初三九年级上册上册数学压轴题专题练习(解析版)
动点的函数图象问题(压轴题专项讲练)解析版—2024-2025学年九年级数学上册压轴题专项(浙教版)

动点的函数图象问题数形结合思想:所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3所给的等式或代数式的结构含有明显的几何意义。
【典例1】如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD=2,CD⊥AB于点D,点E、F、G分别是边CD、CA、AD的中点,连接EF、FG,动点M从点B出发,以每秒2个单位长度的速度向点A方向运动(点M运动到AB的中点时停止);过点M作直线MP∥BC与线段AC交于点P,以PM为斜边作Rt△PMN,点N在AB 上,设运动的时间为t(s),Rt△PMN与矩形DEFG重叠部分的面积为S,则S与t之间的函数关系图象大致为()A.B.C.D.本题考查几何动点问题的函数图象,正确分段并分析是解题的关键.根据题意先分段,分为0≤t≤0.5,0.5<t≤1,1<t≤2三段,分别列出三段的函数解析式便可解决,本题也可只列出0≤t≤0.5,1<t≤2两段,用排除法解决.解:分析平移过程,①从开始出发至PM与点E重合,由题意可知0≤t≤0.5,如图,则BM=2t,过点M作MT⊥BC于点T,∵∠B=60°,CD⊥AB,∴BC=2BD=4,CD==BT=12BM=t,∵∠ACB=90°,MP∥BC,∴∠ACB=∠MPA=90°,∴四边形CTMP为矩形,∴PM=CT=BC―BT=4―t,∵∠PMN=∠B=60°,PN⊥AB,∴MN=PM2=4―t2,∴DN=MN―MD=MN―BD+BM=3t2,∵E为CD中点,∴DE=CD2=∴S=DE⋅DN=∴S与t的函数关系是正比例函数;②当0.5<t≤1,即从PM与E重合至点M与点D重合,如图,由①可得QN=ED=DM=2―2t,DN=32t,S矩形EDNQ=∵∠PMN=∠B=60°,CD⊥AB,∴SD==,∴ES=ED―SD=∴ER ==2t ―1,∴S =S 矩形EDNQ ―S △ERS =12(2―2t ―1)=―2+此函数图象是开口向下的二次函数;③当1<t ≤2,即从点M 与点D 重合至点M 到达终点,如图,由①可得DN =32t ,MN =4―t 2,∵AD ==6, DG =12AD =3,∴NG =DG ―DN =3―32t ,∴QF =NG =3―32t ,∴PQ==,∴HQ ==1―12t ,∴S =(HQ+MN )×QN 2==―∴S 与t 的函数关系是一次函数,综上,只有选项A 的图象符合,故选:A .1.(2024·四川广元·二模)如图,在矩形ABCD 中,AB =4cm ,AD =2cm ,动点M 自点A 出发沿AB 方向以每秒1cm 的速度向点 B 运动,同时动点N 自点A 出发沿折线AD -DC -CB 以每秒2cm 的速度运动,到达点B 时运动同时停止.设△AMN的面积为y (cm2),运动时间为x (秒),则下列图象中能大致反映y 与x 之间的函数关系的是( )A.B.C.D.【思路点拨】本题考查动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.根据题意,分三段(0<x<1,1≤x<3,3≤x<4)分别求解y与x的解析式,从而求解.【解题过程】解:当0<x<1时,M、N分别在线段AB、AD上,此时AM=x cm,AN=2x cm,y=S△AMN=12×AM×AN=x2,为二次函数,图象为开口向上的抛物线;当1≤x<3时,M、N分别在线段、CD上,此时AM=x cm,△AMN底边AM上的高为AD=2cm,y=S△AMN=12×AM×AD=x,为一次函数,图象为直线;当3≤x<4时,M、N分别在线段AB、BC上,此时AM=x cm,△AMN底边AM上的高为BN=(8―2x)cm,y=S△AMN=12×AM×BN=12x(8―2x)=―x2+4x,为二次函数,图象为开口向下的抛物线;结合选项,只有A选项符合题意,故选:A.2.