霍尔效应实验报告.doc
霍尔效应实验报告

霍尔效应实验报告一、实验目的1、了解霍尔效应的基本原理。
2、掌握用霍尔效应测量磁场的方法。
3、学会使用霍尔效应实验仪器。
二、实验原理霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这种现象称为霍尔效应。
设导体的厚度为 d,宽度为 b,通过的电流为 I,磁场强度为 B,电子的电荷量为 e,电子的平均定向移动速度为 v。
则在磁场的作用下,电子受到洛伦兹力的作用,其大小为 F = evB。
电子会在导体的一侧积累,从而在导体的两侧产生电势差,这个电势差称为霍尔电压 UH。
当达到稳定状态时,电子受到的电场力与洛伦兹力相等,即 eEH = evB,其中 EH 为霍尔电场强度。
霍尔电场强度 EH = UH / b,所以 UH = EHb = vBb。
又因为 I = nevbd(n 为单位体积内的自由电子数),所以 v = I /(nebd)。
将 v 代入 UH 的表达式中,可得 UH = IB /(ned),霍尔系数 RH = 1 /(ned),则 UH = RHIB / d 。
三、实验仪器霍尔效应实验仪、特斯拉计、双刀双掷开关、直流电源、毫安表、伏特表等。
四、实验步骤1、连接电路将霍尔效应实验仪的各部分按照电路图连接好,确保连接正确无误。
2、调节磁场打开特斯拉计,调节磁场强度,使其达到所需的值。
3、测量霍尔电压接通电源,让电流通过霍尔元件。
分别测量不同电流和磁场强度下的霍尔电压,并记录数据。
4、改变电流方向和磁场方向重复测量步骤 3,以消除副效应的影响。
5、数据处理根据测量的数据,计算出霍尔系数和载流子浓度。
五、实验数据记录与处理|磁场强度 B(T)|电流 I(mA)|霍尔电压 UH(mV)|||||| 01 | 10 | 25 || 01 | 20 | 50 || 02 | 10 | 50 || 02 | 20 | 100 |根据实验数据,计算霍尔系数 RH 和载流子浓度 n。
霍尔效应测磁场实验报告(完整资料).doc

【最新整理,下载后即可编辑】实 验 报 告学生姓名: 学 号: 指导教师: 实验地点: 实验时间:一、实验室名称:霍尔效应实验室二、 实验项目名称:霍尔效应法测磁场三、实验学时:四、实验原理:(一)霍耳效应现象将一块半导体(或金属)薄片放在磁感应强度为B 的磁场中,并让薄片平面与磁场方向(如Y 方向)垂直。
如在薄片的横向(X 方向)加一电流强度为H I 的电流,那么在与磁场方向和电流方向垂直的Z 方向将产生一电动势H U 。
如图1所示,这种现象称为霍耳效应,H U 称为霍耳电压。
霍耳发现,霍耳电压H U 与电流强度H I 和磁感应强度B 成正比,与磁场方向薄片的厚度d 反比,即d BI RU H H =(1)式中,比例系数R 称为霍耳系数,对同一材料R 为一常数。
因成品霍耳元件(根据霍耳效应制成的器件)的d 也是一常数,故d R /常用另一常数K 来表示,有B KI U H H = (2)式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位电流作用下霍耳电压的大小。
如果霍耳元件的灵敏度K 知道(一般由实验室给出),再测出电流H I 和霍耳电压H U ,就可根据式HH KI U B =(3)算出磁感应强度B 。
图 1霍耳效应示意图图2 霍耳效应解释(二)霍耳效应的解释现研究一个长度为l 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。
当沿X 方向通以电流H I 后,载流子(对N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方向运动,在磁感应强度为B 的磁场中,电子将受到洛仑兹力的作用,其大小为evB f B =方向沿Z 方向。
在B f 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场H E (见图2),它会对载流子产生一静电力E f ,其大小为H E eE f =方向与洛仑兹力B f 相反,即它是阻止电荷继续堆积的。
当B f 和E f 达到静态平衡后,有E B f f =,即b eU eE evB H H /==,于是电荷堆积的两端面(Z 方向)的电势差为vbB U H = (4)通过的电流H I 可表示为nevbd I H -=式中n 是电子浓度,得nebdI v H -=(5)将式(5)代人式(4)可得 nedBI U H H -= 可改写为B KI dBI RU H H H == 该式与式(1)和式(2)一致,neR 1-=就是霍耳系数。
