人教版九年级上册数学 抛物线中的压轴题

合集下载

中考数学专题抛物线中的角度问题(初三数学压轴题讲解)

中考数学专题抛物线中的角度问题(初三数学压轴题讲解)

中考数学压轴题专题一:利用抛物线中的角度求点的坐标(原创)二次函数中的角度问题通常要构造直角、相似、全等三角形把角度问题转化为边的问题,求抛物线中的点坐标方法一般采用两种方法,第一种是求线与线的交点,这时需要联立方程;第二种是几何法,过点做坐标轴的垂线,再利用三角函数或者是相似三角形去求解!例1.抛物线y=﹣x2+x+4与坐标轴分别交于A,B,C三点,P是第一象限内抛物线上的一点且横坐标为m.连接CP,是否存在点P,使得∠BCO+2∠PCB=90°,若存在,求m 的值,若不存在,请说明理由.解题思路:1.利用∠BCO+2∠PCB=90°和∠BCO+∠CBO=90°推出∠CBO=2∠PCB2.得出∠CMB=∠MCB得到BC=BM3.求出M的坐标,进而求出直线CM的直线解析式4.联立直线CM方程和抛物线方程,求交点坐标例2.已知抛物线y=x2+x﹣3与x轴交于点A(1,0)和点B两点,与y轴交于点C,点P是抛物线点第三象限上一动点(不与点A,B,C重合),作PD⊥x轴,垂足为D,连接PC.且∠CPD=45°,求点P的坐标;解题思路:45度可以联想到等腰直角三角形1.延长PC交x轴于点E,得出等腰直角三角形2.求出E点坐标,进而求出直线CE的解析式3.联立直线CE方程和抛物线方程,求交点坐标例3.抛物线y=x2﹣4x与直线y=x交于原点O和点B,与x轴交于另一点A,顶点为D.连接OD,P为x轴上的动点,当tan∠PDO=时,求点P的坐标;解题思路1.分情况讨论,分P在原点的左右侧进行讨论2.P在原点右侧比较简单3.P在原点左侧要结合P在原点右侧的情况,可以得出等腰△OGD,求出G点坐标4.利用GD的直线直线方程或相似三角形求出P点坐标例4.已知抛物线y=﹣x2﹣6x﹣5与x轴交于点A(﹣1,0)和B(﹣5,0),与y轴交于点C,顶点为P,点N在抛物线对称轴上且位于x轴下方,连AN交抛物线于M,连AC、CM.tan ∠ACM=2时,求M点的横坐标;解题思路:1.构造一线三垂直利用相似求出点F坐标2.求出直线CF的解析式3.联立直线CF方程和抛物线方程,求交点坐标(求交点可以利用韦达定理)例5.在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴交于点A(﹣1,0)和点B,与y轴交于点C,顶点D的坐标为(1,﹣4).点P在抛物线上且满足∠PCB=∠CBD,求点P 的坐标;解题思路:1.分情况讨论,P在直线BC的上方和下方2.P在直线BC上方,利用∠PCB=∠CBD得出PC平行BD,利用斜率相等求出直线PC解析式联立PC方程和抛物线方程,求交点坐标3.P在直线BC的下方,∠PCB=∠CBD得出等腰三角形CFB,4.可以得出△BCD为直角三角形,,推出F为BD的中点5.求出直线CF的方程,再联立抛物线方程求出交点坐标例6.如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线经过A,B两点且与x轴的负半轴交于点C.点D为直线AB上方抛物线上的一个动点,当∠ABD=2∠BAC时,求点D的坐标;解题思路:1.过点B做OA平行线2.∠ABD=2∠BAC得出∠ABD=2∠EBA,得出∠FBD=∠BAC3.利用tan∠FBD=tan∠BAC求出D点做坐标例7.已知抛物线y=(x﹣1)2,D为抛物线的顶点,直线y=kx+4﹣k与抛物线交于P、Q两点.求证:∠PDQ=90°;解题思路思路1.构造一线三垂直思路2.证明直线PD和直线DQ斜率之积为-1思路3.利用勾股定理逆定理证明例8.如图,抛物线y=x2﹣2x﹣6与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.连接BD,F为抛物线上一动点,当∠F AB =∠EDB时,求点F的坐标;解题思路:1.分点F在x轴下方时和上方时进行分类讨论2.AB在x轴上,利用tan∠FAB=tan∠EDB去求最简便例9.如图,已知抛物线C1:交x轴于点A,B,交y轴于点C.在抛物线上存在点D,使,求点D的坐标.解题思路:1.分D在BC上方和下方讨论2.找到特殊点发现tan∠OBC=3.利用角平分线的性质去求F坐标4.求联立直线BF和抛物线方程求D点坐标例10,平面直角坐标系中,已知抛物线y=﹣x2+5x﹣4与x轴交于点A,B两点(点A在点B左边),与y轴交于点C.D为抛物线x轴上方一点,连接BD,若∠DBA+∠ACB=90°,求点D的坐标;解题思路:利用tan∠ACB=tan∠FDB去求解例11.已知抛物线y=﹣x2﹣x+2,BC平分∠PCO时,求点P的横坐标.解题思路:1.角平分线联想到角平分线+平行线得到等腰三角形2.利用PE=PC去求解(两点之间的距离公式)例12.抛物线y=x2﹣1,M(﹣4,3),N是抛物线上两点,N在对称轴右侧,且tan∠OMN =,求N点坐标;解题思路:构造一线三垂直课后练习1.在平面直角坐标系中,已知抛物线y=ax2+4ax+4a﹣6(a>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.直线DC交x轴于点E,tan∠AED=,求a的值和CE的长;2.已知抛物线y=(x+1)2+1,点A(﹣1,2)在抛物线的对称轴上。

九上数学二次函数提高题常考题型抛物线压轴题(含解析)

九上数学二次函数提高题常考题型抛物线压轴题(含解析)

