。
4. 数字示波器。
5. 电源。
6. 万用表。
7. 磁铁。
8. 直流电流表。
9. 直尺。
10. 实验导线。
11. 笔记本电脑。
四、实验步骤。
1. 将霍尔元件固定在实验台上,并连接好电路。
2. 通过磁场调节装置,调整磁场的强度和方向。
3. 通过数字示波器和万用表,测量霍尔元件在不同磁场下的霍尔电动势和电流。
4. 记录实验数据,并进行数据分析和处理。
5. 根据实验数据,探究霍尔效应的规律,并分析其在实际应用中的意义和作用。
五、实验结果与分析。
通过实验数据的测量和分析,我们发现在不同磁场下,霍尔电动势与电流呈线性关系,且霍尔电动势的大小与磁场的强度和电流的大小均有关。
这一结论与霍尔效应的基本原理相吻合。
六、实验应用。
霍尔效应在实际应用中有着广泛的意义和作用。
例如在传感器领域,霍尔元件可以用来测量电流、磁场和速度,广泛应用于汽车、航空航天、电子设备等领域。
另外,霍尔元件还可以用于磁场测量、磁场探测和磁场传感等方面,具有很高的实用价值。
七、实验总结。
通过本次实验,我们深入了解了霍尔效应的基本原理和实际应用,通过实验数据的测量和分析,验证了霍尔效应的存在,并探究了其在实际应用中的意义和作用。
同时也加深了我们对电磁学知识的理解和掌握。
八、实验心得。
通过本次实验,我对霍尔效应有了更深入的了解,实验过程中也锻炼了我的实验操作能力和数据处理能力,使我对电磁学知识有了更加直观和深刻的认识。
以上就是本次实验的全部内容,希望能对大家有所帮助。
霍尔效应及其应用实验报告数据处理

霍尔效应及其应用实验报告数据处理一、实验目的本次实验的主要目的是通过测量霍尔电压、电流等物理量,深入理解霍尔效应的原理,并探究其在实际中的应用。
同时,通过对实验数据的处理和分析,提高我们的科学研究能力和数据处理技巧。
二、实验原理霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象称为霍尔效应。
假设导体中的载流子为电子,其电荷量为 e,平均定向移动速度为v,导体宽度为 b,厚度为 d,外加磁场的磁感应强度为 B。
则电子受到的洛伦兹力为 F = e v B,在洛伦兹力的作用下,电子会向导体的一侧偏转,从而在导体两侧产生电势差,即霍尔电压 UH 。
根据霍尔效应的基本公式:UH = RH I B / d ,其中 RH 为霍尔系数。
三、实验仪器霍尔效应实验仪、直流电源、毫安表、伏特表、特斯拉计等。
四、实验步骤1、连接实验仪器,将霍尔元件放入磁场中,确保磁场方向与霍尔元件平面垂直。
2、调节直流电源,给霍尔元件通入恒定电流 I ,并记录电流值。
3、用特斯拉计测量磁场的磁感应强度 B ,并记录。
4、测量霍尔元件两端的霍尔电压 UH ,改变电流和磁场的方向,多次测量取平均值。
五、实验数据记录以下是一组实验数据示例:|电流 I (mA) |磁场 B (T) |霍尔电压 UH (mV) |||||| 500 | 050 | 250 || 500 | 100 | 500 || 500 | 150 | 750 || 1000 | 050 | 500 || 1000 | 100 | 1000 || 1000 | 150 | 1500 |六、数据处理方法1、计算霍尔系数 RH根据公式 UH = RH I B / d ,可得 RH = UH d /(I B) 。
由于 d 为霍尔元件的厚度,在实验中为已知量,因此可以通过测量不同电流和磁场下的霍尔电压,计算出霍尔系数 RH 。
实验报告霍尔效应原理及其应用范文

实验报告霍尔效应原理及其应用范文一、实验目的1.掌握霍尔效应的基本原理。
2.学习如何测量霍尔电压。
3. 理解霍尔元件在磁场中的行为。
4. 了解霍尔效应的应用。
二、实验原理当一块半导体板通过一恒定电流时,板的两端会出现电压VH,即霍尔电压,其方向垂直于板和当前通过板的电流方向。
2.霍尔电压得出公式VH = BIL/ne其中B为磁场强度,I为电流强度,L为元件长度,e为元件载流子密度,n为载流子电荷数。
当元件置于磁场中时,霍尔电压会随着磁场的改变而线性变化。
磁场的强度越强,霍尔电压也越大。
霍尔效应可以应用于测量磁场、磁场传感器、磁传动、自动控制系统等领域。
三、实验材料1.霍尔元件2.磁铁3.电压表4.电流表5.恒流源6.导线四、实验步骤1.将霍尔元件固定在导轨上,并连接电路。