实验报告霍尔效应

实验报告霍尔效应一、前言本实验即为霍尔效应实验,目的为观察材料中的自由电子在磁场中的漂移情况,并通过测量霍尔电压、磁场强度、电流等参数计算出材料中的载流子浓度、电荷载流子的载流率和电导率等物理参数,加深对材料物理性质的理解。
二、实验原理1. 霍尔效应霍尔效应是指在垂直磁场中,导电体中的自由电子感受到的洛伦兹力使其沿着垂直于电流方向的方向漂移,从而产生一侧的电荷密度增加,另一侧的电荷密度减小,形成的电势差即为霍尔电势差(VH),如下图所示:其中,e为元电荷,IB为电流,B为磁场强度,d为样品宽度,n为电子浓度。
2. 实验装置本实验装置如下图所示:其中,UH为霍尔电势差测量电压,IB为电流源,B为电磁铁控制磁场强度,R为电阻,L1,L2为长度为d的导线,L3为长度为l的导线。
3. 实验步骤(1)将实验装置按照图中所示连接好。
(2)打开电源,调节电流源的电流大小,使其稳定在0.5A左右。
(3)打开电磁铁电源,调节磁场强度大小。
(4)读取测量电压UH值。
(5)更改电流大小、磁场强度等参数进行多次实验重复测量。
三、实验结果通过多次实验测量,我们得到了以下测量数据:IB/A B/T UH/mV0.5 0 00.5 0.1 60.5 0.2 120.5 0.3 180.5 0.4 240.5 0.5 30四、实验分析1. 计算样品电子浓度根据式子:UH=IBBd/ne,可以计算得出样品中电子浓度n,如下表所示:2. 计算材料电导率IB/A B/T UH/mV R/Ω J/A.m^-2 E/V.m^-1 σ/(S.m^-1)0.5 0 0.22 1.18 4.24E+5 0.64 3.59E+50.5 0.1 6.22 1.18 4.24E+5 0.64 3.59E+50.5 0.2 12.22 1.18 4.24E+5 0.64 3.59E+50.5 0.3 18.22 1.18 4.24E+5 0.64 3.59E+50.5 0.4 24.22 1.18 4.24E+5 0.64 3.59E+50.5 0.5 30.22 1.18 4.24E+5 0.64 3.59E+53. 计算电子的载流率通过本实验可以得到如下结论:1. 随着磁场强度的增加,霍尔电势差也随之增加。
霍尔效应实验报告优秀4篇

霍尔效应实验报告优秀4篇实验四霍尔效应篇一实验原理1.液晶光开关的工作原理液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。
TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。
棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。
玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。
上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。
然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。
理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。
取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。
在未加驱动电压的情况下,来自光源的'自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。
这时光的偏振面与P2的透光轴平行,因而有光通过。
在施加足够电压情况下(一般为1~2伏),在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。
于是原来的扭曲结构被破坏,成了均匀结构。
从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。
这时光的偏振方向与P2正交,因而光被关断。
由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。
霍尔效应实验报告

一、实验目的1. 了解霍尔效应的产生原理及现象。
2. 掌握霍尔元件的基本结构和工作原理。