(22-23九年级上·安徽合肥·期中)如图,在△ABC中,∠C=135°,AC=BC=P为BC边上一动点,PQ∥AB交AC于点Q,连接BQ,设PB=x,S△BPQ=y,则能表示y与x之间的函数关系的图象大致是()A.B.C.D.【思路点拨】过点Q作QE⊥BC交BC延长线于点E,根据S△BPQ=y=12QE⋅BP列出解析式再判断即可.【解题过程】解:如图,过点Q作QE⊥BC交BC延长线于点E,∵AC =BC =∴∠A =∠ABC∵PQ∥AB ,∴∠CQP =∠A,∠CPQ =∠ABC∴∠CQP =∠CPQ∴CQ =CP =―x .∵∠ACB =135°∴∠ECQ =45°在Rt △CEQ 中,∠ECQ =45°,∴QE ==―x )=2―,∴y =12QE ⋅BP =12x 2x =―2+x =――2+∴当x =y 最大值=故选:C.3.(2024·河北石家庄·二模)如图所示,△ABC 和△DEF 均为边长为4的等边三角形,点A 从点D 运动到点E 的过程中,AB 和DF 相交于点G ,AC 和EF 相交于点H ,(S △BGF +S △FCH )为纵坐标y ,点A 移动的距离为横坐标x ,则y 与x 关系的图象大致为( )A .B .C .D .【思路点拨】如图,过G 作GK ⊥BC 于K ,过H 作HT ⊥BC 于T ,证明四边形ACFD 为平行四边形,可得AD =CF =x ,BF =4―x ,求解CT =FT =12x ,TH ==,同理可得:GK =―x ),再利用面积公式建立函数关系式即可判断.【解题过程】解:如图,过G 作GK ⊥BC 于K ,过H 作HT ⊥BC 于T ,由题意可得:AD∥CF ,DF∥AC ,∴四边形ACFD 为平行四边形,∴AD =CF =x ,∴BF =4―x ,∵△ABC 和△DEF 均为边长为4的等边三角形,AD∥CF ,∴∠D =∠DFB =60°,而∠B =60°,∴△BGF 为等边三角形,同理:△CFH 为等边三角形,∵HT ⊥BC ,∴CT =FT =12x ,TH ==,同理可得:GK =―x ),∴y =12x +12(4―x )⋅―x )=2―+故选B4.(2023·辽宁铁岭·模拟预测)如图,矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,M 是BC 的中点.P 、Q 两点沿着B→C→D 方向分别从点B 、点M 同时出发,并都以1cm/s 的速度运动,当点Q 到达D 点时,两点同时停止运动.在P 、Q 两点运动的过程中,与△OPQ 的面积随时间t 变化的图象最接近的是( )A .B .C .D .【思路点拨】本题考查了动点问题函数图象.根据矩形的性质求出点O 到BC 的距离等于4,到CD 的距离等于6,求出点Q 到达点C 的时间为6s ,点P 到达点C 的时间为12s ,点Q 到达点D 的时间为14s ,然后分①0≤t ≤6时,点P 、Q 都在BC 上,表示出PQ ,然后根据三角形的面积公式列式计算即可;②6<t ≤12时,点P 在BC 上,点Q 在CD 上,表示出CP 、CQ ,然后根据S ΔOPQ =S ΔCOP +S ΔCOQ ―S ΔPCQ 列式整理即可得解;③12<t ≤14时,表示出PQ ,然后根据三角形的面积公式列式计算即可得解.