—4 — 3 — 2 — 1F 列说确的是( ) A .抛物线的开口向下二次函数常考题型与解析•选择题(共12小题) 若二次函数y=x 2+mx 的对称轴是X =3,则关于X 的方程x 2+mx=7的解为 X 1=0 , X 2=6 B . X 1=1 , X 2=7 C . X 1 =1 , X 2= — 7 D . X 1= — 1 , X 2=7 点 P 1 (— 1 , y 1), P 2 (3 , y 2), P 3 (5 , y )均在二次函数 y= — X 2+2X +C 的图象上,贝U y 1, y 2, y 3的大小关系是() A . y 3 >y 2>y 1 B . y >y 1=y 2 C . y 1>y 2 >y 3 D . y 1=y 2 >y 3 .抛物线y=ax 2+bx+c 的图象如图所示,则一次函数 y=ax+b 与反比例函数4 .二次函数 y=ax 2+bx+c y=—在同一平面直角坐标系的图象大致为 C,自变量X 与函数y 的对应值如表:B. 当x > - 3时,y 随x 的增大而增大C. 二次函数的最小值是-2 D .抛物线的对称轴是x=-二5 .已知函数y=ax 2 - 2ax - 1 (a 是常数,a^O ),下列结论正确的是( )A. 当a=1时,函数图象过点(-1 , 1)B. 当a= - 2时,函数图象与x 轴没有交点C. 若a >0,则当x >1时,y 随x 的增大而减小 D .若a v 0,则当x <1时,y 随x 的增大而增大6.如图,已知二次函数y=ax 2+bx+c (a^O )的图象与x 轴交于点A (- 1,0), 与y 轴的交点B 在(0,- 2)和(0,- 1)之间(不包括这两点),对称轴为直 线x=1 .下列结论: ① abc > 0 ② 4a+2b+c >0 ③ 4ac - b 2v 8a ④ 菲a v t ⑤ b > c .其中含所有正确结论的选项是(7 •抛物线y=x 2+bx+c (其中b , c 是常数)过点A (2, 6),且抛物线的对称C .②④⑤D .①③④⑤轴与线段y=0 (1<x <3)有交点,贝U c的值不可能是()A. 4B. 6C. 8D. 10 8 .已知二次函数y=ax 2- bx - 2 (a却)的图象的顶点在第四象限,且过点(-1, 0),当a- b为整数时,ab的值为()A.羊或1B.—或1C.孚或£ D .丄或羊4 4 4 2 4 49.已知二次函数y=ax 2+bx+c (a>0)的图象经过点A (- 1 , 2), B (2, 5),顶点坐标为(m , n ),则下列说法错误的是()A. c v3B. m <—C. n<2 D . b v 1210 .已知抛物线y=ax 2+bx+c (a > 0 )过(-2, 0), (2 , 3)两点,那么抛物线的对称轴()A .只能是x= - 1B .可能是y轴C.可能在y轴右侧且在直线x=2的左侧D .可能在y轴左侧且在直线x= - 2的右侧11 .如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x、y应分别为()A. x=10 , y=14B. x=14 , y=10C. x=12 , y=15 D . x=15 , y=1212 .如图,反比例函数y 二也的图象经过二次函数y=ax 2+bx 图象的顶点(-丄,x 2二.填空题(共9小题)13 .已知点P ( m ,n )在抛物线y=ax 2 - x - a 上,当 m >-1时,总有n <1 成立,则a 的取值围是—.14 . a 、b 、c 是实数,点 A (a+1、b )、B (a+2,c )在二次函数 y=x 2- 2ax+3 的图象上,贝U b 、c 的大小关系是b c (用“〉”或“v”号填空) 15 .二次函数 y=ax 2+bx+c 的图象如图所示,且 P=|2a+b|+|3b- 2c|,Q=|2a16 .如图,抛物线y= - x 2+2x+3与y 轴交于点C ,点D (0,1),点P 是抛物 线上的动点.若△ PCD 是以CD 为底的等腰三角形,则点P 的坐标为 _______ .C . k v b v 0)-2kQ 的大小关系是1/\,5 °17 •如图,P是抛物线y= - X2+X+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,贝U四边形OAPB周长的最大值为18 .二次函数y=x 2- 2X - 3的图象如图所示,若线段AB在X轴上,且AB为2二个单位长度,以AB为边作等边A ABC,使点C落在该函数y轴右侧的图象丄OB时,直线AB恒过一个定点,该定点坐标为20 .如图,在平面直角坐标系中,菱形OABC的顶点A在X轴正半轴上,顶点C的坐标为(4, 3),D是抛物线y= - X2+6X上一点,且在X轴上方,则A BCD 面积的最大值为—.2交于A (X I,y i )、B (X2,y2)两点,当OA1/ZG121 .抛物线y= - x2+4ax+b (a>0)与x轴相交于0、A两点(其中0为坐标原点),过点P (2 , 2a)作直线PM丄x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C (其中B、C不重合),连接AP交y轴于点N,连接BC和PC.(1)a==时,求抛物线的解析式和BC的长;(2)如图a> 1时,若AP丄PC,求a的值.三.解答题(共12小题)22 .已知二次函数y=x 2+bx+c的图象与y轴交于点C (0, - 6),与x轴的一个交点坐标是A (- 2,0).(1)求二次函数的解析式,并写出顶点D的坐标;(2)将二次函数的图象沿x轴向左平移卄个单位长度,当y v 0时,求x的取值围.23 .已知二次函数y=ax 1 2 3- 2ax+c (a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP:PD=2 : 3(1)求A、B两点的坐标;(2)若tan /PDB=:,求这个二次函数的关系式.24 .已知,点M是二次函数y=ax 2(a > 0)图象上的一点,点F的坐标为(0 , 士),直角坐标系中的坐标原点O与点M , F在同一个圆上,圆心Q的纵坐标1 求a的值;2 当O, Q,M三点在同一条直线上时,求点M和点Q的坐标;3 当点M在第一象限时,过点M作MN丄x轴,垂足为点N,求证:MF=MN+OF .2mx+m 2 - 2与直线x= - 2交于点P .(1) 当抛物线F 经过点C 时,求它的表达式;(2) 设点P 的纵坐标为y p ,求y p 的最小值,此时抛物线F 上有两点(x i ,y i ),(X 2,y 2),且x i v X 2<-2,比较 y i 与 y 的大小;(3) 当抛物线F 与线段AB 有公共点时,直接写出m 的取值围.26 .如图,二次函数 y=ax 2+bx 的图象经过点 A (2,4)与B (6,0). (1) 求a ,b 的值;(2) 点C 是该二次函数图象上A ,B 两点之间的一动点,横坐标为x(2v x v 6), 写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大 值.-2),抛物线 F : y=x 2-B (2, 2),C (- 1 ,27 .在平面直角坐标系xOy 中,抛物线y=ax 2+bx+2 过B (- 2, 6), C (2, 2)两点.(1) 试求抛物线的解析式;(2) 记抛物线顶点为D ,求ABCD 的面积;(3) 若直线y= -—x 向上平移b 个单位所得的直线与抛物线段 BDC (包括端 点B 、C )部分有两个交点,求b 的取值围.28 .如图,顶点为A C ■, 1 )的抛物线经过坐标原点 O ,与x 轴交于点B . (1) 求抛物线对应的二次函数的表达式;(2) 过B 作OA 的平行线交y 轴于点C,交抛物线于点D ,求证:△OCD 也Q AB ; (3) 在x 轴上找一点P ,使得APCD 的周长最小,求出P 点的坐标.1 ■A厂L\D r\29 .如图1 (注:与图2完全相同),二次函数y=2x2+bx+c的图象与x轴交于A (3,0), B (- 1 , 0)两点,与y轴交于点C.(1)求该二次函数的解析式;(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);(3)若点P, Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P, Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).圉1 国230 .已知抛物线y=ax 2+bx - 3经过(-1,0 ),(3, 0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.(1)写出点C的坐标并求出此抛物线的解析式;(2)当原点O为线段AB的中点时,求k的值及A,B两点的坐标;(3)是否存在实数k使得△ABC的面积为二一?若存在,求出k的值;若不存在,请说明理由.O为原点,平行于x轴的直线与抛物线L: y=ax相交于A,B两点(点B在第一象限),点D在AB的延长线上.(1)已知a=1,点B的纵坐标为2 .①如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,求AC 的长.②如图2,若BD=^AB,过点B,D的抛物线L2,其顶点M在x轴上,求该抛物线的函数表达式.32 .小明的爸爸和妈妈分别驾车从家同时出发去上班,爸爸行驶到甲处时,看到前面路口时红灯,他立即刹车减速并在乙处停车等待,爸爸驾车从家到乙处的过程中,速度v (m/s )与时间t (s)的关系如图1中的实线所示,行驶路程s(m)与时间t( s)的关系如图2所示,在加速过程中,s与t满足表达式s=at2(1)根据图中的信息,写出小明家到乙处的路程,并求a的值;(2)求图2中A点的纵坐标h,并说明它的实际意义;(3)爸爸在乙处等待7秒后绿灯亮起继续前行,为了节约能源,减少刹车,妈妈驾车从家出发的行驶过程中,速度v (m/s )与时间t(s)的关系如图1中的折线0 - B-C所示,加速过程中行驶路程s (m)与时间t (s)的关系也满足s=at2,当她行驶到甲处时,前方的绿灯刚好亮起,求此时妈妈驾车的行驶速度.33 •科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8: 30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为nF, 0<耳<30y= °,10 : 00之后来的游客较少可忽略不计.b(x-90)z+n. 30<x<90L(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆游客的游玩质量,馆人数不超过684人,后来的人在馆外休息区等待•从10 : 30开始到12 : 00馆陆续有人离馆,平均每分钟离馆4人,直到馆人数减少到624人时,馆外等待的游客可全部进入•请问馆外游客最多等待多少分钟?2017年03月20日初中数学3的初中数学组卷参考答案与试题解析一•选择题(共12小题)1 .( 2016?若二次函数y=x4+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为( )A. X1=0 , X2=6B. X1=1 , X2=7C. X1=1 , X2= —7 D . X1= - 1 , X2=7 【分析】先根据二次函数y=x2+mx的对称轴是x=3求出m的值,再把m的值代入方程x2+mx=7,求出x的值即可.【解答】解:•二次函数y=x2+mx的对称轴是x=3 ,=3,解得m= —6 ,关于x 的方程x2+mx=7 可化为x2—6x —7=0,即(x+1 ) (x —7) =0 ,解得X1= —1 , X2=7 .故选D .【点评】本题考查的是二次函数的性质,熟知二次函数的对称轴方程是解答此题的关键.4( 2016?)点卩1 (—1 , y1), P2 (3, y), P3 (5, y3)均在二次函数y=—x2+2x+c的图象上,贝U y1, y2, y3的大小关系是( )A. y3>y2>y1B. y3 >y1=y 2C. y1 >y2 >y3 D . y1=y 2 >y3【分析】根据函数解析式的特点,其对称轴为x=1,图象开口向下,在对称轴的右侧,y随x的增大而减小,据二次函数图象的对称性可知,P i (- 1 , y i)与(3, y i )关于对称轴对称,可判断y i=y2>y.【解答】解:弓=-X2+2X+C,•••对称轴为x=1,P2 (3,y2),P3 (5,y3)在对称轴的右侧,y随X的增大而减小,••3 V 5,•••y2> y3,根据二次函数图象的对称性可知,P i (- 1,y i)与(3,y i)关于对称轴对称,故y i=y 2>y3,故选D .【点评】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.3. (20i6?贺州)抛物线y=ax 2+bx+c的图象如图所示,则一次函数y=ax+bC【分析】根据二次函数图象与系数的关系确定 a >0, b v 0, c v 0,根据一次函 数和反比例函数的性质确定答案.【解答】解:由抛物线可知,a >0, b v 0, c v 0,•••一次函数y=ax+b 的图象经过第一、三、四象限,反比例函数y=「|的图象在第二、四象限,故选:B .【点评】本题考查的是二次函数、一次函数和反比例函数的图象与系数的关系, 掌握二次函数、一次函数和反比例函数的性质是解题的关键.4. ( 2016?)二次函数y=ax 2+bx+c ,自变量x 与函数y 的对应值如表:F 列说确的是(A .抛物线的开口向下B. 当x >- 3时,y 随x 的增大而增大【分析】选出3点的坐标,利用待定系数法求出函数的解析式, 的性质逐项分析四个选项即可得出结论.【解答】解:将点(-4, 0)、(- 1 , 0)、(0, 4)代入到二次函数y=ax 2+bx+cC .二次函数的最小值是-2-5_D .抛物线的对称轴是x=再根据二次函数中,r0=16a-4b+c严1”曰得:0=a_b+c ,解得:*X5, .4二 0〔c=4二二次函数的解析式为y=x 2+5X+4 .A、a=1 >0,抛物线开口向上,A不正确;B、 -吕=-2,当X》-丄时,y随x的增大而增大,B不正确;2a 2 2C、y=x 2+5x+4=(計号严-子,二次函数的最小值是-晋,C不正确;D、-旦=-旦,抛物线的对称轴是x= -—,D正确.2a 2 2故选D .【点评】本题考查了待定系数求函数解析式以及二次函数的性质,解题的关键是利用待定系数法求出函数解析式.本题属于基础题,难度不大,解决该题型题目时,结合点的坐标利用待定系数法求出函数解析式是关键.5. (2016?、已知函数y=ax 2- 2ax - 1 (a是常数,a^0),下列结论正确的是()A. 当a=1时,函数图象过点(-1,1)B. 当a= - 2时,函数图象与x轴没有交点C. 若a>0,则当x>1时,y随x的增大而减小D .若a v 0,则当x<1时,y随x的增大而增大【分析】把a=1,x= - 1代入y=ax 2- 2ax - 1,于是得到函数图象不经过点(-1,1、,根据4=8 >0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=-——=1判断二次函数的增减性.2a【解答】解:A、:当a=1 , x= - 1时,y=1+2 -仁2,二函数图象不经过点(-1 , 1),故错误;B、当a= - 2时,:厶42- 4 x(-2 )x(-1 )=8 > 0,二函数图象与x轴有两个交点,故错误;C、:抛物线的对称轴为直线x= -#^=1,二若a >0,则当x>1时,y随x的2 a增大而增大,故错误;D、:抛物线的对称轴为直线x=-亠=1,二若a V0,则当x<1时,y随x的2a增大而增大,故正确;故选D .【点评】本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.6. (2016?达州)如图,已知二次函数y=ax 2+bx+c (a工0)的图象与x轴交于点A (- 1,0),与y轴的交点B在(0,- 2 )和(0,- 1)之间(不包括这两点),对称轴为直线x=1 .下列结论:①abc > 0②4a+2b+c >0③4ac - b2v 8a④X a晋⑤b > c.其中含所有正确结论的选项是()C.②④⑤D •①③④⑤【分析】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称轴得到函数图象经过(3,0),贝U得②的判断;根据图象经过(-1, 0)可得到a、b、c之间的关系,从而对②⑤作判断;从图象与y轴的交点B在(0,- 2)和(0,- 1)之间可以判断c的大小得出④的正误.【解答】解:①•••函数开口方向向上,• a > 0;•••对称轴在y轴右侧•ab异号,•••抛物线与y轴交点在y轴负半轴,•°c v 0,•abc >0, 故①正确;②•••图象与x轴交于点A (- 1,0 ),对称轴为直线x=1,•图象与x轴的另一个交点为(3,0),•••当x=2 时,y v 0,•°4a+2b+c v 0,故②错误;③•••图象与x轴交于点A (- 1,0 ),•••当x= - 1 时,y= (- 1) 2a+b x(-1) +c=0 ,•a - b+c=0,即a=b - c, c=b - a,•••对称轴为直线x=1•••丄=1,即b= - 2a ,2a ,,•c=b - a= (- 2a) - a= - 3a ,•'4ac - b2=4?a? (-3a)- (- 2a) 2= - 16a2v0••8a >0•'4ac - b2v 8a故③正确④••图象与y轴的交点B在(0,- 2)和(0,- 1)之间,•-2 v c v- 1•—2 v- 3a v- 1,故④正确⑤ va> 0,•'•b - c >0,即 b >c;故⑤正确;故选:D.【点评】主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用.7. (2016?)