2.将电压表连接到霍尔元件的输出端,并将恒流源连接到元件的输入端。
3.用绿色磁铁靠近元件,然后再用蓝色磁铁靠近元件,观察电表显示。
4.改变恒流源的电流大小,再次使用磁铁观察电表的显示。
5.多次重复步骤3和4,记录数据。
五、实验结果通过实验可得,当恒定电流增加时,霍尔电压随之增加;当磁场强度增加时,电压也会增加。
当磁场方向改变时,霍尔电压的方向也会改变。
利用这些变化,可以测量磁场的强度和方向。
本实验通过观察霍尔效应,学习了如何测量霍尔电压和了解了霍尔元件在磁场中的行为。
同时,实验还介绍了霍尔效应的应用。
通过实验得出数据,验证了霍尔电压与电流、磁场强度之间的关系,并且可以得到准确的磁场测量结果。
霍尔效应的应用实验报告

霍尔效应的应用实验报告一、实验目的本实验旨在通过对霍尔效应的研究,了解霍尔电压与外磁场、电流和材料性质的关系,掌握霍尔效应在实际应用中的基本原理和方法。
二、实验原理1. 霍尔效应简介当一定强度的电流通过一个导体时,如果该导体放置在一个垂直于电流方向的磁场中,则在导体两侧会产生一定大小的电势差,这种现象被称为“霍尔效应”。
2. 霍尔元件结构霍尔元件由一块n型半导体芯片组成,芯片上有四个电极:两个为输入端,两个为输出端。
输入端通过金属引线连接到外部电路,输出端则与示波器相连。
3. 霍尔电压计算公式根据霍尔效应的原理可得:VH = B × I × RH。
其中,VH为霍尔电压,B为外磁场强度,I为通过芯片的电流强度,RH为材料特性参数。
三、实验步骤1. 接线:将霍尔元件与示波器相连,并将输入端与稳压直流电源相连。
2. 调节:调节稳压直流电源的输出电压,使其保持在一定值。
3. 测量:记录芯片两侧的电压差,即为霍尔电压。
4. 改变磁场:通过改变外部磁场的方向和大小,测量不同条件下的霍尔电压。
四、实验结果分析1. 霍尔电压与外磁场强度的关系当外磁场强度增加时,霍尔电压也会随之增加。
这是因为外磁场会影响导体内部载流子的运动方向和速度,从而影响霍尔电势差的大小。
2. 霍尔电压与电流强度的关系当通过芯片的电流强度增加时,霍尔电压也会随之增加。
这是因为在相同外磁场条件下,通过芯片的载流子数量增多,产生的霍尔效应也会相应增大。
3. 霍尔常数测量结果根据实验数据计算得到芯片材料的霍尔常数RH约为0.05m³/C。
五、实验误差分析1. 外部磁场不均匀对实验结果产生一定影响。
2. 实验过程中可能存在接触不良或者线路松动等因素,导致测量结果产生误差。
六、实验结论通过本实验的研究,我们了解了霍尔效应的基本原理和方法,并掌握了霍尔电压与外磁场、电流和材料性质的关系。
同时,我们还成功测量得到了芯片材料的霍尔常数RH约为0.05m³/C。
霍尔效应及其应用实验报告

霍尔效应及其应用实验报告实验报告:
实验目的:
1. 了解霍尔效应的基本原理和特点。
2. 掌握霍尔系数的测定方法及其相关计算。
3. 熟悉霍尔元件的使用,实现霍尔效应的应用。
实验仪器:
霍尔元件、直流电源、稳压电源、数字万用表、模拟万用表、磁通量表、恒流源等实验仪器设备。
实验原理:
霍尔效应是指在一定条件下,当闭合电路中有外磁场作用时,导电材料中的电荷会被偏转而产生跨越电势差,这种现象被称为霍尔效应。
实验步骤:
1. 将实验仪器连接好,保证电路连接正确无误。
2. 将霍尔元件固定到直流电源的输出端,调节稳压电源电压至所需数值。
3. 将恒流源的输出端接入霍尔元件中,调节电流为所需数值。
4. 调节磁通量表与霍尔元件之间的距离,使其达到最佳感应距离。
5. 打开磁场控制开关,测量相应的电势差与电流值,计算出霍尔系数。
实验结果:
根据实验数据计算出的霍尔系数为2.36×10^-14m^3/C。
证明了实验的可靠性以及相关的计算方法的正确性。
实验结论:
霍尔效应是一种非常实用的物理现象,能够在很多方面应用到实际生活中。
通过本次实验的学习,我们掌握了基本的霍尔效应的原理和相关实验方法,可以更深入地理解和应用相关知识。
同时,我们还了解到了霍尔效应在电子工艺、能源技术和环境监测等领域的广泛应用前景,这也为我们未来的学习和研究提供了更加深入的思路和拓展空间。
霍尔效应实验报告优秀4篇

霍尔效应实验报告优秀4篇实验四霍尔效应篇一实验原理1.液晶光开关的工作原理液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。
TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。
棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。
玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。
上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。
然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。
理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。
取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。
在未加驱动电压的情况下,来自光源的'自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。
这时光的偏振面与P2的透光轴平行,因而有光通过。
在施加足够电压情况下(一般为1~2伏),在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。
于是原来的扭曲结构被破坏,成了均匀结构。
从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。
这时光的偏振方向与P2正交,因而光被关断。
由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。
霍尔效应原理及其应用实验报告

霍尔效应原理及其应用实验报告霍尔效应是指当导体中有电流通过时,如果在导体中垂直于电流方向施加一个磁场,就会在导体的横向两侧产生电势差。
这一现象被称为霍尔效应,它是由美国物理学家爱德温·霍尔于1879年发现的。
霍尔效应在电子学和磁学领域有着重要的应用,本实验旨在通过具体的实验操作,深入理解霍尔效应的原理及其在实际中的应用。
一、实验原理。
1. 霍尔效应原理。
当导体中有电流通过时,如果在导体中垂直于电流方向施加一个磁场,就会在导体的横向两侧产生电势差。
这一现象被称为霍尔效应。
霍尔效应的原理是基于洛伦兹力的作用。
当导体中有电流通过时,电子会受到磁场力的作用,从而产生横向的电势差。
2. 实验装置。
本实验采用的装置主要包括霍尔元件、直流电源、磁铁、示波器等。
霍尔元件是本实验的核心部件,它能够测量出在导体中产生的霍尔电压。
直流电源用来提供电流,磁铁用来产生磁场,示波器用来测量霍尔电压的大小。
二、实验步骤。
1. 将直流电源连接到霍尔元件的两端,调节直流电源的电流大小。
2. 将磁铁放置在霍尔元件的两侧,调节磁铁的位置和磁场强度。
3. 使用示波器来测量霍尔电压的大小,并记录下实验数据。
4. 根据实验数据,分析霍尔电压与电流、磁场强度之间的关系。
三、实验结果与分析。
通过实验数据的记录和分析,我们可以得出霍尔电压与电流、磁场强度之间的定量关系。
具体来说,霍尔电压与电流成正比,与磁场强度成正比。
这一定量关系可以用数学模型来描述,从而为霍尔效应的应用提供了理论基础。
四、应用实验。
1. 霍尔传感器。
霍尔传感器是利用霍尔效应原理制作的一种传感器,它可以测量磁场的强度。
在汽车、电子设备等领域有着广泛的应用,如测量车速、转速等。
2. 霍尔电流计。
霍尔效应还可以用来测量电流的大小。
通过将导体放置在磁场中,利用霍尔效应测量出导体中产生的霍尔电压,从而可以计算出电流的大小。
五、实验总结。
通过本实验,我们深入理解了霍尔效应的原理及其在实际中的应用。
2023年霍尔效应的应用实验报告

一、名称: 霍尔效应旳应用二、目旳:1. 霍尔效应原理及霍尔元件有关参数旳含义和作用2.测绘霍尔元件旳VH—Is, VH—IM曲线, 理解霍尔电势差VH与霍尔元件工作电流Is, 磁场应强度B及励磁电流IM之间旳关系。
三、 3. 学习运用霍尔效应测量磁感应强度B及磁场分布。
四、 4. 学习用“对称互换测量法”消除负效应产生旳系统误差。
五、器材:1.试验仪:(1)电磁铁。
(2)样品和样品架。
(3)Is和I M 换向开关及V H 、Vó切换开关。
2.测试仪:(1)两组恒流源。
(2)直流数字电压表。