【解题过程】解:∵矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,∴点O 到BC 的距离=12AB =4,到CD 的距离=12AD =6,∵点M 是BC 的中点,∴CM =12BC =6,∴点Q到达点C的时间为6÷1=6s,点P到达点C的时间为12÷1=12s,点Q到达点D的时间为(6+8)÷1=14s,①0≤t≤6时,点P、Q都在BC上,PQ=6,△OPQ的面积=12×6×4=12;②6<t≤12时,点P在BC上,点Q在CD上,CP=12―t,CQ=t―6,SΔOPQ=SΔCOP+SΔCOQ―SΔPCQ,=12×(12―t)×4+12×(t―6)×6―12×(12―t)×(t―6),=12t2―8t+42,=12(t―8)2+10,③12<t≤14时,PQ=6,△OPQ的面积=12×6×6=18;纵观各选项,只有B选项图形符合.故选:B.5.(2023·江苏南通·模拟预测)如图,在矩形ABCD中,AB=4,BC=6,E为AB中点,动点P从点B开始沿BC方向运动到点C停止,动点Q从点C开始沿CD→DA方向运动,与点P同时出发,同时停止;这两点的运动速度均为每秒1个单位;若设他们的运动时间为x(s),△EPQ的面积为y,则y与x之间的函数关系的图像大致是()A.B.C.D.【思路点拨】先求出点P在BC上运动是时间为6秒,点Q在CD上运动是时间为4秒,再根据中点的定义可得AE =BE =12AB ,然后分①点Q 在CD 上时,表示出BP 、CP 、CQ ,再根据△EPQ 的面积为y =S 梯形BCQE ―S △BPE ―S △PCQ ,列式整理即可得解;②点Q 在AD 上时,表示出BP 、AQ ,再根据△EPQ 的面积为y =S 梯形ABPQ ―S △BPE ―S △AEQ ,列式整理即可得解,再根据函数解析式确定出函数图象即可.【解题过程】解:∵点P 、Q 的速度均为每秒1个单位,∴点P 在BC 上运动的时间为6÷1=6(秒),点Q 在CD 上运动的时间为4÷1=4(秒),∵E 为AB 中点,∴AE =BE =12AB =12×4=2,①如图1,点Q 在CD 上时,0≤x ≤4,则BP =x,CP =6―x,CQ =x ,∴ △EPQ 的面积为y =S 梯形BCQE ―S △BPE ―S △PCQ ,=12(2+x )×6―12×2x ―12(6―x )⋅x =12x 2―x +6=12(x ―1)2+112②如图2,点Q 在AD 上时,4<x ≤6,则BP =x,AQ =6+4―x =10―x ,∴ △EPQ 的面积为y =S 梯形ABPQ ―S △BPE ―S △AEQ ,=12(x +10―x )×4―12×2x ―12(10―x )⋅2=10,综上所述,y =2―x +6(0≤x ≤4)10(4<x ≤6),函数图象为对称轴为直线x =1的抛物线的一部分加一条线段,只有A 选项符合.故选:A .6.(2024·河南开封·一模)如图1,在△ABC 中,∠B =60°,点D 从点B 出发,沿BC 运动,速度为1cm/s .点P 在折线BAC 上,且PD ⊥BC 于点D .点D 运动2s 时,点P 与点A 重合.△PBD 的面积S (cm 2)与运动时间t (s)的函数关系图象如图2所示,E 是函数图象的最高点.当S (cm 2)取最大值时,PD 的长为( )A .B .(1+cm C .(1+cm D .(2+cm【思路点拨】本题考查动点函数图象,二次函数图象性质,三角形面积.本题属二次函数与几何综合题目.先根据点D 运动2s 时,点P 与点A 重合.从而求得PD ==,再由函数图象求得BC =(2+×1=(2+cm ,从而求得DC =BC ―BD =2+2=,得出PD =DC ,然后根据由题图2点E 的位置可知,点P 在AC 上时,S △PBD 有最大值.所以当2≤t ≤2+点P 在AC边上,此时BD =t ×1=t (cm),PD =DC =(2+―t )cm ,根据三角形面积公式求得S △PBD =―12t ―(13)2+2+【解题过程】解:由题意知,点D 运动2s 时,点P ,D 的位置如图1所示.此时,在Rt △PBD 中,BD =2cm ,∠B =60°,PD ⊥BC ,∴PB =2BD =4(cm),∴PD ==.