抛物线y=x 2+bx+c (其中b,c是常数)过点A (2,6),且抛物线的对称轴与线段y=0 (1 <x<3)有交点,则c的值不可能是(A. 4B. 6C. 8D. 10【分析】根据抛物线y=x2+bx+c (其中b, c是常数)过点A (2 , 6),且抛物线的对称轴与线段y=0 (1 <x<3)有交点,可以得到c的取值围,从而可以解答本题. 【解答】解::抛物线y=x 2+bx+c (其中b , c是常数)过点A (2, 6),且抛物线的对称轴与线段y=0 (1 <x <3)有交点,r4+2b 4-c=61<-2xF<3b解得 6 <c <14 ,故选A.【点评】本题考查二次函数的性质、解不等式,解题关键是明确题意,列出相应的关系式.8. ( 2016?)已知二次函数y=ax2- bx - 2 (a却)的图象的顶点在第四象限,且过点(-1, 0),当a - b为整数时,ab的值为( )A.晋或1B.寺或1C. ¥或寺D.寺或晋【分析】首先根据题意确定a、b的符号,然后进一步确定a的取值围,根据a-b为整数确定a、b的值,从而确定答案.【解答】解:依题意知a>0 , >0 , a+b - 2=0 ,故 b >0,且b=2 - a, a - b=a -( 2 - a) =2a - 2 ,于是0 v a v 2,又a - b 为整数,•••2a - 2= - 1,0,1,•'ab=或 1 ,【点评】本题考查了二次函数的性质,解题的关键是能够根据图象经过的点确定 a+b+c 的值和a 、b 的符号,难度中等.9. ( 2016?株洲)已知二次函数y=ax 2+bx+c (a > 0)的图象经过点 A (- 1, 2 ),B (2,5 ),顶点坐标为(m , n ),则下列说法错误的是( ) 顶点坐标即可得到结论. 【解答】解:由已知可知: f a-b-Fc=2 1- _,消去 b 得:c=3 - 2a v 3,消去 c 得:b=1 - a v 1,对称轴:m =x =-备=-供牛肖-备<§,••A (- 1,2),a >0,那么顶点的纵坐标为函数的最小值,• F <2,故B 错.【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟记二次 函故a= b= — 1 :',,,1,:, A . c v 3 B . m 丄 C . n <2 D . b v 1【分析】根据已知条件得到、、<laf2b+c-5,解方程组得到c=3 - 2a v 3,b=1 - a v 1,求得二次函数的对称轴为x= _L_ 二」=数的性质是解题的关键.10 . (2015?)已知抛物线y=ax2+bx+c (a> 0)过(-2, 0), (2 , 3)两点,那么抛物线的对称轴()A .只能是x= - 1B .可能是y轴C.可能在y轴右侧且在直线x=2的左侧D .可能在y轴左侧且在直线x= - 2的右侧【分析】根据题意判定点(-2 , 0)关于对称轴的对称点横坐标X2满足:-2v X2V2,从而得出-2 v二0,即可判定抛物线对称轴的位置.【解答】解:•••抛物线y=ax 2+bx+c (a > 0 )过(-2,0 ),(2,3)两点,•••点(-2,0)关于对称轴的对称点横坐标X2满足:-2 v X2V 2,X-i +•-2 v . v 0,•••抛物线的对称轴可能在y轴左侧且在直线x= - 2的右侧.故选:D.【点评】本题考查了二次函数的性质,根据点坐标判断出另一个点的位置是解题的关键.11. (2007?)如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x、y应分别为()/1\20v \\1€加A. x=10 , y=14B. x=14 , y=10C. x=12 , y=15 D . x=15 , y=12【分析】由直角三角形相似得■" - :1',得x=—?(24 - y),化简矩形面积S=xy24-8 20 4的解析式为S= -^ (y- 12) 2+,再利用二次函数的性质求出S的最大值,以及取得最大值时x、y的值.【解答】解:以直角梯形的下底直角边端点为原点,两直角边方向为x,y轴建立直角坐标系,过点D作DE丄x轴于点E,••NH //DE,•••zCNH s/CDE,空二塑'= DE,••CH=24 - y,CE=24 - 8,DE=OA=20 ,NH=x,_ 二,得x=—? (24 - y),•••矩形面积S=xy=—号(y - 12) 2+,•••当y=12时,S有最大值,此时x=15 .故选D .【点评】本题考查的是直角梯形以及矩形的性质的相关知识点.【解答】解:弓=&乂2+匕乂图象的顶点(-由图象知:抛物线的开口向下,•'a v k v 0,故选D .【点评】本题考查了二次函数的性质,反比例函数图象上点的坐标特征, 握反比例函数图象上点的坐标特征是解题的关键..填空题(共9小题)13 . ( 2016?)已知点 P (m , n )在抛物线 y=ax 2 - x - a 上,当 m >-112 . ( 2015?)如图,反比例函数y 二丄的图象经过二次函数y=ax 2+bx 图象的顶C . k v b v 0D . a v k v 0,m )代入y=ax 2+bx 图象的顶点坐标公式得到顶点(),再把(- ,音代入号得到k =| ,由图象的特征即可得到结论I = 2a-丄,即卩b=a ,:m=顶点(-亘 扌巴X= - 77,-亍),y=遗代入反比例解析式得: k=熟练掌时,总【分析】把(-丄有n呵成立'则a的取值围是—丄3【分析】依照题意画出图形,结合函数图形以及已知条件可得出关于a的一元次不等式组,解不等式组即可得出a的取值围.【解答】解:根据已知条件,画出函数图象,如图所示.解得:-丄w a v 0.【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是画出函数图象,依照数形结合得出关于a的不等式组.本题属于基础题,难度不大,解决该题型题目时,根据二次函数的性质画出函数图象,利用数形结合解决问题是关键.14 . (2016? )、b、c 是实数,点A (a+1、b )、B (a+2,c)在二次函数y=x 2-2ax+3的图象上,贝U b、c的大小关系是b v c (用“〉”或“v”号填空)【分析】求出二次函数的对称轴,再根据二次函数的增减性判断即可.【解答】解:•二次函数y=x2- 2ax+3的图象的对称轴为x=a,二次项系数1> 0,•••抛物线的开口向上,在对称轴的右边,y随x的增大而增大,••a+1 v a+2,点A (a+1、b)、B (a+2 , c)在二次函数y=x2-2ax+3 的图象上,•'•b v c,故答案为:v.【点评】本题考查了二次函数图象上点的坐标特征,求出对称轴解析式,然后利用二次函数的增减性求解更简便.15 . (2016?江)二次函数y=ax2+bx+c 的图象如图所示,且P=|2a+b|+|3b -2c|,Q=|2a - b| - |3b+2c|,贝U P,Q 的大小关系是P>Q .【分析】由函数图象可以得出a v 0, b >0,c>0,当x=1时,y=a+b+c >0,x= - 1时,y=a - b+c v 0,由对称轴得出2a+b=0,通过确定绝对值中的数的符号后去掉绝对值再化简就可以求出P、Q的值.【解答】解:•••抛物线的开口向下,b•2a - b v 0 ,b _d> 0,•——-1 ,-b+2a=0 ,x= - 1 时,y=a - b+c v 0.•••-+b - b+c v 0,•'3b —2c >0 ,•••抛物线与y轴的正半轴相交,•'c >0,••3b+2c > 0,•'p=3b —2c,Q=b —2a —3b —2c= —2a —2b —2c,••Q —P= —2a —2b —2c —3b+2c= —2a —5b= —4b v 0•'P >Q,故答案为:P>Q .【点评】本题考查了二次函数的图象与系数的关系,去绝对值,二次函数的性质.熟记二次函数的性质是解题的关键.16 . ( 2016?)如图,抛物线丫= —X2+2X+3与y轴交于点C,点D (0, 1),点P是抛物线上的动点.若△ PCD是以CD为底的等腰三角形,则点P的坐标为 (1 + b打,2 )或(1 -.二2) .1/\,【分析】当^CD是以CD为底的等腰三角形时,则P点在线段CD的垂直平分线上,由C、D坐标可求得线段CD中点的坐标,从而可知P点的纵坐标,代入抛物线解析式可求得P点坐标.【解答】解:•••△CD是以CD为底的等腰三角形,•••点P在线段CD的垂直平分线上,如图,过P作PE丄y轴于点E,贝U E为线段CD的中点,••抛物线y= - X2+2X+3与y轴交于点C,• (0,3),且 D (0,1 ),•£点坐标为(0,2),•••P点纵坐标为2,在y= - X2+2X+3中,令y=2,可得-X2+2X+3=2,解得X=1±.工,•••P 点坐标为(1 +応,2 )或(1 - /::,2 ),故答案为:(1+ 二 2 )或(1 - :':,2).【点评】本题主要考查等腰三角形的性质,利用等腰三角形的性质求得P 点纵坐标是解题的关键. 17 . ( 2014?)如图,P 是抛物线y= - X 2+X +2在第一象限上的点,过点向x 轴和y 轴引垂线,垂足分别为A ,B ,则四边形OAPB 周长的最大值为-1) 2+6 •根据二次函数的性质来求最值即可. 【解答】解:平-X 2+X +2 , •••当y=0 时,-X 2+X +2=0 即-(X - 2) (X +1 ) =0 , 解得X =2或X = - 1故设 P ( X ,y ) (2 > X > 0,y > 0),•••C=2 (x+y ) =2 (X -X 2+X +2 ) = - 2 (X - 1) 2+6 .•••当X =1时,C 最大值=6,.即:四边形OAPB 周长的最大值为6.故答案是:6.【点评】本题考查了二次函数的最值, 二次函数图象上点的坐标特征. 求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第 三种是公式法.本题采用了配方法.P 分别,根据矩形的周长公式得到 C= - 2 ( X18 . ( 2016?)二次函数y=x 2 - 2x - 3的图象如图所示,若线段 AB 在x 轴上,且AB 为2 .个单位长度,以AB 为边作等边△ ABC ,使点C 落在该函数y 轴右点C 在二次函数上,所以令y= ±3代入解析式中,分别求出x 的值•由因为使 点C落在该函数y 轴右侧的图象上,所以x >0 . 【解答】解:tzABC 是等边三角形,且AB=2 .「;,••AB 边上的高为3 , 又•••点C 在二次函数图象上,•••C 的纵坐标为土 3,令 y= ±3 代入 y=x 2 - 2x - 3,•••x=1 | 丄恋 I ■或 0 或 2•••使点C 落在该函数y 轴右侧的图象上,•'•X >0,-■•x=l + 一 r 或 x = 2•••C (1+ 「,3)或(2,- 3)故答案为:(1+「,3)或(2,- 3)【点评】本题考查二次函数的图象性质, 涉及等边三角形的性质,分类讨论的思想等知识,题目比较综合,解决问题的关键是根据题意得出 C 的纵坐标为土 3 .19 . ( 2016?)直^y=kx+b 与抛物线 y=£x 2 交于 A (x i , y i )、B (X 2, y 2)两 4点,当OA 丄OB 时,直线AB 恒过一个定点,该定点坐标为(0, 4).3,又【分析】根据直线y=kx+b与抛物线y=』x2交于A (x i, y i)、B (X2, y2)两点,可以联立在一起,得到关于x的一元二次方程,从而可以得到两根之和与两根之积,再根据0A丄OB,可以求得b的值,从而可以得到直线AB恒过的定点的坐标.【解答】解:•••直线y=kx+b与抛物线丫=寺”交于A (x i,y i) > B (X2,y2)两占八、、)••kx+b=寺其2,4化简,得x2- 4kx - 4b=0 ,•'x i+x 2=4k,x i X2= - 4b,又VOA丄OB,丄2丄 2 巾7 y2-o 4勺口“ -4L. ■ 一一一二一] ,x] -0 y 2x1 22 口七16 16解得,b=4,即直线y=kx+4,故直线恒过顶点(0,4),故答案为:(0,4).【点评】本题考查二次函数的性质、一次函数的性质,解题的关键是明确题意,找出所求问题需要的条件,知道两条直线垂直时,它们解析式中的k的乘积为-i.20 . ( 20i6?)如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4, 3), D是抛物线y= - X2+6X上一点,且在x轴上方,则经CD面积的最大值为15【分析】设D( X,- X2+6X),根据勾股定理求得0C,根据菱形的性质得出BC,然后根据三角形面积公式得出•••3)= - — (X - 3)+15 ,根据二次函数的性质即可求得最大值.【解答】解:tD是抛物线y= - X2+6X上一点,•••设D (X , - X2+6X ),•••顶点C的坐标为(4 , 3),•••0C=二’:=5 ,•••四边形OABC是菱形,•••BC=0C=5 , BC //x 轴,1 C.'S少CD=— X5X(-X2+6X—3) = -— (X—3) 2+15 ,•'S ZBCD有最大值,最大值为15 ,故答案为15 .【点评】本题考查了菱形的性质,二次函数的性质,注意数与形的结合是解决本题的关键.21 . ( 2016?)抛物线y= - x2+4ax+b (a >0)与x轴相交于0、A两点(其中O为坐标原点),过点P (2 , 2a)作直线PM丄x轴于点M,交抛物线于点B, 点B关于抛物线对称轴的对称点为 C (其中B、C不重合),连接AP交y轴于点N,连接BC和PC.(1)a==时,求抛物线的解析式和BC的长;(2)如图a> 1时,若AP丄PC,求a的值.i M : 卜【分析】(1)根据抛物线经过原点b=0,把a=^、b=0代入抛物线解析式,即可求出抛物线解析式,再求出B、C坐标,即可求出BC长.(2)利用△ PCB S/APM,得器=界,列出方程即可解决问题.AJn r In【解答】解:(1 )•••抛物线y= - x2+4ax+b (a > 0)经过原点0,•'•b=0 ,..3①一,•••抛物线解析式为y= - x2+6x,■•x=2 时,y=8,•点B坐标(2,8 ),•••对称轴x=3,B、C关于对称轴对称,•点C坐标(4,8 ),•••BC=2 .(2):AP丄PC,:丄 APC=90 ° ,V/CPB+ / APM=90 ° , APM+ / PAM=90•••zCPB= /PAM ,vzPBC= / PMA=90 ° ,•••△CB S/APM ,BC丽,=!_ 14a-22a整理得a2- 4a+2=0,解得a=2 ±. :■:,••a >1 ,相似三角形的判定和性质、待定系数法等知识, 解题的关键是利用相似三角形性质列出方程解决问题,学会转化的思想,属于中考常考题型.三•解答题(共12小题)22 . (2016?黔南州)已知二次函数y=x2+bx+c的图象与y轴交于点C (0 ,-6),与x轴的一个交点坐标是A (- 2 , 0).(1) 求二次函数的解析式,并写出顶点 D 的坐标;(2) 将二次函数的图象沿x 轴向左平移一个单位长度,当y v 0时,求x 的取 值围.【分析】(1)将点A 和点C 的坐标代入抛物线的解析式可求得 b 、c 的值,从而 得到抛物线的解析式,然后依据配方法可求得抛物线的顶点坐标;(2)依据抛物线的解析式与平移的规划规律,写出平移后抛物线的解析式,然 后求得抛物线与x 轴的交点坐标,最后依据y v 0可求得x 的取值围.【解答】解:(1 把C (0,- 6)代入抛物线的解析式得:C= - 6,把A (-2,0)代入 y=x 2+bx - 6 得: b= - 1,•••抛物线的解析式为y=x 2 - x - 6 .•抛物线的顶点坐标D (壬,-罕). 2 4(2) 二次函数的图形沿x 轴向左平移丄个单位长度得: 令y=0 得: (x+2 ) 2-曽=0,解得:X 1二寺,X 2= --| ••a > 0,•••当y v 0时,x 的取值围是-*<x v*.【点评】本题主要考查的是抛物线与x 轴的交点、待定系数法求二次函数的解析 式,掌握相关知识是解题的关键.23 . ( 2016?)已知二次函数y=ax 2 - 2ax+c (a >0)的图象与x 轴的负半轴和正半轴•■•y= (x-—) 225 Ty=(x+2 ) 2-二.分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP:PD=2 : 3(1)求A、B两点的坐标;(2)若tan /PDB=^,求这个二次函数的关系式.J A【分析】(1 )由二次函数的解析式可求出对称轴为x=1 ,过点P作PE丄x轴于点E,所以OE: EB=CP : PD;(2)过点C作CF丄BD于点F,交PE于点G ,构造直角三角形CDF,利用tan/PDB=5即可求出FD,由于△CPG^zCDF,所以可求出PG的长度,进而求出4a的值,最后将A (或B)的坐标代入解析式即可求出c的值.【解答】解:(1)过点P作PE丄x轴于点E,■-y=ax 2- 2ax+c ,•••该二次函数的对称轴为:x=1 ,•••OE=1••OC //BD ,•••CP: PD=OE : EB,•••OE: EB=2 : 3,g,2B=0E+EB= -,•B (養,0)••A与B关于直线x=1对称,「A (-丄,0);(2)过点C作CF丄BD于点F,交PE于点G , 令x=1 代入y=ax 2- 2ax+c ,•'y=c - a,令x=0 代入y=ax 2—2ax+c ,-y=c•■•PG=a,80—,|CF「tan /PDB二二,FD '•••FD=2,••PG//BDFG_CP_2FD~CD_5•••Z CPG S/CDF ,,••PG=-a=5,4 2• y=詳8丄-x+c,把A (-鲁,0)代入y=:x2—z 5•••解得:c= - 1 ,•••该二次函数解析式为:y= 2x2 -— x - 1.5 5【点评】本题考查二次函数,涉及待定系数法求出二次函数解析式,相似三角形的性质与判定,锐角三角函数等知识容,解题的关键是利用作垂线构造直角三角形,再利用相似三角形的对应边的比相等即可得出答案.24 . ( 2016?)已知,点M是二次函数y=ax2(a > 0)图象上的一点,点F的坐标为(0,丄),直角坐标系中的坐标原点O与点M , F在同一个圆上,圆心Q4a的纵坐标为丄(1) 求a的值;(2) 当O, Q,M三点在同一条直线上时,求点M和点Q的坐标;(3)当点M在第一象限时,过点M作MN丄x轴,垂足为点N,求证:MF=MN+OF。