六、 原理:霍尔效应从本质上讲是运动旳带电粒子在磁场中受洛仑兹力作用而引起旳偏转。
当带电粒子(电子或空穴)被约束在固体材料中, 这种偏转就导致在垂直电流和磁场方向上产生正负电荷旳聚积, 从而形成附加旳横向电场, 即霍尔电场 。
如图15-1所示旳半导体试样, 若在X 方向通以电流 , 在Z 方向加磁场 , 则在Y 方向即试样 A-A/ 电极两侧就开始汇集异号电荷而产生对应旳附加电场。
电场旳指向取决于试样旳导电类型。
对图所示旳N 型试样, 霍尔电场逆Y 方向, (b )旳P 型试样则沿Y 方向。
即有)(P 0)()(N 0)(型型⇒>⇒<Y E Y E H H显然, 霍尔电场 是制止载流子继续向侧面偏移, 当载流子所受旳横向电场力 与洛仑兹力相等,样品两侧电荷旳积累就到达动态平衡, 故=(1)eEBv eH其中为霍尔电场, 是载流子在电流方向上旳平均漂移速度。
设试样旳宽为b, 厚度为d, 载流子浓度为n , 则=(2)IbdnevS由(1)、(2)两式可得: (3)即霍尔电压(A 、A/电极之间旳电压)与乘积成正比与试样厚度成反比。
比例系数称为霍尔系数, 它是反应材料霍尔效应强弱旳重要参数。
只要测出(伏)以及懂得(安)、(高斯)和(厘米)可按下式计算(厘米3/库仑):RH=(4)上式中旳108是由于磁感应强度B用电磁单位(高斯)而其他各量均采用CGS实用单位而引入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生物理实验报告
实验名称霍尔效应及其应用
学院专业班级报告人学号
同组人学号
理论课任课教师
实验课指导教师
实验日期
报告日期
实验成绩
批改日期
(3)确定试样的导电类型,载流子浓度以及迁移率
实验仪器
1.TH-H型霍尔效应实验仪,主要由规格为>3.00kGS/A电磁铁、N型半导体硅单晶切薄片式样、样品架、I S和I M换向开关、V H和Vσ(即V AC)测量选择开关组成。
2.TH-H型霍尔效应测试仪,主要由样品工作电流源、励磁电流源和直流数字毫伏表组成。
实验原理
霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。
对于图(1)(a)所示的N型半导体试样,若在X方向的电极D、E上通以电流Is,在Z方向加磁场B,试样中载流子(电子)将受洛仑兹力:
(1)
(a)(b)
图(1) 霍尔效应示意图
则在Y方向即试样A、A´电极两侧就开始聚积异号电荷而产生相应的附加电场---霍尔电场。
电场的指向取决于试样的导电类型。
对N型试样,霍尔电场逆Y方向,P型试样则沿Y方向,其一般关系可表示为
显然,该霍尔电场是阻止载流子继续向侧面偏移,当载流子所受的横向电场力 eE H 与洛伦兹力F E相等时,样品两侧电荷的积累就达到平衡,此时有
F E=eE H(2)
其中E H为霍尔电场强度,是载流子在电流方向上的平均漂移速率。
设试样的宽度为b,厚度为d,载流子浓度为n,则
(3)
由(2)、(3)两式可得
(4)
在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的A、A′两电极之间的电压并B
v
g
e
=
F
bd
v
ne
Is=
d
B
I
b
V S
H H
S
H
R
d
B
I
1
E=
=
=
ned
(9)来表示霍尔元件的灵敏度,K H 称为霍尔元件灵敏度。
单位为mV/(mA ·T )或mV/(mA ·kGs )
(10)电导率σ的测量,σ可以通过图2-21所示的A 、C 间的距离为l ,样品的横截面积为S=bd ,流经样品的电流为Is ,在零磁场下,若测得A 、C (A ′、C ′)间的电位差为V σ(Vac ),可由下式求得σ
σ=Isl/V σS
实验步骤
按图(2)连接测试仪和实验仪之间相应的Is 、V H 和I M 各组连线,Is 及I M 换向开关投向上方,表明Is 及I M 均为正值(即Is 沿X 方向,B 沿Z 方向),反之为负值。
V H 、V σ切换开关投向上方测V H ,投向下方测V σ(样品各电极及线包引线与对应的双刀开关之间连线已由制造厂家连接好)。
图(2) 霍尔效应实验仪示意图
接线时严禁将测试仪的励磁电源“I M 输出”误接到实验仪的“Is 输入”或“V H 、V σ输出”处,否则一旦通电,霍尔元件即遭损坏!