3. 通过实验测量霍尔系数、电导率等参数,判断半导体材料的导电类型。
4. 学习使用对称测量法消除副效应产生的系统误差。
5. 利用霍尔效应测量磁感应强度及磁场分布。
二、实验原理霍尔效应是当电流垂直于磁场通过导体时,在导体两侧会产生垂直于电流和磁场的电压差。
这种现象称为霍尔效应。
根据霍尔效应,可以推导出霍尔电压、霍尔系数、电导率等参数之间的关系。
三、实验仪器与材料1. 霍尔效应实验仪2. 直流电源3. 数字多用表4. 磁场发生器5. 半导体样品四、实验步骤1. 霍尔效应现象观察:将霍尔元件置于磁场中,调节电流和磁场方向,观察霍尔电压的变化。
2. 测量霍尔电压:使用数字多用表测量霍尔电压,记录数据。
3. 测量电流和磁场:使用数字多用表测量通过霍尔元件的电流和磁场强度,记录数据。
4. 计算霍尔系数和电导率:根据实验数据,计算霍尔系数和电导率。
5. 消除副效应:使用对称测量法消除副效应产生的系统误差。
6. 测量磁感应强度及磁场分布:利用霍尔效应测量磁感应强度及磁场分布。
五、实验结果与分析1. 霍尔效应现象观察:实验观察到,当电流和磁场垂直时,霍尔电压最大;当电流和磁场平行时,霍尔电压为零。
2. 测量霍尔电压:实验测得霍尔电压随电流和磁场强度的变化关系,符合霍尔效应的规律。
3. 计算霍尔系数和电导率:根据实验数据,计算出霍尔系数和电导率,与理论值基本一致。
4. 消除副效应:使用对称测量法消除副效应产生的系统误差,实验结果更加准确。
5. 测量磁感应强度及磁场分布:利用霍尔效应测量磁感应强度及磁场分布,结果与理论值基本一致。
六、实验结论1. 通过实验,我们了解了霍尔效应的产生原理及现象。
2. 掌握了霍尔元件的基本结构和工作原理。
3. 通过实验测量,我们验证了霍尔效应的基本规律,并计算出霍尔系数和电导率。
4. 使用对称测量法消除了副效应产生的系统误差,实验结果更加准确。
霍尔效应实验报告[共8篇]
![霍尔效应实验报告[共8篇]](https://img.taocdn.com/s3/m/658a1033f78a6529647d53ac.png)
篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。
3、学习利用霍尔效应测量磁感应强度b及磁场分布。
4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。
5、学习用“对称交换测量法”消除负效应产生的系统误差。
二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。
由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。
随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。
这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。
设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。
同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isb?rhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/???? (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。
(完整版)大学物理实验报告系列之霍尔效应.doc

大学物理实验报告【实验名称】霍尔效应【实验目的】1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。
2.学习用“对称测量法”消除付效应的影响,测量试样的VH — IS;和 VH — IM 曲线。
3.确定试样的导电类型、载流子浓度以及迁移率。
【实验仪器】霍尔效应实验仪【实验原理】霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子 (电子或空穴 )被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。
对于图 1( a)所示的 N 型半导体试样,若在 X 方向通以电流 1s,在 Z 方向加磁场 B,试样中载流子(电子)将受洛仑兹力F B = ev B ( 1)则在 Y 方向即试样A、A电极两侧就开始聚积异号电荷而产生相应的附加电场一霍尔电场。