由函数图象得BC =(2+×1=(2+cm ,∴DC =BC ―BD =2+2=,∴PD =DC .由题图2点E 的位置可知,点P 在AC 上时,S △PBD 有最大值.当2≤t ≤2+P 在AC 边上,如图2,此时BD =t ×1=t (cm),PD =DC =(2+―t )cm ,∴S △PBD =12×BD ×PD =12×t ×(2+t )=―12t 2+(1+t .∵S △PBD =――(1+3)2+2+又∵―12<0,∴当t =1+S △PBD 的值最大,此时PD =CD =2+―(1+=(1+cm .故选:B .7.(2024·安徽·一模)如图,在四边形ABCD 中,∠A =60°,CD ⊥AD ,∠BCD =90°, AB =BC =4,动点P ,Q 同时从A 点出发,点Q 以每秒2个单位长度沿折线A ―B ―C 向终点C 运动;点P 以每秒1个单位长度沿线段AD 向终点D 运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x 秒,△APQ 的面积为y 个平方单位,则y 随x 变化的函数图象大致为( )A .B .C .D .【思路点拨】分当0≤x <2时,点Q 在AB 上和当2≤x ≤4时,点Q 在BC 上,根据三角形的面积公式即可得到结论.【解题过程】解:过Q 作QN ⊥AD 于N ,当0≤x <2时,点Q 在AB 上,∵∠A =60°,∴∠AQN =90°―60°=30°,∴AN = 12AQ =12×2x =x ,∴QN ==,∴y =12×AP ×NQ =12×x ×=2,当2≤x ≤4时,点Q 在BC 上,过点B 作BM ⊥AD 于点M ,∵BM ⊥AD ,∠A =60°,∴∠ABM =30°,∴AM = 12AB =12×4=2,∴BM ==∵CD ⊥AD ,QN ⊥AD ,∴QN ∥CD ,∴∠BQN =∠BCD =90°,∵BM ⊥AD, CD ⊥AD ,∴四边形BMNQ 是矩形,∴QN =BM = ,y =12AP ⋅QN =12x ×=,综上所述,当0≤x <2时的函数图象是开口向上的抛物线的一部分,当2≤x ≤4时,函数图象是直线的一部分,故选:D .8.(23-24九年级上·浙江温州·期末)某兴趣小组开展综合实践活动:在Rt △ABC 中,∠C =90°,CD =,D 为AC 上一点,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C→B→A 匀速运动,到达点A 时停止,以DP 为边作正方形DPEF ,设点P 的运动时间为t s ,正方形DPEF 的面积为S ,当点P 由点C 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象,若存在3个时刻t 1,t 2,t 3(t 1<t 2<t 3)对应的正方形DPEF 的面积均相等,当t 3=5t 1时,则正方形DPEF 的面积为( )A .3B .349C .4D .5【思路点拨】由题意可得:CD =CP =t ,当点P 在BC 上运动时S =t 2+2,由图可得,当点P 与点B 重合时,S =6,求出t=2,即BC=2,当P在BA上时,由图可得抛物线过点2,6,顶点为4,2,求出抛物线解析式为S=(t―2)2+2,从两个函数表达式看,两个函数a相同,都为1,则从图象上看t1,t2关于x=2对称,t2,t3关于x=4对称,t1+t2=4①,t2+t3=8②,结合t3=5t1③,求出t的值即可得出答案.【解题过程】解:由题意可得:CD=CP=t,当点P在BC上运动时,S=DP2=CP2+CD2=t2+2,由图可得,当点P与点B重合时,S=6,∴t2+2=6,∴t=2或t=―2(不符合题意,舍去),∴BC=2,当P在BA上时,由图可得抛物线过点2,6,顶点为4,2,则抛物线的表达式为S=a(t―4)2+2,将2,6代入得:a(2―4)2+2=6,∴a=1,∴抛物线的表达式为:S=(t―4)2+2,从两个函数表达式看,两个函数a相同,都为1,若存在3个时刻t1,t2,t3(t1<t2t3)对应的正方形DPEF的面积均相等,则从图象上看t1,t2关于x=2对称,t2,t3关于x=4对称,∴t1+t2=4①,t2+t3=8②,∵t3=5t1③,由①③③解得t1=1,∴S=t2+2=1+2=3,故选:A.9.