九年级上册数学压轴题

九年级上册数学压轴题

九年级上册数学压轴题
题目:
如图,在平面直角坐标系中,抛物线公式与公式轴交于公式、公式两点,与公式轴交于点公式。

(1)求抛物线的解析式;
(2)点公式是第一象限抛物线上的一个动点,过点公式作公式轴于点公式,公式轴于点公式,当四边形公式的周长最大时,求点公式的坐标;
(3)在(2)的条件下,直线公式上是否存在点公式,使得公式
是以公式为直角边的直角三角形?若存在,求点公式的坐标;若不存在,请说明理由。

解析:
(1)
已知抛物线公式与公式轴交于公式、公式两点。

把公式,公式代入公式得:
公式
由公式可得公式,将其代入公式
公式
公式
公式
公式
则公式
所以抛物线的解析式为公式。

(2)
设公式(公式)
因为公式轴,公式轴,公式,公式
则公式,公式
四边形公式的周长公式
公式
对于二次函数公式,公式,公式,公式对称轴为公式
因为公式,所以当公式时,四边形公式的周长最大
此时公式
(3)
首先求出公式
设直线公式的解析式为公式,把公式代入得:公式
公式
公式
所以直线公式的解析式为公式
设公式
因为公式,公式
所以公式
公式
公式
当公式时,公式
公式
公式
公式
公式
此时公式(与点公式重合,舍去)
当公式时,公式
公式
公式
公式
公式
此时公式
综上,存在点公式,使得公式是以公式为直角边的直角三角形。

(已整理)中考数学必刷压轴题专题:抛物线之基础面积问题(含解析)

(已整理)中考数学必刷压轴题专题:抛物线之基础面积问题(含解析)