(2)对测试仪进行调零。
将测试仪的“Is 调节”和“ I M 调节”旋钮均置零位,待开机数分钟后若V H 显示不为零,可通过面板左下方小孔的“调零”电位器实现调零,即“0.00”。
(3)测绘V H -Is 曲线。
将实验仪的“V H 、V σ”切换开关投向V H 侧,测试仪的“功能切换”置V H 。
保持I M 值不变(取I M =0.6A ),测绘V H -Is 曲线。
(4)测绘V H -Is 曲线。
实验仪及测试仪各开关位置同上。
保持Is 值不变,(取Is =3.00mA ),测绘V H -Is 曲线。
(5)测量V δ值。
将“V H 、V σ”切换开关投向V δ侧,测试仪的“功能切换”置在零磁场下,取Is =2.00mA ,测量V δ。
注意:Is 取值不要过大,以免V σ太大,毫伏表超量程(此时首位数码显示为1,后三位数码熄灭)。
d
e n 1
K H
(6)确定样品的导电类型。
将实验仪三组双刀开关均投向上方,即Is 沿X 方向,B 沿Z 方向,毫伏表测量电压为V AA ´。
取Is =2mA ,I M =0.6A ,测量V H 大小及极性,判断样品导电类型。
(7)求样品的R H 、n 、σ和 µ 值。
实验数据与结果
(1)测绘V H -I s 曲线,数据记录如下
Is
(mA) V1(mV ) V2(mV ) V3(mV ) V4(mV )
+Is ﹑+B +Is ﹑-B -Is ﹑-B -Is 、+B 1.00 3.21 -3.01 2.80 -3.42 14.11
1.50 4.88 -4.47 4.26 -5.09 20.36
2.00 6.54 -5.93 5.72 -6.75 26.57 2.50 8.17 -7.36 7.15 -8.38 32.74
3.00 9.85 -8.83 8.62 -10.06 40.68
4.00
13.17
-11.74
11.52
-13.38
36.43
其中电流围:I M =0.6A ;Is 取值:1.00-4.00 mA 。
图形如下(横坐标为I S /mA,纵坐标为V H /mV)
(2)绘测V H -I M 曲线,数据记录如下
I M (A) V1(mV)
V2(mV )
V3(mV ) V4(mV )
+Is ﹑+B +Is ﹑-B -Is ﹑-B -Is 、+B 0.300 5.19 -4.15 3.94 -5.41 4.6725 0.400 6.75 -5.72 5.50 -6.97 6.235 0.500 8.30 -7.28 7.07 -8.53 7.795 0.600 9.87 -8.85 8.64 -10.08 9.36 0.700 11.40 -10.40 10.18 -11.63 10.902 0.800
12.95
-11.95
11.73
-13.16
12.44
(mV)
4
V V V V V 4
321H -+-=
其中电流围:Is=3.00mA ;I M取值:0.300-0.800A。
图形如下(横坐标为I M/mA,纵坐标为V H/mV)
(3)确定样品的导电类型.将实验仪三组双刀均投向上方,即延X方向,B延Z方向,毫伏表测量电压为Vaa.
取Is=2mA,Im=0.6A,测量Vh大小及极性,判断样品导电类型.
解:
Vh=6.54mA,所以导电类型为P型.
(4)求样品的Rh,n,σ和μ值.
解:
由H
S
V d
I B
=
H
R代入数据算的R H=5.713,由n
e
=
H
1
R
代入数据算的n=1.09×1018,由
V Sσ
σ=s
I L
代入数据算的σ=21.05S/m,由μ=|R H|σ代入数据的μ=120.26。
实验结果分析
1、如何精确测量霍尔电压?本实验采用什么办法消除各种附加电压?
答:多次测量取平均值。
本实验通过对称测量法求的霍尔电压。
2、磁场不恰好与霍尔片的法线一致,对测量效果有什么影响?
答:磁场与霍尔片的法线不一致,会造成有效磁场变小,则对应测得霍尔系数变大。
3、能否用霍尔片元件测量交变磁场?若能,怎么测量?
答:可以,因为霍尔效应建立的时间极短,使用交流磁场时,所得的霍尔电压也是交变的,此时的I M和V H应理解为有效值,上下板交替累积载流子无稳定的电势差。
4、如何根据I、B和V H的方向,判断所测样品为N型半导体还是P型半导体?
答:由错误!未找到引用源。
可得。
5、请根据欧姆定律推导出错误!未找到引用源。
(电导率δ为电阻率ρ的倒数)。
答:由错误!未找到引用源。
和错误!未找到引用源。
可得。
6、本实验的主要误差有哪些,这些误差对实验有何影响?
答:产生霍尔效应的同时,伴随着多种副效应,以导致实验测得的A、A'两级之间的电压并不等于真实的V H值,而是包含了各种副效应引起的附加电压。
本实验采取了对称测量法,基本上能够把副效应的影响从测量的结果中消除。
虽然还存在个别无法消除的副效应,但其引入的误差甚小,可忽略不计。
教师评语。