电场的指向取决于试样的导电类型。
对N 型试样,霍尔电场逆Y 方向, P 型试样则沿 Y方向,有:Is (X)、 B (Z) E (Y) <0 (N 型)HE (Y) >0 (P 型)H显然,该电场是阻止载流子继续向侧面偏移,当载流子所受的横向电场力eEH 与洛仑兹力 eVB相等时,样品两侧电荷的积累就达到平衡,故有eE H = evB ( 2)其中 E H为霍尔电场, v 是载流子在电流方向上的平均漂移速度。
设试样的宽为 b ,厚度为 d ,载流子浓度为n ,则Is nevbd ( 3)由( 2 )、( 3)两式可得V H E H b1 I S B I S B( 4)R Hne d d即霍尔电压 V H(A、A电极之间的电压)与IsB 乘积成正比与试样厚度成反比。
1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,比例系数 R HneR H V H d 810 IsB1、由 R H的符号 (或霍尔电压的正、负)判断样品的导电类型判断的方法是按图一所示的Is 和 B 的方向,若测得的 V H AA’= V 触 f <0,(即点 A 的电位低于点A′的电位 ) 则 R H为负,样品属N 型,反之则为P 型。
霍尔夫定律实验报告

一、实验目的1. 了解霍尔效应的基本原理及其在物理和工程领域的应用。
2. 通过实验验证霍尔效应,测量霍尔元件的霍尔电压与电流的关系。
3. 掌握霍尔效应在磁场测量中的应用。
二、实验原理霍尔效应是指当电流通过半导体材料时,在垂直于电流和磁场方向上会产生电势差的现象。
这种现象是由于载流子在磁场中受到洛伦兹力的作用,导致电荷在材料中偏转,从而在材料两侧形成电势差。
霍尔效应的数学表达式为:\[ V_H = B \cdot I \cdot t \cdot n \cdot e \]其中:- \( V_H \) 为霍尔电压- \( B \) 为磁感应强度- \( I \) 为电流- \( t \) 为半导体材料的厚度- \( n \) 为载流子浓度- \( e \) 为载流子电荷量三、实验仪器与材料1. 霍尔效应实验装置2. 直流电源3. 电流表4. 数字电压表5. 霍尔元件6. 磁场发生器7. 导线四、实验步骤1. 将霍尔元件放置在磁场发生器产生的磁场中,确保磁场方向垂直于电流方向。
2. 将霍尔元件的A、B、C三个电极分别连接到电流表、直流电源和数字电压表。
3. 调节直流电源的输出电压,使霍尔元件中的电流为预定值。
4. 记录霍尔电压表的读数。
5. 改变磁场强度,重复步骤3和4,记录不同磁场强度下的霍尔电压。
6. 绘制霍尔电压与磁场强度的关系曲线。
五、实验结果与分析根据实验数据,绘制霍尔电压与磁场强度的关系曲线。
曲线应呈线性关系,斜率即为霍尔系数。
六、讨论1. 实验结果表明,霍尔效应在磁场测量中具有实际应用价值。
2. 霍尔效应的霍尔电压与磁场强度呈线性关系,可以用于精确测量磁场强度。
3. 在实验过程中,可能存在一些误差,如霍尔元件的电阻、温度等因素的影响。
七、结论通过本次实验,我们成功验证了霍尔效应,并掌握了霍尔效应在磁场测量中的应用。
实验结果表明,霍尔效应可以用于精确测量磁场强度,具有广泛的应用前景。
八、实验改进建议1. 使用更精确的电流表和电压表,以提高实验数据的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
霍尔效应实验报告篇一:霍尔效应实验报告篇二:霍尔效应的应用实验报告一、名称:霍尔效应的应用二、目的:1.霍尔效应原理及霍尔元件有关参数的含义和作用2.测绘霍尔元件的VH—Is,VH—IM曲线,了解霍尔电势差VH与霍尔元件工作电流Is,磁场应强度B及励磁电流IM之间的关系。
3.学习利用霍尔效应测量磁感应强度B 及磁场分布。
4.学习用“对称交换测量法”消除负效应产生的系统误差。
三、器材:1、实验仪:(1)电磁铁。
(2)样品和样品架。
(3)Is和IM 换向开关及VH 、Vó切换开关。
2、测试仪:(1)两组恒流源。
(2)直流数字电压表。
四、原理:霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场EH。
如图15-1所示的半导体试样,若在X方向通以电流IS ,在Z方向加磁场B,则在Y方向即试样A-A/ 电极两侧就开始聚集异号电荷而产生相应的附加电场。
电场的指向取决于试样的导电类型。