中考数学抛物线压轴题之面积问题(1)求抛物线的解析式;(2)若点M为抛物线上第四象限内一动点,顺次连接AC,CM,MB,是否存在点M,使四边形MBAC的面积为9,若存在,求出点M的坐标,若不存在,请说明理由.(3)将直线BC沿x轴翻折交y轴于N点,过B点的直线l交y轴、抛物线分别于D、E,且D在N的上方,将A点绕O顺时针旋转90°得M,若∠NBD=∠MBO,试求E的的坐标.2.已知:如图,直线y=﹣x﹣3交坐标轴于A、C两点,抛物线y=x2+bx+c过A、C两点,(1)求抛物线的解析式;(2)若点P为抛物线位于第三象限上一动点,连接PA,PC,试问△PAC的面积是否存在最大值,若存在,请求出△APC面积的最大值,以及此时点P的坐标;若不存在,请说明理由;(3)点M为抛物线上一点,点N为抛物线对称轴上一点,若△NMC是以∠NMC为直角的等腰直角三角形,请直接写出点M的坐标.3.如图1,二次函数y=﹣x2+x+3的图象交x轴于A、B两点(点A在点B的左侧),交y轴于C点,连结AC,过点C作CD⊥AC交AB于点D.(1)求点D的坐标;(2)如图2,已知点E是该二次函数图象的顶点,在线段AO上取一点F,过点F作FH⊥CD,交该二次函数的图象于点H(点H在点E的右侧),当五边形FCEHB的面积最大时,求点H的横坐标;(3)如图3,在直线BC上取一点M(不与点B重合),在直线CD的右上方是否存在这样的点N,使得以C、M、N为顶点的三角形与△BCD全等?若存在,请求出点N的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中抛物线y=ax2+bx+c经过原点,且与直线y=﹣kx+6交于则A(6,3)、B(﹣4,8)两点.(1)求直线和抛物线的解析式;(2)点P在抛物线上,解决下列问题:①在直线AB下方的抛物线上求点P,使得△PAB的面积等于20;②连接OA,OB,OP,作PC⊥x轴于点C,若△POC和△ABO相似,请直接写出点P的坐标.5.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A(4,0),B两点,与y轴交于点C(0,2),对称轴x=1,与x轴交于点H.(1)求抛物线的函数表达式;(2)直线y=kx+1(k≠0)与y轴交于点E,与抛物线交于点P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若△CPQ的面积为,求点P,Q的坐标;(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK绕点G顺时针旋转90°,使点K恰好落在抛物线上?若存在,请直接写出点K的坐标;若不存在,请说明理由.6.在平面直角坐标系中,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求c的值及a、b满足的关系式;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围;(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△PAB的面积为?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A(4,0),B两点,与y轴交于点C(0,2),对称轴x=与x轴交于点H.(1)求抛物线的函数表达式;(2)直线y=kx+1(k≠0)与y轴交于点E,与抛物线交于点 P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若△CPQ的面积为,求点P,Q的坐标;(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK绕点G逆时针旋转90°,使点K恰好落在抛物线上,若存在,请直接写出点K的坐标;若不存在,请说明理由.8.如图,抛物线y=ax2+bx+c与x轴相交于A(3,0)、B两点,与y轴交于点C(0,3),点B在x轴的负半轴上,且OA=3OB.(1)求抛物线的函数关系式;(2)若P是抛物线上且位于直线AC上方的一动点,求△ACP的面积的最大值及此时点P的坐标;(3)在线段OC上是否存在一点M,使BM+CM的值最小?若存在,请求出这个最小值及对应的M点的坐标;若不存在,请说明理由.9.如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;(2)若点P是直线BC下方的抛物线上一动点(不点B,C重合),过点P作y轴的平行线交直线BC于点D,设点P的横坐标为m.①用含m的代数式表示线段PD的长.②连接PB,PC,求△PBC的面积最大时点P的坐标.(3)设抛物线的对称轴与BC交于点E,点M是抛物线的对称轴上一点,N为y轴上一点,是否存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.10.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B 三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①求△BOD面积的最大值,并写出此时点D的坐标;②当△OPC为等腰三角形时,请直接写出点P的坐标.11.如图抛物线y=ax2+bx+6的开口向下与x轴交于点A(﹣6,0)和点B(2,0),与y轴交于点C,点P 是抛物线上一个动点(不与点C重合)(1)求抛物线的解析式;(2)当点P是抛物线上一个动点,若△PCA的面积为12,求点P的坐标;(3)如图2,抛物线的顶点为D,在抛物线上是否存在点E,使得∠EAB=2∠DAC,若存在请直接写出点E 的坐标;若不存在请说明理由.12.如图,直线y=x+c与x轴交于点B(4,0),与y轴交于点C,抛物线y=x2+bx+c经过点B,C,与x轴的另一个交点为点A.(1)求抛物线的解析式;(2)点P是直线BC下方的抛物线上一动点,求四边形ACPB的面积最大时点P的坐标;(3)若点M是抛物线上一点,请直接写出使∠MBC=∠ABC的点M的坐标.13.综合与探究如图1,抛物线y=ax2+bx﹣3与x轴交于A(﹣2,0),B(4,0)两点,与y轴交于点C.(1)求抛物线的表达式;(2)点N是抛物线上异于点C的动点,若△NAB的面积与△CAB的面积相等,求出点N的坐标;(3)如图2,当P为OB的中点时,过点P作PD⊥x轴,交抛物线于点D.连接BD,将△PBD沿x轴向左平移m个单位长度(0<m≤2),将平移过程中△PBD与△OBC重叠部分的面积记为S,求S与m的函数关系式.14.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.15.如图,已知关于x的二次函数y=﹣x2+bx+c(c>0)的图象与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求出二次函数的关系式;(2)点P为线段MB上的一个动点,过点P作x轴的垂线PD,垂足为D.若OD=m,△PCD的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)探索线段MB上是否存在点P,使得△PCD为直角三角形?如果存在,求出P的坐标;如果不存在,请说明理由.16.如图,Rt△AOB中,∠A=90°,以O为坐标原点建立直角坐标系,使点A在x轴正半轴上,OA=2,AB =8,点C为AB边的中点,抛物线的顶点是原点O,且经过C点.(1)填空:直线OC的解析式为;抛物线的解析式为;(2)现将该抛物线沿着线段OC移动,使其顶点M始终在线段OC上(包括端点O、C),抛物线与y轴的交点为D,与AB边的交点为E;①是否存在这样的点D,使四边形BDOC为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由;②设△BOE的面积为S,求S的取值范围.17.已知抛物线y=﹣x2+bx和直线l:y=x﹣b.(1)求证:抛物线与直线l至少有一个公共点;(2)若抛物线与直线l交于A,B两点,当线段AB上恰有2个纵坐标是整数的点时,求b的取值范围;(3)当b>0时,将直线l向上平移b+1个单位长度得直线l',若抛物线y=﹣x2+bx的顶点P在直线l'上,且与直线l'的另一个交点为Q,当点C在直线l'上方的抛物线上时,求四边形OPCQ面积的最大值.18.如图,在平面直角坐标系中抛物线y=ax2+bx+c交x轴于点A(﹣2,0)、B(4,0),交y轴于点C(0,﹣3).(1)求抛物线的解析式;(2)动点D在第四象限且在抛物线上,当△BCD面积最大时,求点D坐标,并求△BCD面积的最大值;(3)抛物线的对称轴上是否存在一点Q,使得∠QBC=45°,如果存在,直接写出点Q坐标,不存在,请说明理由.19.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标:(3)在抛物线上存在点P,使得△APB的面积与△ACB的面积相等,求点P的坐标.20.如图,对称轴x=﹣1的抛物线y=ax2+bx+c与x轴交于A(2,0),B两点,与y轴交于点C(0,﹣2),(1)求抛物线的函数表达式;(2)若点P是直线BC下方的抛物线上的动点,求△BPC的面积的最大值;(3)若点P在抛物线对称轴的左侧运动,过点P作PD⊥x轴于点D,交直线BC于点E,且PE=OD,求点P的坐标;(4)在对称轴上是否存在一点M,使△AMC的周长最小.若存在,请求出M点的坐标和△AMC周长的最小值;若不存在,请说明理由.21.如图,已知抛物线y=﹣x2+4x+5与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)直接写出点A、B、C的坐标;(2)在抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点D是第一象限内抛物线上的一个动点(与点C、B不重合)过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,直线BC把△BDF的面积分成两部分,使S△BDE:S△BEF=2:3,请求出点D的坐标;(4)若M为抛物线对称轴上一动点,使得△MBC为直角三角形,请直接写出点M的坐标.22.如图,抛物线y=x2+bx+c经过A(1,0)、C(0,3)两点,点B是抛物线与x轴的另一个交点.作直线BC.点P是抛物线上的一个动点.过点P作PQ⊥x轴,交直线BC于点Q.设点P的横坐标为m(m>0).PQ 的长为d.(1)求此抛物线的解析式及顶点坐标;(2)求d与m之间的函数关系式;(3)当点P在直线BC下方,且线段PQ被x轴分成的两部分之比为1:2时,求m的值;(4)连接AC,作直线AP,直线AP交直线BC于点M,当△PCM、△ACM的面积相等时,直接写出m的值.23.已知:如图,抛物线y=ax2+bx﹣3与x轴交于A点,与y轴交于C点,且A(1,0)、B(3,0),点D 是抛物线的顶点.(1)求抛物线的解析式(2)在y轴上是否存在M点,使得△MAC是以AC为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.(3)点P为抛物线上的动点,且在对称轴右侧,若△ADP面积为3,求点P的坐标.24.如图,开口向下的抛物线y=ax2﹣5ax+4a(a为常数)与x轴交于A、B两点(A在B点左侧),与y轴交于点C,点D是抛物线上的一个动点,横坐标设为t,连接DC、DB.(1)求A、B的坐标.(2)当点D为抛物线的顶点时,△BCD的面积为15,求抛物线的解析式.(3)若a=﹣1,过点D作x轴的垂线,垂足为H,当1≤t≤4时,DH+mHO的最大值为.求正实数m的值.25.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式,x满足什么值时y<0?(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.26.如图,已知抛物线y=x2+bx+c与x轴交于点A(﹣4,0)和点B(1,0),与y轴交于点C,过点A 的直线y=mx+n交抛物线的另一个点为点E,点E的横坐标为2.(1)求b和c的值;(2)点P在直线AE下方的抛物线上任一点,点P的横坐标为t,过点P作PF∥y轴,交AE于点F,设PF =d,求出d与t的函数关系式,并直接写出t的取值范围;(3)在(2)问的条件下,过点P作PK⊥AE,垂足为点K,连接PE,若PF把△PKE分成面积比为11:12的两个三角形,求出此时t的值.27.若抛物线上y1=ax2+bx+c,它与y轴交于C(0,4),与x轴交于A(﹣1,0)、B(k,0),P是抛物线上B、C之间的一点.(1)当k=4时,求抛物线的方程,并求出当△BPC面积最大时的P的横坐标;(2)当a=1时,求抛物线的方程及B的坐标,并求当△BPC面积最大时P的横坐标;(3)根据(1)、(2)推断P的横坐标与B的横坐标有何关系?28.在平面直角坐标系中,抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),与y轴交于点C,连接AC,BC,将△OBC沿BC所在的直线翻折,得到△DBC,连接OD.(1)用含a的代数式表示点C的坐标.(2)如图1,若点D落在抛物线的对称轴上,且在x轴上方,求抛物线的解析式.(3)设△OBD的面积为S1,△OAC的面积为S2,若=,求a的值.29.如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.30.如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A、C、D均在坐标轴上,且AB=5,sinB=.(1)求过A、C、D三点的抛物线的解析式;(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围;(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A、E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.31.如图,在平面直角坐标系xOy中,AB⊥x轴于点B,AB=3,tan∠AOB=,将△OAB绕着原点O逆时针旋转90°,得到△OA1B1;再将△OA1B1绕着线段OB1的中点旋转180°,得到△OA2B1,抛物线y=ax2+bx+c(a≠0)经过点B、B1、A2.(1)求抛物线的解析式.(2)在第三象限内,抛物线上的点P在什么位置时,△PBB1的面积最大?求出这时点P的坐标.(3)在第三象限内,抛物线上是否存在点Q,使点Q到线段BB1的距离为?若存在,求出点Q的坐标;若不存在,请说明理由.32.在平面直角坐标系中,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求c的值及a、b满足的关系式;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围;(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△PAB的面积为?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.33.如图①,在平面直角坐标中,点A的坐标为(1,﹣2),点B的坐标为(3,﹣1),二次函数y=﹣x2的图象为l1.(1)平移抛物线l1,使平移后的抛物线经过点A,但不过点B.①满足此条件的函数解析式有个.②写出向下平移且经点A的解析式.(2)平移抛物线l1,使平移后的抛物线经过A,B两点,所得的抛物线l2,如图②,求抛物线l2的函数解析式及顶点C的坐标,并求△ABC的面积.(3)在y轴上是否存在点P,使S△ABC=S△ABP?若存在,求出点P的坐标;若不存在,请说明理由.34.如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.35.如图,已知抛物线y=﹣x2+bx+c与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O 开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动.(1)直接写出抛物线的解析式:;(2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值时,△CED的面积最大?最大面积是多少?(3)当△CED的面积最大时,在抛物线上是否存在点P(点E除外),使△PCD的面积等于△CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.36.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,∠AOC的平分线交AB于点D,E为BC的中点,已知A(0,4)、C(5,0),二次函数y=x2+bx+c的图象抛物线经过A,C两点.(1)求该二次函数的表达式;(2)F、G分别为x轴,y轴上的动点,顺次连接D、E、F、G构成四边形DEFG,求四边形DEFG周长的最小值;(3)抛物线上是否在点P,使△ODP的面积为12?若存在,求出点P的坐标;若不存在,请说明理由.37.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ 存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.38.如图,在平面直角坐标系中,直线y=x+1与抛物线y=ax2+bx﹣3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A、B点重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P的横坐标为m;①用含有m的代数式表示线段PD的长,并求出线段PD长的最大值;②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积之比为9:10?若存在,直接写出m的值;若不存在,说明理由.39.如图,在平面直角坐标系中,抛物线y=ax2+bx+2与直线y=x﹣2交于点A(m,0)和点B(﹣2,n),与y轴交于点C.(1)求抛物线的解析式及顶点D的坐标;(2)若向下平移抛物线,使顶点D落在x轴上,原来的抛物线上的点P平移后的对应点为P′,若OP′=OP,求点P的坐标;(3)在抛物线上是否存在点Q,使△QAB的面积是△ABC面积的一半?若存在,直接写出点Q的坐标;若不存在,请说明理由.1.【解答】解:(1)∵A(﹣1,0),∴OA=1,OC=3OA=3,∴C(0,﹣3),将A(﹣1,0)、C(0,﹣3)代入y=x2+mx+n中,得,解得,∴y=x2﹣2x﹣3;(2)存在,理由:令y=0,则x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴B(3,0),∴直线BC的解析式为y=x﹣3,设M(m,m2﹣2m﹣3),过点M作MN∥y轴交BC于N,如图1,∴N(m,m﹣3),∴MN=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∴S四边形MBAC=S△ABC+S△BCM=AB×OC+MN×OB=×4×3×(﹣m2+3m)×3=9,解得:m=1或2,故点M的坐标为(1,﹣4)或(2,﹣3);(3)∵OB=OC=ON,∴△BON为等腰直角三角形,∵∠OBM+∠NBM=45°,∴∠NBD+∠NBM=∠DBM=45°,∴MB=MF,过点M作MF⊥BM交BE于F,过点F作FH⊥y轴于点H,如图2,∴∠HFM+∠BMO=90°,∵∠BMO+∠OMB=90°,∴∠OMB=∠HFM,∵∠BOM=∠MHF=90°,∴△BOM≌△MHF(AAS),∴FH=OM=1,MH=OB=3,故点F(1,4),由点B、F的坐标得,直线BF的解析式为y=﹣2x+6,联立,解得,∴E(﹣3,12).2.【解答】解:(1)y=﹣x﹣3交坐标轴于A、C两点,则点A、C的坐标分别为:(﹣3,0)、(0,﹣3);将点A、C的坐标代入抛物线表达式得:,解得,故抛物线的表达式为:y=x2+2x﹣3;(2)存在,理由:如图1,过点P作y轴的平行线交AC于点H,设点P(x,x2+2x﹣3),则点H(x,﹣x﹣3),△APC面积S=S△PHA+S△PHC=×PH×OA=(﹣x﹣3﹣x2﹣2x+3)×3=﹣x2﹣x,∵﹣<0,故S有最大值,当x=﹣时,S的最大值为,此时点P(﹣,﹣);(3)如图2,设点N(﹣1,s),点M(m,n),n=m2+2m﹣3,过点M作y轴的平行线交过点C与x轴的平行线于点H,交过点N与x轴的平行线于点G,∵∠GMN+∠GNM=90°,∠GMN+∠HMC=90°,∴∠HMC=∠GNM,∵∠MGN=∠CHM=90°,MN=MC,∴△MGN≌△CHM(AAS),∴GN=MH,即GN=|﹣1﹣m|=MH=|n+3|,①当﹣1﹣m=n+3时,即m+n+4=0,即m2+3m+1=0,解得:m=,故点M(,);②当﹣1﹣m=﹣(n+3)时,即m=n+2,同理可得:点M(,);故点M的坐标为:(,)或(,)或(,)或(,).3.【解答】解:(1)令x=0,则y=3,∴C(0,3),∴OC=3.令y=0,则﹣x2+x+3=0,解得:x1=﹣4,x2=6,∴A(﹣4,0),B(6,0),∴OA=4,OB=6.∵CD⊥AC,∴∠ACD=90°,∵CO⊥AD,∴OC2=OA•OD,∴OD=,∴D(,0).(2)∵y=﹣x2+x+3=﹣(x﹣1)2+,∴E(1,).如图2,连接OE、BE,作HG⊥x轴于点G,交BE于点P.由B、E两点坐标可求得直线BE的解析式为:y=﹣x+.设H(m,﹣m2+m+3),则P(m,﹣m+).∴HG=﹣m2+m+3,HP=y H﹣y P=﹣m2+m﹣.∴S△BHE=(x B﹣x E)•HP=(﹣m2+m﹣)=﹣m2+m﹣.∵FH⊥CD,AC⊥CD,∴AC∥FH,∴∠HFG=∠CAO,∵∠AOC=∠FGH=90°,∴△ACO∼△FHG,∴==,∴FG=HG=﹣m2+m+4,∴AF=AG﹣FG=m+4+m2﹣m﹣4=m2+m,∴S△AFC=AF•OC=(m2+m)=m2+m,∵S四边形ACEB=S△ACO+S△OCE+S△OEB=×4×3+×3×1+6×=,∴S五边形FCEHB=S四边形ACEB+S△BHE﹣S△AFC=+(﹣m2+m﹣)﹣(m2+m)=﹣m2+m+15=﹣(m ﹣)2+,∴当m=时,S五边形FCEHB取得最大值.此时,H的横坐标为.(3)∵B(6,0),C(0,3),D(,0),∴CD=BD=,BC=3,∴∠DCB=∠DBC.①如图3﹣1,△CMN≌△DCB,MN交y轴于K,则CM=CN=DC=DB=,MN=BC=3,∠CMN=∠CNM=∠DBC=∠DCB,∴MN∥AB,∴MN⊥y轴,∴∠CKN=∠COB=90°,MK=NK=MN=,∴△CKN∼△COB,∴==,∴CK=,∴OK=OC+CK=,∴N(,).②如图3﹣2,△MCN≌△DBC,则CN=CB=3,∠MCN=∠DBC,∴CN∥AB,∴N(3,3).③如图3﹣3,△CMN≌△DBC,则∠CMN=∠DCB,CM=CN=DC=DB=,MN=BC=3,∴MN∥CD,作MR⊥y轴于R,则===,∴CR=,RM=,∴OR=3﹣,作MQ∥y轴,NQ⊥MQ于点Q,则∠NMQ=∠DCO,∠NQM=∠DOC=90°,∴△COD∼△MQN,∴==,∴MQ=MN=,NQ=MN=,∴NQ﹣RM=,OR+MQ=,∴N(﹣,).综上所述,满足要标的N点坐标有:(,)、(3,3)、(﹣,).4.【解答】解:(1)把A(6,3)代入y=﹣kx+6,得3=﹣6x+6.解得k=﹣.故直线的解析式是:y=﹣x+6.把O(0,0)、A(6,3)、B(﹣4,8)分别代入y=ax2+bx+c,得.解得.故该抛物线解析式是:y=x2﹣x;(2)①如图1,作PQ∥y轴,交AB于点Q,设P(x,x2﹣x),则Q(x,﹣x+6),则PQ=(﹣x+6)﹣(x2﹣x)=﹣(x﹣1)2+,∴S△PAB=(6+4)×PQ=﹣(x﹣1)2+=20,解得x1=﹣2,x2=4,∴点P的坐标为(4,0)或(﹣2,3);②设P(x,x2﹣x),如图2,由题意得:AO=3,BO=4,AB=5,∵AB2=AO2+BO2,∴∠AOB=90°,∵∠AOB=∠PCO,∴当=时,△CPO∽△OAB,即=.整理,得4|x2﹣x|=3|x|.解方程4(x2﹣x)=3x,得x1=0(舍去),x2=7,此时P点坐标为(7,);解方程4(x2﹣x)=﹣3x,得x1=0(舍去),x2=1,此时P点坐标为(1,﹣);当=时,△CPO∽△OBA,即=,整理,得3|x2﹣x|=4|x|,解方程3(x2﹣x)=4x,得x1=0(舍去),x2=,此时P点坐标为(,).解方程3(x2﹣x)=﹣4x,得x1=0(舍去),x2=﹣,此时P点坐标为(﹣,).综上所述,点P的坐标为:(7,)或(1,﹣)或(﹣,)或(,).5.【解答】解:(1)对称轴x=1,则点B(﹣2,0),则抛物线的表达式为:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),即﹣8a=2,解得:a=,故抛物线的表达式为:y=;(2)设直线PQ交y轴于点E(0,1),点P、Q横坐标分别为m,n,△CPQ的面积=×CE×(n﹣m)=,即n﹣m=2,联立抛物线与直线PQ的表达式并整理得:…①,m+n=2﹣4k,mn=﹣4,n﹣m=2==,解得:k=0(舍去)或1;将k=1代入①式并解得:x=,故点P、Q的坐标分别为:(,﹣)、(,).(3)设点K(1,m),联立PQ和AC的表达式并解得:x=,故点G(,)过点G作x轴的平行线交函数对称轴于点M,交过点R与y轴的平行线于点N,则△KMG≌△GNR(AAS),GM=1﹣==NR,MK=,故点R的纵坐标为:,则点R(m﹣1,)将该坐标代入抛物线表达式解得:x=,故m=,故点K(1,).6.【解答】解:(1)y=x+3,令x=0,则y=3,令y=0,则x=﹣3,故点A、B的坐标分别为(﹣3,0)、(0,3),则c=3,则函数表达式为:y=ax2+bx+3,将点A坐标代入上式并整理得:b=3a+1;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=﹣≥0,而b=3a+1,即:﹣≥0,解得:a≥﹣,故:a的取值范围为:﹣≤a<0;(3)当a=﹣1时,b=3a+1=﹣2二次函数表达式为:y=﹣x2﹣2x+3,过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△PAB=×AB×PH=×3×PQ×=,则PQ=|y P﹣y Q|=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点,分别与点AB组成的三角形的面积也为1,故:|y P﹣y Q|=1,设点P(x,﹣x2﹣2x+3),则点Q(x,x+3),即:﹣x2﹣2x+3﹣x﹣3=±1,解得:x=或,故点P(,)或(,)或(,)或(,).7.【解答】解:(1)对称轴x=,则点B(﹣1,0),则抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即﹣4a=2,解得:a=﹣,故抛物线的表达式为:y=x2+x+2;(2)设直线PQ交y轴于点E(0,1),点P、Q横坐标分别为m,n,△CPQ的面积=×CE×(n﹣m)=,即n﹣m=,联立抛物线于直线PQ的表达式并整理得:x2+(﹣k)x+1=0…①,m+n=3﹣2k,mn=﹣2,n﹣m===解得:k=0(舍去)或3;故y=3x+1,则x2+x+2=3x+1,解得:x=,故点P、Q的坐标分别为:(,)、(,);(3)设点K(,m),联立PQ和AC的表达式并解得:x=,故点G(,),过点G作y轴的平行线交过点K′与x轴的平行线于点M,交过点K与x轴的平行线于点N,则△GNK≌△K′MG(AAS),NK=﹣==MG,NG=﹣m,则点K′(﹣m,)将该坐标代入抛物线表达式并解得:m=,故点K(,)或(,).8.【解答】解:(1)OA=3OB=3,则点B(﹣1,0),抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3;(2)过点P作y轴的平行线交CA于点H,由点A、C的坐标得,直线AC的表达式为:y=﹣x+3△ACP的面积=PH×OA=3×(x2﹣2x+3+x﹣3)=(﹣x2+3x),当x=时,△ACP的面积的最大,最大值为:,此时点P(,);(3)过点M作MN⊥AC,则MN=CM,故当B、M、N三点共线时,BM+CM=BN最小,直线CA的倾斜角为45°,BN⊥AC,则∠NBA=45°,即BN=AB=2=AN,则点N(1,2),由点B、N的坐标得,直线BN的表达式为:y=x+1,故点M(0,1).9.【解答】解:(1)∵抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C,∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)如图:①设P(m,m2﹣4m+3),将点B(3,0)、C(0,3)代入得直线BC解析式为y BC=﹣x+3.∵过点P作y轴的平行线交直线BC于点D,∴D(m,﹣m+3),∴PD=(﹣m+3)﹣(m2﹣4m+3)=﹣m2+3m.答:用含m的代数式表示线段PD的长为﹣m2+3m.②S△PBC=S△CPD+S△BPD=OB•PD=﹣m2+m=﹣(m﹣)2+.∴当m=时,S有最大值.当m=时,m2﹣4m+3=﹣.∴P(,﹣).答:△PBC的面积最大时点P的坐标为(,﹣).(3)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.根据题意,点E(2,1),∴EF=CF=2,∴EC=2,根据菱形的四条边相等,∴ME=EC=2,∴M(2,1﹣2)或(2,1+2)当EM=EF=2时,M(2,3)答:点M的坐标为M1(2,3),M2(2,1﹣2),M3(2,1+2).10.【解答】解:(1)x2﹣2x﹣3=0,则x=3或﹣1,故点A、B的坐标分别为(﹣1,﹣1)、(3,﹣3),设抛物线的表达式为:y=ax2+bx,将点A、B的坐标代入上式得:,解得:,故抛物线的表达式为:y=﹣x2+x;(2)将点A、B的坐标代入一次函数表达式并解得:直线AB的表达式为:y=﹣x﹣,故点C(0,﹣),同理可得:直线OP的表达式为:y=﹣x;①过点D作y轴的平行线交AB于点H,设点D(x,﹣x2+x),则点H(x,﹣x),△BOD面积=×DH×x B=×3(﹣x2+x+x)=﹣x2+x,∵,故△BOD面积有最大值为:,此时x=,故点D(,﹣);②当OP=PC时,则点P在OC的中垂线上,故y P=﹣,则点P(,﹣);②当OP=OC时,t2+t2=()2,解得:t=(舍去负值),故点P(,﹣);③当PC=OC时,同理可得:点P(,﹣);综上,点P(,﹣)或(,﹣)或(,﹣).11.【解答】解:(1)函数的表达式为:y=a(x+6)(x﹣2)=a(x2+4x﹣12),﹣12a=6,解得:a=﹣,函数的表达式为:y=﹣x2﹣2x+6…①,顶点D坐标为(﹣2,8);(2)如图1所示,过点P作直线m∥AC交抛物线于点P′,在直线AC下方等距离处作直线n交抛物线与点P″、P′″,过点P作PH∥y轴交AC于点H,作PG⊥AC于点G,∵OA=OC,∴∠PHG=∠CAB=45°,则HP=PG,S△PCA=PG×AC=PG×6=12,解得:PH=4,直线AC的表达式为:y=x+6,则直线m的表达式为:y=x+10…②,联立①②并解得:x=﹣2或﹣4,则点P坐标为(﹣2,8)或(﹣4,6);直线n的表达式为:y=x+2…③同理可得点P(P″、P′″)的坐标为(﹣3﹣,﹣﹣1)或(﹣3,﹣1),综上,点P的坐标为(﹣2,8)或(﹣4,6)或(﹣3﹣,﹣﹣1)或(﹣3,﹣1).(3)点A、B、C、D的坐标为(﹣6,0)、(2,0)、(0,6)、(﹣2,8),则AC=,CD=,AD=,则∠ACD=90°,sin∠DAC==,延长DC至D′使CD=CD′,连接AD′,过点D作DH⊥AD′,则DD′=2,AD=AD′=,S△ADD′=DD′×AC=DH×AD′,即:2×=DH×,解得:DH=,sin2∠DAC=sin∠DAD′====sin∠EAB,则tan∠EAB=,①当点E在AB上方时,则直线AE的表达式为:y=x+b,将点A坐标代入上式并解得:直线AE的表达式为:y=x+…④,联立①④并解得:x=(不合题意值已舍去),即点E(,);②当点E在AB下方时,同理可得:点E(,﹣),综上,点E(,)或(,﹣).12.【解答】解:(1)将点B坐标代入y=x+c并解得:c=﹣3,故抛物线的表达式为:y=x2+bx﹣3,将点B坐标代入上式并解得:b=﹣,故抛物线的表达式为:y=x2﹣x﹣3;(2)过点P作PH∥y轴交BC于点H,设点P(x,x2﹣x﹣3),则点H(x,x﹣3),S四边形ACPB=S△AOC+S△PCB,∵S△AOC是常数,故四边形面积最大,只需要S△PCB最大即可,S△PCB=×OB×PH=×2(x﹣3﹣x2+x+3)=﹣x2+3x,∵﹣<0,∴S△PCB有最大值,此时,点P(2,﹣);(3)过点B作∠ABC的角平分线交y轴于点G,交抛物线于M′,设∠MBC=∠ABC=2α,过点B在BC之下作角度数为α的角,交抛物线于点M,过点G作GK⊥BC交BC于点K,延长GK交BM于点H,则GH=GN,BC是GH的中垂线,OB=4,OC=3,则BC=5,设:OG=GK=m,则CK=CB﹣HB=5﹣4=1,由勾股定理得:(3﹣m)2=m2+1,解得:m=,则OG=ON=,GH=GN=2OG=,点G(0,﹣),在Rt△GCK中,GK=OG=,GC=OC﹣OG=3﹣=,则cos∠CGK==,sin∠CGK=,则点K(,﹣),点K是点GH的中点,则点H(,﹣),则直线BH的表达式为:y=x﹣…②,同理直线BG的表达式为:y=x﹣…③联立①②并整理得:27x2﹣135x+100=0,解得:x=或4(舍去4),则点M(,﹣);联立①③并解得:x=﹣,故点M′(﹣,﹣);故点M(,﹣)或(﹣,﹣).13.【解答】解:(1)如图1,把点A(﹣2,0)、B(4,0)分别代入y=ax2+bx﹣3(a≠0),得,解得,所以该抛物线的解析式为:y=x2﹣x﹣3;(2)将x=0代入y=x2﹣x﹣3,得y=﹣3,∴点C的坐标为(0,﹣3),∴OC=3.设N(x,y),∵S△NAB=S△CAB,∴|y|=OC=3,∴y=±3.当y=3时,x2﹣x﹣3=3,解得x=+1.当y=﹣3时,x2﹣x﹣3=﹣3,解得x1=2,x2=0(舍去).综上所述,点N的坐标是(+1,3)或(﹣+1,3)或(2,﹣3);(3)如图2,由已知得,BB′=m,PB′=2,设直线BC的表达式为y=kx+b(k≠0).∵直线y=kx+b经过点B(4,0),C(0,﹣3),∴,解得,∴直线BC的表达式为y=x﹣3.当0<m≤2时,由已知得P′B=2+m.∵OP′=2﹣m,∴E(2﹣m,﹣m﹣).由OB=4得OP=2,把x=2代入y=x2﹣x﹣3中,得y=﹣3,∴D(2,﹣3),∴直线CD∥x轴.∵EP′=m+,D′P=3,∴ED′=DP′﹣EP′=3﹣m﹣=﹣m+.过点F作FH⊥PD′于点H,则∠D′HF=∠D′P′B′=90°.∵∠HD′F=∠P′D′B′,∴△D′HF∽△D′P′B′,∴=.∵∠FCD′=∠FBB′,∠FD′C=∠FB′B,∴△CD′F∽△BB′F,∴=.又∵CD′=2﹣m,∴=.设D′F=k(2﹣m),B′F=km,∴D′B′=2k,∴=.∴=.∵P′B′=2,∴HF=2﹣m.∴S△ED′F=ED′•HF=×(﹣m+)×(2﹣m).∵S△PB′D′=PB′•PD′=×3×2=3,∴S=S△PB′D′﹣S△ED′F=3﹣×(﹣m+)×(2﹣m)=﹣m2+m+.14.【解答】解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,,解得,故抛物线为y=﹣x2+2x+3;又设直线为y=kx+n过点A(﹣1,0)及C(2,3),得,解得,故直线AC为y=x+1;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),当x=1时,y=x+1=2,∴B(1,2),∵点E在直线AC上,设E(x,x+1).①如图2,当点E在线段AC上时,点F在点E上方,则F(x,x+3),∵F在抛物线上,∴x+3=﹣x2+2x+3,解得,x=0或x=1(舍去),∴E(0,1);②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1),∵F在抛物线上,∴x﹣1=﹣x2+2x+3,解得x=或x=,。