对图所示的N型试样,霍尔电场逆Y方向,(b)的P型试样则沿Y方向。
即有EH0EH0显然,霍尔电场EH是阻止载流子继续向侧面偏移,当载流子所受的横向电场力eEH与洛仑兹力eB相等,样品两侧电荷的积累就达到动态平衡,故eEH?eB (1)其中EH为霍尔电场,v是载流子在电流方向上的平均漂移速度。
设试样的宽为b,厚度为d,载流子浓度为n ,则IS?nebd(2)由(1)、(2)两式可得:VH1ne?EHb?1ISBned?RHISBd即霍尔电压VH(A 、A/电极之间的电压)与ISB乘积成正比与试样厚度d成反比。
比例系数RH?称为只要测出VH (伏)以及知道IS(安)、B(高斯)和d (厘米)可按下式计算RH(厘米3/库仑):RH=VHdISB?108(4)上式中的108是由于磁感应强度B用电磁单位(高斯)而其它各量均采用CGS实用单位而引入。
由于产生霍尔效应的同时,伴随多种副效应,以致实测的霍尔电场间电压不等于真实的VH值,因此必需设法消除。
根据副效应产生的机理,采用电流和磁场换向的对称测量法基本上能把副效应的影响从测量结果中消除。
具体的做法是Is和B(即IM)的大小不变,并在设定电流和磁场的正反方向后,依次测量由下面四组不同方向的Is和B(即IM)时的V1,V2,V3,V4,1)+Is +BV1 2)+Is -B V2 3)-Is -BV3 4)-Is +B V4然后求它们的代数平均值,可得:VH?V1?V2?V3?V44通过对称测量法求得的VH误差很小。
另一方面,射载流子浓度为n,薄片厚度为d,则电流强度I 与u的关系为:I?bdnqu??,则可得到VBB??1IBnqd??,令R?1nq,则VBB??RIBd??,R称为霍尔系数,它体现了材料的霍尔效应大小。
根据霍尔效应制作的元件称为霍尔元件。
在应用中,常以如下形式出现:VBB??KHIB ?? ,式中K 为霍尔元件灵敏度,I称为控制电流。
可见,若I、KH已知,只要测出霍尔电压VBB’,即可算出磁场B的大小;并且若知载流子类型,则由VBB’的正负可测出磁场方向,反之,若已知磁场方向,则可判断载流子类型。
由于霍尔效应建立所需时间很短,因此霍尔元件使用交流电或者直流电都可。
指示交流电时,得到的霍尔电压也是交变的,I和VBB’应理解为有效值。
H?Rd?1nqd称五、步骤:1、测量霍耳电压VH与工作电流IS的关系。
①对测试仪进行调零。
将测试仪的“IS调节”和“IM调节”旋钮均置零位,待开机数分钟后若VH显示不为零,可通过面板左下方小孔的“调零”电位器实现调零,即“0.00”。
②测绘VH-IS曲线。
将实验仪的“VH,V?”切换开关投向VH侧,测试仪的“功能切换”置VH,保持IM值不变(取IM=0.6A),绘制VH-IS曲线。
2、测量霍耳电压VH与工作电流IM的关系。
实验仪与测试仪各开关位置同上。
保持半导体的电流IS 不变(取=300mA),绘制VH-IM曲线。
3、测量V?值。
将切换开关“VH,V?”投向V?侧,“功能切换”置V?。
在零IS磁场下,取IS=2.00mA,测量V?。
4、确定样品的导电类型。
将实验仪三组双刀开关均投向上方,即IS沿X方向,B沿Z方向。
毫伏表测量电压为V AA?。
取IS=2.00mA IM=0.6A,测量VH大小及极性,判断样品导电类型。
5、求样品RH,n,?,μ值。
六、记录:1.测绘UH?IS曲线,保持IM=0.6A、IS=1.00~4.00mA 不变,在表格中记录霍2.测绘UHIM曲线,保持Is=3.00mA;Im=0.300~0.800A不变,在表格中记测得:V?=130.6mVVh=-5.40mV七、数据处理:1、根据数据表作出曲线图:2、在零磁场下,取IS=2.00mA,测出V?=130.6mV3、确定样品的导电类型。
测出霍耳电压VH=-5.40mV0,故样品属N型。
4、求样品RH,n,?,μ值。
由RH?得RH????3??6.15?10?3RH?6??6.02?10?3故RH=?216.09?10?3=?6.09?10(Vm/AT)?19?3(2)n?(3)?=|RH|eISLU?S??1.6?10?1.03?10)21?22.06??|RH|??6.09?10?3?22.06?0.13八、预习思考题:1、霍耳元件为什么要用半导体材料,而且要求做得很薄?霍尔电压是如何产生的?答:半导体材料的迁移率?高,电阻率?适中,是制造霍耳器件较理想的材料。
2、工作电流和磁场为什么要换向?实际操作时如何实现?答:为了把产生霍耳效应的时候所伴随的副效应的影响从测量的结果中消除。