人教版九年级上册数学期末二次函数压轴题(最值问题)专题训练(含解析)

人教版九年级上册数学期末二次函数压轴题(最值问题)专题训练(含解析)

人教版九年级上册数学期末二次函数压轴题(最值问题)专题训练(1)求三个点,,的坐标;(2)当点运动至抛物线的顶点时,求此时(3)设点的横坐标为,的长度为范围;是否存在最值,如有写出最值.(1)求二次函数的解析式;(2)当x 为何值时,函数有最大值还是最小值?并求出最值;(3)在抛物线上是否存在点,若存在,请求出点A B C N N t MN L 8AOP S =△(1)求抛物线的表达式和点D 的坐标.(2)连接AD ,交y 轴于点E ,P 是抛物线上的一个动点.Q 是抛物线对称轴上一个点,是否存在以B ,E ,P ,Q 为顶点的四边形为平行四边形,若存在,求出存在,请说明理由.(3)如图,点P 在第四象限的抛物线上,连接AP 、BE 交于点G ,设(1)求二次函数解析式;(2)设的面积为,试判断PCD ∆S S请说明理由;(3)在上是否存在点,使为直角三角形?若存在,请写出点的坐标若不存在,请说明理由.5.如图,抛物线与轴相交于两点(点位于点的左侧),与轴相交于点,是抛物线的顶点,直线是抛物线的对称轴,且点的坐标为.(1)求抛物线的解析式.(2)已知为线段上一个动点,过点作轴于点.若的面积为.①求与之间的函数关系式,并写出自变量的取值范围;②当取得最值时,求点的坐标.(3)在(2)的条件下,在线段上是否存在点,使为等腰三角形?如果存在,请求出点的坐标;如果不存在,请说明理由.6.如图,已知二次函数,回答下列问题:(1)求出此抛物线的对称轴和顶点坐标;MB P PCD ∆P 2y x bx c =-++x ,A B A B y C M 1x =C (0,3)P MB P PD x ⊥D ,PD m PCD =∆S S m m S P MB P PCD ∆P 243y x x =++(2)写出抛物线与轴交点、的坐标,与轴的交点的坐标;(3)写出函数的最值和增减性;(4)取何值时,①,②.7.如图,抛物线y =﹣x 2+bx +c 与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为B (3,0),C (0,3),点M 是抛物线的顶点.(1)求二次函数的关系式;(2)点P 为线段MB 上一个动点,过点P 作PD ⊥x 轴于点D .若OD =m ,△PCD 的面积为S ,①求S 与m 的函数关系式,写出自变量m 的取值范围.②当S 取得最值时,求点P 的坐标;(3)在MB 上是否存在点P ,使△PCD 为直角三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.8.已知抛物线y =x 2﹣2ax+m .(1)当a =2,m =﹣5时,求抛物线的最值;(2)当a =2时,若该抛物线与坐标轴有两个交点,把它沿y 轴向上平移k 个单位长度后,得到新的抛物线与x 轴没有交点,请判断k 的取值情况,并说明理由;(3)当m =0时,平行于y 轴的直线l 分别与直线y =x ﹣(a ﹣1)和该抛物线交于P ,Q 两点.若平移直线l ,可以使点P ,Q 都在x 轴的下方,求a 的取值范围.9.如图,Rt △OAB 如图所示放置在平面直角坐标系中,直角边OA 与x 轴重合,∠OAB=90°,OA=4,AB=2,把Rt △OAB 绕点O 逆时针旋转90°,点B 旋转到点C 的位置,一条抛物线正好经过点O ,C ,A 三点.x A B y C x 0y <0y >(1)填空:点B 的坐标为 ,点D 的坐标为 .(2)如图1,连结,P 为x 轴上的动点,当以O ,D ,P 为顶点的三角形是等腰三角形时,求点P 的坐标;(3)如图2,M 是点B 关于抛物线对称轴的对称点,Q 是抛物线上的动点,m ,连结,,与直线交于点E .设别为和,设己,试求t 关于m 的函数解析式并求出OD (05)m <<MQ BQ MQ OB 1S 2S 12S t S =(1)求抛物线的解析式;(2)如图1,点P为直线CB上方抛物线上一点,过P作PE∥y轴交BC于点E,连接CP,PD,DE,求四边形CPDE面积的最值及点P的坐标;(3)如图2,将抛物线沿射线CB方向平移得新抛物线y=a1x2+b1x+c1(a1≠0),是否在新抛物线上存在点M,在平面内存在点N,使得以A,C,M,N为顶点的四边形为正方形?若存在,直接写出此时新抛物线的顶点坐标,若不存在,请说明理由.13.如图1,抛物线y=ax2+bx+c(a≠0),与x轴交于A(4,0)、O两点,点D(2,-2)为抛物线的顶点.(1)求该抛物线的解析式;(2)点E为AO的中点,以点E为圆心、以1为半径作⊙E交x轴于B、C两点,点M 为⊙E上一点.①射线BM交抛物线于点P,设点P的横坐标为m,当tan∠MBC=2时,求m的值;②如图2,连接OM,取OM的中点N,连接DN,则线段DN的长度是否存在最大值或最小值?若存在,请求出DN的最值;若不存在,请说明理由.14.在平面直角坐标系xOy中,已知抛物线y=x2﹣2x﹣3与x轴交于A、B两点,与y 轴交于C点,D为抛物线顶点.连接AD,交y轴于点E,P是抛物线上的一个动点.参考答案:∴β=1,∴A(-1,0),B (3,0),∴,解得:,∴抛物线的表达式为,当x =1时,y =1-2-3=-4,∴点D 的坐标为(1,4);(2)解:∵A (-1,0),B (3,0),D (1,4),设直线AD 的表达式为y =kx +c ,∴,解得,∴直线AD 的表达式为y =-2x -2,当x =0时,y =-2,∴点E 的坐标为(0,-2),∵P 是抛物线上的一个动点,Q 是抛物线对称轴上一个点,∴设P (m ,),Q (1,t ),①当BE 为边时,PQ BE 且PQ =BE ,当E 对应Q ,由(0,-2)变为(1,t ),要向右平移1个单位,则当B (3,0)对应P (m ,),也要向右平移1个单位,即m =3+1=4,∴=5,∴P (4,5);309330a b a b --=⎧⎨+-=⎩12a b =⎧⎨=-⎩2=23y x x --04k c k c -+=⎧⎨+=⎩22k c =-⎧⎨=-⎩223m m --∥223m m --223m m --∵∠OBC=45°,∵轴∴时,轴∴,即,解得:,∴此时;②时,如图②,PD x ⊥90CDP ∠=︒//CP x 3c p y y ==263m -+=32m =3,32P ⎛⎫ ⎪⎝⎭90P CD ''∠=︒∵轴,∴,∴,又∵,∴,即,∵,,,P D x ''⊥//P D OC ''12∠=∠90P CD D OC '''∠=∠=︒P CD D OC '''∆∆∽OC CD CD P D '='''(0,3)C (,0)D m (,26)P m m -+【点睛】本题考查了二次函数的动点问题,掌握二次函数的性质以及解二次函数的方法是解题的关键.8.(1)-9;(2)当m=0时,k>4或当m=4时,k>0时,得到新的抛物线与x轴没有交点;(3)a>1或a<﹣1【分析】(1)把a=2,m=﹣5代入抛物线解析式即可求抛物线的最值;(2)把a=2代入,当该抛物线与坐标轴有两个交点,分抛物线与x轴、y轴分别有一个交点和抛物线与x轴、y轴交于原点,分别求出m的值,把它沿y轴向上平移k个单位长度,得到新的抛物线与x轴没有交点,列出不等式,即可判断k的取值;(3)根据题意,分a大于0和a小于0两种情况讨论即可得a的取值范围.【详解】解:(1)当a=2,m=﹣5时,y=x2﹣4x﹣5=(x﹣2)2﹣9所以抛物线的最小值为﹣9.(2)当a=2时,y=x2﹣4x+m因为该抛物线与坐标轴有两个交点,①该抛物线与x轴、y轴分别有一个交点∴△=16-4m=0,∴m=4,∴y=x2﹣4x+4=(x-2)2沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,则k>0;②该抛物线与x轴、y轴交于原点,即m=0,∴y=x2﹣4x∵把它沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,∴y=x2﹣4x+k此时△<0,即16﹣4k<0解得k>4;综上,当m=0时,k>4或当m=4时,k>0时,得到新的抛物线与x轴没有交点;(3)当m=0时,y=x2﹣2ax抛物线开口向上,与x轴交点坐标为(0,0)(2a,0),a≠0.直线l分别与直线y=x﹣(a﹣1)和该抛物线交于P,Q两点,平移直线l,可以使点P,Q都在x轴的下方,①当a>0时,如图1所示,此时,当x=0时,0﹣a+1<0,解得a>1;②当a<0时,如图2所示,此时,当x=2a时,2a﹣a+1<0,解得a<﹣1.综上:a>1或a<﹣1.【点睛】本题主要考查的是二次函数的综合应用,掌握二次函数的最值问题和根据题意进行分类讨论是解本题的关键.9.(1)、y=﹣x2+4x;(2)、10;(3)、N1(2+2,﹣4),N2(2﹣2,﹣4)【详解】试题分析:(1)、根据旋转的性质可求出C的坐标和A的坐标,又因为抛物线经过原点,故设y=ax2+bx把(2,4),(4,0)代入,求出a和b的值即可求出该抛物线的解析式;(2)、四边形PEFM的周长有最大值,设点P的坐标为P(a,﹣a2+4a)则由抛物线的对称性知OE=AF,所以EF=PM=4﹣2a,PE=MF=﹣a2+4a,则矩形PEFM的周长L=2[4﹣2a+(﹣a2+4a)]=﹣2(a﹣1)2+10,利用函数的性质即可求出四边形PEFM的周长的最大值;(3)、在抛物线上存在点N,使O(原点)、C、H、N四点构成以OC为一边的平行四边形,由(1)可求出抛物线的顶点坐标,过点C作x轴的平行线,与x轴没有其它交点,过y=﹣4作x轴的平行线,与抛物线有两个交点,这两个交点为所求的N点坐标所以有﹣x2+4x=﹣4,解方程即可求出交点坐标.试题解析:(1)、因为OA=4,AB=2,把△AOB绕点O逆时针旋转90°,可以确定点C的坐标为(2,4);由图可知点A的坐标为(4,0),又因为抛物线经过原点,故设y=ax2+bx把(2,4),(4,0)代入,得,解得所以抛物线的解析式为y=﹣x2+4x;(2)、四边形PEFM的周长有最大值,理由如下:由题意,如图所示,设点P的坐标为P(a,﹣a2+4a)则由抛物线的对称性知OE=AF,∴EF=PM=4﹣2a,PE=MF=﹣a2+4a,则矩形PEFM的周长L=2[4﹣2a+(﹣a2+4a)]=﹣2(a﹣1)2+10,∴当a=1时,矩形PEFM的周长有最大值,L max=10;=2+,﹣2+,﹣,,点Q 的横坐标为m ()1,16N MN ∴--=, (,Q m m ∴,()2245KQ m m m m m ∴=--=-+()121122B E S QK x x S MN =-= ,()21S 115QK m m ∴==--=-【点睛】本题主要考查二次函数的性质,熟练掌握二次函数的性质,最值,是解题的关键.13.(1);(2)①m=2或4+2和.【分析】(1)用抛物线顶点式表达式得:y=a 2122y x x =-50.5-50.5+(2)∵点P在第四象限的抛物线上,设直线AP的解析式为代入,∵,∴,y=(1,0)A-2(,2P m m-03m<<10m+≠∵点C 与点关于对称轴对称∴设直线的解析式为解得:∴直线的解析式为:C '1x =()2,3C '-AC 'y kx b =+13432k b ⎧=-⎪⎪⎨⎪=-⎪⎩AC '3y =-设点在中,当时,在中,由勾股定理知:即:化简得:解得:(舍),233,384R k k k ⎛⎫-- ⎪⎝⎭Rt OBC 222BC OC OB =+190BCR ∠= 1Rt BCR ()222334384k k k k ⎛⎫-+--= ⎪⎝⎭29+140k k =()9+14=0k k 0k =14k =-。

中考数学抛物线压轴题

中考数学抛物线压轴题

在中考数学中,抛物线是一个常见的考点,经常以压轴题的形式出现。

以下是一个关于抛物线的中考压轴题的示例:题目:已知抛物线y=ax^2+bx+c(a,b,c是常数,a≠0)经过点(-1,-1),(0,1),当x=-2时,与其对应的函数值y>1。

1. 请你求出abc的值,并判断抛物线的开口方向。

2. 设直线y=kx+d(k≠0)经过点(1,-1),且与抛物线的对称轴平行。

请你求出该直线的解析式。

3. 设E(m,n)是抛物线y=ax^2+bx+c上的一个动点,且满足∠APE=90°,请你求出m的值。

解析:1. 根据题目条件,抛物线经过点(-1,-1),(0,1),可得到方程:$a-b+c=-1$ ①$c=1$ ②将x=-2,y>1代入解析式得:$4a-2b+1>1$化简得:$2a-b>0$ ③由①②③解得:$a>0$$b>0$$c=1$所以,abc=1。

由于a>0,抛物线开口向上。

2. 由题意知:直线y=kx+d经过点(1,-1),则有:k+d=-1 ④又因为直线与对称轴平行,所以其斜率等于对称轴的斜率,即:k=-b/2a=-1/2 ⑤由④⑤解得:d=-3/2所以,直线的解析式为:y=-x/2-3/2。

3. 根据题意知:E(m,n)在抛物线上,则有:$n=am^2+bm+c$ ⑥由于∠APE=90°,所以AE与PE垂直。

根据两直线垂直的条件:斜率之积等于-1。

即:$(m-1)/(n+1)=-1$ ⑦由⑥⑦解得:m=0或m=-2综上所述,m的值为0或-2。

人教版九年级上册数学期末动点问题压轴题(含答案)

人教版九年级上册数学期末动点问题压轴题(含答案)
4.如图,在平面直角坐标系xOy,四边形OBCD是正方形,D(0,4),点E是OB延长线上的一点,M是线段OB上一动点(不包括O、B),作 ,交∠CBE的平分线于点N.
(1)直接写出C点的坐标;
(2)求证:MD=MN;
(3)如图2,若M(1,0),在OD上找一点P,使四边形MNCP是平行四边形,求点P的坐标;
17.如图,在平面直角坐标系中,矩形OABC的两边OA,Oபைடு நூலகம்分别在x轴和y轴上, , ,抛物线 经过点B,且与x轴交于点 和点E.
(1)求抛物线的表达式:
(2)若P是第一象限抛物线上的一个动点,连接CP,PE,当四边形OCPE的面积最大时,求点P的坐标,此时四边形OCPE的最大面积是多少;
(3)若N是抛物线对称轴上一点,在平面内是否存在一点M,使以点C,D,M,N为顶点的四边形是矩形?若存在,请直接写出点M的坐标;若不存在,说明理由.
13.如图,在平面直角坐标系中,已知抛物线 过A,B,C三点,点A的坐标是 ,点C的坐标是 ,动点P在抛物线上.
(1)求抛物线的解析式;
(2)若动点P在第四象限内的抛物线上,过动点P作x轴的垂线交直线AC于点D,交x轴于点E,垂足为E,求线段PD的长,当线段PD最长时,求出点P的坐标.
14.在平面直角坐标系中,已知抛物线 与x轴交A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.
(2)
(3) , ,
(4)正方形MNED的边长为 或
8.(2)3
(3)
9.(1)
(2) 周长的最小值为
(3)N的坐标为 或 或
10.(1)解析式为 ;D(2, )
(2)S△BCE有最大值为
(3)( )或(3,4)或(7,4)或( )

中考压轴题专项训练1——抛物线专题(带答案解析)

中考压轴题专项训练1——抛物线专题(带答案解析)

中考压轴题专项训练1——抛物线专题考点分析:命题预测:函数是数形结合的重要体现,是每年中考的必考内容,函数的概念主要用选择、填空的形式考查自变量的取值范围,及自变量与因变量的变化图像、平面直角坐标系等,一般占2%左右.一次函数与一次方程有紧密地联系,是中考必考内容,一般以填空、选择、解答题及综合题的形式考查,占5%左右.反比例函数的图像和性质的考查常以客观题形式出现,要关注反比例函数与实际问题的联系,突出应用价值,3—6分;二次函数是初中数学的一个十分重要的内容,是中考的热点,多以压轴题出现在试卷中.要求:能通过对实际问题情景分析确定二次函数的表达式,并体会二次函数的意义;会用描点法画二次函数图像,能丛图像上分析二次函数的性质;会根据公式确定图像的顶点、开口方向和对称轴,并能解决复杂的图形综合问题。