实际操作时通过切换实验仪三组双刀开关改变电流和磁场的方向。
U?分别表示什么含义?IS、IM的作用分别是什么?UH、3、回答IS、IM、答:IS表示样品工作电流;IM表示励磁电流;UH表示存在磁场时的霍耳电压;U?表示在零磁场下的霍耳电压。
IS 的作用是改变电流大小和方向,IM的作用是改变磁场的大小及方向。
篇三:北京大学物理实验报告:霍尔效应测量磁场霍尔效应测量磁场【实验目的】了解霍尔效应的基本原理学习用霍尔效应测量磁场【仪器用具】仪器名参数电阻箱? 霍尔元件? 导线?SXG-1B毫特斯拉仪± PF66B型数字多用表200 mV档±DH1718D-2型双路跟踪稳压稳流电源0~32V 0~2A Fluke 15B数字万用表电流档±Victor VC9806+数字万用表200mA档±【实验原理】霍尔效应法测量磁场原理若将通有电流的导体至于磁场B之中,磁场B垂直于电流IS的方向,如图1所示则在导体中垂直于B和IS方向将出现一个横向电位差UH,这个现象称之为霍尔效应。
图1霍尔效应示意图若在x方向通以电流IS,在z方向加磁场B,则在y方向A、A′两侧就开始聚积异号电荷而产生相应的附加电场.当载流子所受的横向电场力FE洛伦兹力FB相等时:?? ??×?? =此时电荷在样品中不再偏转,霍尔电势差就有这个电场建立起来。
N型样品和P型样品中建立起的电场相反,如图1所示,所以霍尔电势差有不同的符号,由此可以判断霍尔元件的导电类型。
设P型样品的载流子浓度为p,宽度为w,厚度为的d。
通过样品电流IS=pqvwd,则空穴速率v=IS/pqwd,有U??====??其中RH=1/pq称为霍尔系数,KH=RH/d=1/pqd称为霍尔元件灵敏度。
霍尔元件的副效应及其消除方法在实际测量过程中,会伴随一些热磁副效应,这些热磁效应有:埃廷斯豪森效应:由于霍尔片两端的温度差形成的温差电动势UE 能斯特效应:热流通过霍尔片在其端会产生电动势UN里吉—勒迪克效应:热流通过霍尔片时两侧会有温度差产生,从而又产生温差电动势UR除此之外还有由于电极不在同一等势面上引起的不等位电势差U0为了消除副效应,在操作时我们需要分别改变IH和B的方向,记录4组电势差的数据当IH正向,B正向时:??1=+??0+++ 当IH负向,B正向时:??2=0?????+????+???? 当IH负向,B负向时:??3=0+ 当IH正向,B 负向时:??4=+??0 取平均值有1??12+??34 =?+?≈? 测量电路图2霍尔效应测量磁场电路图霍尔效应的实验电路图如图所示。
IM是励磁电流,由直流稳流电源E1提供电流,用数字万用表安培档测量IM。
IS 是霍尔电流,由直流稳压电源E2提供电流,用数字万用表毫安档测量IS,为了保证IS的稳定,电路中加入电阻箱R 进行微调。
UH是要测的霍尔电压,接入高精度的数字多用表进行测量。
根据原理的说明,在实验中需要消除副效应。
实际操作中,依次将IS、IM的开关K1、K2置于、、、状态并记录Ui 即可,其中+表示正向接入,?表示反向接入。
【实验内容】1. 测量霍尔电流IS和霍尔电压UH的关系1.1. 将霍尔片置于电磁铁靠近中心处(便于稍后测量磁场)1.2. 调节IM=0.598 A,调节R及E2使得IS=2 4 6 8 10 mA,测量并记录霍尔电压UH,每次消除副效应1.3. 更换输入端口,重复1.2的操作1.4. 作出UH-IS图,验证其线性关系2. 测量KH2.1. 保持IS=10 mA IM=0.1 A2.2. 调节IM使其从0.1~1.0A每间隔0.1A分别测量并记录磁场强度B和霍尔电压UH。
每次测量旋转探头使得读数最大,以保证探头霍尔片垂直于磁场 2.3. 根据原理中给出的线性拟合得到KH2.4. 由得到的KH,根据在不同IM时测得的UH计算B,作出B-IM曲线3. 测量磁场的水平分布 3.1. 保持IM =0.6A IS=10 mA3.2. 读取并记录支架水平标尺读数x和霍尔电压UH3.3. 旋转旋钮,使得霍尔片处于磁场中不同的位置,重复3.2 3.4. 根据测得的UH计算B,作出B-x曲线【实验数据及处理结果】1. 测量霍尔电流IS和霍尔电压UH的关系图3 Uh-Is关系图拟合结果R2=1 的UH-IS确符合线性关系2. 测量KHHKH=18.99 V/TAR2=0.99996 不考虑仪器带来的误差,则有σ??==??2??σ??=0.037 V/TAKH= V/TA图4 Uh-B关系图图5B-Im关系图B-IM是线性关系3. 磁场的水平分布。