二次函数常考点汇总:1. 两点间的距离公式:22)()(AB B A B A x x y y -+-=2. 中点坐标公式:已知A ),(A A y x ,B ),(B B y x ,则线段AB 的中点C 的坐标为⎪⎭⎫⎝⎛++2,2B A B A y y x x 。

3. 在平面直角坐标系中求面积的方法:公式法、割补法(做铅垂高或水平宽) 4. 几何分析法:特别是构造“平行四边形”、“梯形”、“相似三角形”、“直角三角形”、“等腰三角形”等图形时,利用几何分析法能给解题带来方便。

例题精讲:1.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2.如图①,抛物线y=﹣x2+(a+1)x﹣a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠P AQ=∠AQB,求点Q的坐标.3.已知,在平面直角坐标系xoy 中,点A 的坐标为(0,2),点P (m ,n )是抛物线2114y x =+上的一个动点.(1)①如图1,过动点P 作PB ⊥x 轴,垂足为B ,连接PA ,求证:PA=PB ; ②如图2,设C 的坐标为(2,5),连接PC ,AP+PC 是否存在最小值?如果存在,求点P 的坐标;如果不存在,请说明理由;(2)如图3,过动点P 和原点O 作直线交抛物线于另一点D ,若AP=2AD ,求直线OP 的解析式.4.【变式】在平面直角坐标系xOy 中,抛物线21124y x =+的顶点为M ,直线2y x =,点()0P n ,为x 轴上的一个动点,过点P 作x 轴的垂线分别交抛物线21124y x =+和直线2y x =于点A ,点B.(1)直接写出A ,B 两点的坐标(用含n 的代数式表示);⑵设线段AB 的长为d ,求d 关于n 的函数关系式及d 的最小值,并直接写出此时线段OB 与线段PM 的位置关系和数量关系;(3) 已知二次函数2y ax bx c =++(a ,b ,c 为整数且0a ≠),对一切实数x 恒有x ≤y ≤2124x +,求a ,b ,c 的值.5.如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.6.(本题满分10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,C OB =O .点D 在函数图像上,CD//x 轴,且CD 2=,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值;(2)如图①,连接BE ,线段C O 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标; (3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与C B 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得Q ∆P N 与∆APM 的面积相等,且线段Q N 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.7.(8分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C 为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.答案解析1.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣m2+m+2=2,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=﹣m2+m+2﹣2=﹣m2+m,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC,∴Rt△NCB∽Rt△BOA,∴=,∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.2.【解答】解:(1)∵y=﹣x2+(a+1)x﹣a令y=0,即﹣x2+(a+1)x﹣a=0解得x1=a,x2=1由图象知:a<0∴A(a,0),B(1,0)∵s△ABC=6∴解得:a=﹣3,(a=4舍去)(2)设直线AC:y=kx+b,由A(﹣3,0),C(0,3),可得﹣3k+b=0,且b=3∴k=1即直线AC:y=x+3,A、C的中点D坐标为(﹣,)∴线段AC的垂直平分线解析式为:y=﹣x,线段AB的垂直平分线为x=﹣1代入y=﹣x,解得:y=1∴△ABC外接圆圆心的坐标(﹣1,1)(3)作PM⊥x轴,则=∵∴A、Q到PB的距离相等,∴AQ∥PB设直线PB解析式为:y=x+b∵直线经过点B(1,0)所以:直线PB的解析式为y=x﹣1联立解得:∴点P坐标为(﹣4,﹣5)又∵∠P AQ=∠AQB可得:△PBQ≌△ABP(AAS)∴PQ=AB=4设Q(m,m+3)由PQ=4得:解得:m=﹣4,m=﹣8(当m=﹣8时,∠P AQ≠∠AQB,故应舍去)∴Q坐标为(﹣4,﹣1)3.【解答】解:(1)①设P(m,n)∴n=m2+1,∵PB⊥x 轴,∴PB=m2+1,∵A(0,2)∴AP==m2+1,∴PB=PA;②过点P作PB⊥x轴于B,由(1)得PA=PB,所以要使AP+CP最小,只需当BP+CP最小,因此当C,P,B共线时取得,此时点P的横坐标等于点C(2,5)的横坐标,所以点P的坐标为(2,2),(2)如图,作DE⊥x轴于E,作PF⊥x轴于F,由(1)得:DA=DE,PA=PF∵PA=2DA,∴PF=2DE,∵△ODE∽△OPF,∴==,设P(m,m2+1),则D(m,m2+)∵点D在抛物线y=x2+1上,∴m2+=(m)2+1,解得m=±2,∴P 1(,3),直线OP 的解析式为y=x , P 2(﹣,3)直线OP 的解析式为y=﹣x , 综上所求,所求直线OP 的解析式为y=x 或y=﹣x .4.【解答】解:(1)21(2)4A n n +,,()B n n ,. (2) d =AB=A B y y -=2124n n -+.∴ d =2112()48n -+=2112()48n -+.∴ 当14n =时,d 取得最小值18. 当d 取最小值时,线段OB 与线段PM 的位置 关系和数量关系是OB ⊥PM 且OB=PM. (如图)(3) ∵对一切实数x 恒有 x ≤y ≤2124x +, ∴对一切实数x ,x ≤2ax bx c ++≤2124x +都成立. (0a ≠) ①当0x =时,①式化为 0≤c ≤14.xy111APBMO∴整数c 的值为0.此时,对一切实数x ,x ≤2ax bx +≤2124x +都成立.(0a ≠) 即 222,12.4x ax bx ax bx x ⎧≤+⎪⎨+≤+⎪⎩ 对一切实数x 均成立. 由②得 ()21ax b x +-≥0 (0a ≠) 对一切实数x 均成立.∴()210,10.a b >⎧⎪⎨∆=-≤⎪⎩ 由⑤得整数b 的值为1.此时由③式得,2ax x +≤2124x +对一切实数x 均成立. (0a ≠) 即21(2)4a x x --+≥0对一切实数x 均成立. (0a ≠) 当a=2时,此不等式化为14x -+≥0,不满足对一切实数x 均成立.当a≠2时,∵ 21(2)4a x x --+≥0对一切实数x 均成立,(0a ≠)∴2220,1(1)4(2)0.4a a ->⎧⎪⎨∆=--⨯-⨯≤⎪⎩∴由④,⑥,⑦得 0 <a ≤1.∴整数a 的值为1.∴整数a ,b ,c 的值分别为1a =,1b =,0c =.5.【解答】解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =. ∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. ④⑤② ③ ⑥ ⑦图①图②(3)存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.6. 【解答】解:(1).3)(03,20.0,c -),,0(,.2,12.1x 2CD x //2-=∴=-=++=∴∴=-==-∴=∴=c c c c c c B c C OC OB b bl CD ,舍去或解得)点坐标为(:抛物线对称轴为直线,轴,(2)设点F 坐标为(0,m ).∵对称轴是直线,1:=x l ∴点F 关于直线l 的对称点’F 的坐标为(2,m ). ∵直线BE 经过点B (3,0),E (1,-4),∴利用待定系数法可得直线BE 的表达式为y=2x-6. ∵点’F 在BE 上,∴m=2⨯2-6=-2,即点F 的坐标为(0,-2). (3)存在点Q 满足题意。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拔高专题 抛物线中的压轴题
二、拔高精讲精练
探究点一:因动点产生的平行四边形的问题
例1: 在平面直角坐标系中,已知抛物线经过A (-4,0),B (0,-4),C (2,0)三点.
(1)求抛物线的解析式;
(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S . 求S 关于m 的函数关系式,并求出S 的最大值.
(3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能够使得点P 、Q 、
B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标。

解:(1)设此抛物线的函数解析式为:y=ax 2+bx+c (a ≠0),
将A (-4,0),B (0,-4),C (2,0)三点代入函数解析式得:16404420a b c c a b c -+⎪-+⎪⎩
+⎧⎨===
解得1412a b c -⎧⎪⎪⎨⎪⎪⎩
===,所以此函数解析式为:y=12x 2+x −4; (2)∵M 点的横坐标为m ,且点M 在这条抛物线上,∴M 点的坐标为:(m ,
12m 2+m −4), ∴S=S △AOM +S △OBM -S △AOB =12×4×(-12m 2-m+4)+12×4×(-m )-12
×4×4=-m 2-2m+8-2m-8 =-m 2-4m=-(m+2)2+4,∵-4<m <0,当m=-2时,S 有最大值为:S=-4+8=4.答:m=-2时S 有最大值S=4.
(3)设P (x ,12
x 2+x-4). 当OB 为边时,根据平行四边形的性质知PQ ∥OB ,且PQ=OB ,∴Q 的横坐标等于P 的横坐标, 又∵直线的解析式为y=-x ,则Q (x ,-x ).由PQ=OB ,得|-x-(
12x 2+x-4)|=4, 解得x=0,-4,-2±
x=0不合题意,舍去.如图,当BO 为对角线时,知A 与P 应该重合,OP=4.四边形PBQO 为平行四边形则BQ=OP=4,Q 横坐标为4,代入y=-x 得出Q 为(4,-4). 由此可得Q (-4,4)或(
-2-2
2+2 4,-4)

【变式训练】(2015•贵阳)如图,经过点C (0,-4)的抛物线y=ax 2+bx+c (a ≠0)与x 轴相交于A (-2,0),B 两点.
(1)a > 0,b 2-4ac > 0(填“>”或“<”);
(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;
(3)在(2)的条件下,连接AC ,E 是抛物线上一动点,过点E 作AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E 的坐标;若不存在,请说明理由.
解:(1)a>0,b2-4ac>0;(2)∵直线x=2是对称轴,A(-2,0),∴B(6,0),
∵点C(0,-4),将A,B,C的坐标分别代入y=ax2+bx+c,解得:a=1
3
,b=-
4
3
,c=-4,
∴抛物线的函数表达式为y=1
3
x2-
4
3
x-4;
(3)存在,理由为:
(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,
过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示,
则四边形ACEF即为满足条件的平行四边形,
∵抛物线y=1
3
x2-
4
3
x-4关于直线x=2对称,∴由抛物线的对称性可知,E点的横坐标为4,
又∵OC=4,∴E的纵坐标为-4,∴存在点E(4,-4);
(ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是
平行四边形,过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,
∴AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,
∵AC∥E′F′,∴∠CAO=∠E′F′G,
又∵∠COA=∠E′GF′=90°,AC=E′F′,∴△CAO≌△E′F′G,
∴E′G=CO=4,∴点E′的纵坐标是4,∴4=1
3
x2-
4
3
x-4,
解得:x1x2
∴点E′的坐标为(4),同理可得点E″的坐标为(4)。

【教师总结】因动点产生的平行四边形问题,在中考题中比较常见,考生一般都能解答,但是解题
时需要考虑各种可能性,以免因答案不全面.主要有以下几种类型:
(1)已知三个定点,再找一个顶点构成平行四边形;(2)已知两个顶点,再找两个顶点构成平行四边形。

①确定两定点的线段为一边,则两动点连接的线段和已知边平行且相等;②两定点连接的线段没确定为平行四边形的边时,则这条线段可能为平行四边形的边或对角线。

探究点二:因动点产生的等腰三角形的问题
例2: (2015•铜仁市)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B 与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.
(1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标);
(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D 与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,
10
3
b c
c
+


+
⎧=

,解得:b=-4,c=3,
∴二次函数的表达式为:y=x2-4x+3;
(2)令y=0,则x2-4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3
2

点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,
①当CP=CB时,
∴P1(0,
,P2(0,

②当PB=PC时,OP=OB=3,∴P3(0,-3);③当BP=BC时,∵OC=OB=3,
∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,
0,
(0,-3)或(0,0);
(3)如图2,设AM=t,由AB=2,得BM=2-t,则DN=2t,∴S△MNB=1
2
×(2-t)×2t=-t2+2t=-(t-1)
2+1,
即当M(2,0)、N(2,2)或(2,-2)时△MNB面积最大,最大面积是1。

【变式训练】(2015•黔东南州)如图,已知二次函数y1=-x2+13
4
x+c的图象与x轴的一个交点为A
(4,0),与y轴的交点为B,过A、B的直线为y2=kx+b.
(1)求二次函数y1的解析式及点B的坐标;
(2)由图象写出满足y1<y2的自变量x的取值范围;
(3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形?若存在,求出P的坐标;若不存在,说明理由.
解:(1)将A点坐标代入y1,得-16+13+c=0.解得c=3,
二次函数y1的解析式为y=-x2+13
4
x+3,B点坐标为(0,3);
(2)由图象得直线在抛物线上方的部分,是x<0或x>4,∴x<0或x>4时,y1<y2;
(3)直线AB的解析式为y=-3
4
x+3,AB的中点为(2,
3
2
),
AB的垂直平分线为y=4
3
x-
7
6
,当x=0时,y=-
7
6
,P1(0,-
7
6
),
当y=0时,x=9
4
,P2(
7
8
,0),
综上所述:P1(0,-7
6
),P2(
7
8
,0),使得△ABP是以AB为底边的等腰三角形。

【教师总结】这类问题是以抛物线为载体,探讨是否存在一些点,使其能构成等腰特殊三角形,解决的基本思路时是:假设存在,数形结合,分类讨论,逐一解决.。

相关文档
最新文档