(22-23九年级上·浙江嘉兴·期中)如图,在Rt△ABC中,∠C=90°,∠ABC=60°,BC=6,点O为AC 中点,点D为线段AB上的动点,连接OD,设BD=x,OD2=y,则y与x之间的函数关系图像大致为( )A .B .C .D .【思路点拨】如图:过O 作OE ⊥AB ,垂足为E ,先根据直角三角形的性质求得AB =12,AC =OA =12AC =AE ==92可得DE =152―x ,然后再根据勾股定理求得函数解析式,最后确定函数图像即可.【解题过程】解:如图:过O 作OE ⊥AB ,垂足为E∵∠C =90°,∠ABC =60°∴∠A =30°∵BC =6∴AB =2BC =12∴AC ===∵点O 为AC 中点∴OA =12AC =∵∠A =30°∴OE =12AO =∴AE ===92∴DE =|152―x |∴OD 2=OE 2+DE 2,即y =+―x 2=x +274当x =0时,y =0―+274=63当x =152时,y =―+274=274当x =12时,y =12+274=27则函数图像为.故选C .10.(2024·广东深圳·三模)如图,在Rt △ABC 中,∠C =90°,AC =12,BC =8,点D 和点E 分别是AB 和AC 的中点,点M 和点N 分别从点A 和点E 出发,沿着A→C→B 方向运动,运动速度都是1个单位/秒,当点N 到达点B 时,两点间时停止运动.设△DMN 的面积为S ,运动时间为t ,则S 与t 之间的函数图象大致为( )A .B .C .D .【思路点拨】本题主要考查动点问题,依托三角形面积考查二次函数的图象和分类讨论思想,取BC 的中点F,连接DF 根据题意得到DF 和DE ,分三种情况讨论三角形的面积:(1)当0<t ≤6时,得MN =AE =6,结合三角形面积公式求解即可;(2)当6<t ≤12时,得AM ,MC ,CN 和BN ,结合S =S ΔABC ―S ΔADM ―S ΔBDN ―S ΔCMN ;(3)当12<t ≤14时,点M 、N 都在BC 上,结合DF 和MN 求面积即可.【解题过程】解:如图,取BC 的中点F ,连接DF ,∴DF ∥AC ,DF =12AC =6∵点D 、E 是中点,∴DE =12BC =4,DF ∥CB ,∵∠C =90°,∴四边形DECF 为矩形,当0<t ≤6时,点M 在AE 上,点N 在EC 上,MN =AE =6,∴S =12MN ⋅DE =12×6×4=12;如图,当6<t ≤12时,点M 在EC 上,点N 在BC 上,∵AM =t ,∴MC =12―t ,CN =t ―6,BN =14―t ,∴S =S ΔABC ―S ΔADM ―S ΔBDN ―S ΔCMN=12×8×12―12×4t ―12×6(14―t)―12(12―t)(t ―6)=12t 2―8t +42;如图,当12<t ≤14时,点M 、N 都在BC 上,∴S =12MN ⋅DF =12×6×6=18,综上判断选项A 的图象符合题意.故选:A .11.(2024·河南南阳·二模)如图是一种轨道示意图,其中A 、B 、C 、D 分别是菱形的四个顶点,∠A =60°.现有两个机器人(看成点)分别从A ,C 两点同时出发,沿着轨道以相同的速度匀速移动,其路线分别为A→B→C 和C→D→A .若移动时间为t ,两个机器人之间距离为d .则 d²与t 之间的函数关系用图象表示大致为( )A .B .C .D .【思路点拨】设菱形的边长为2,根据菱形的性质求出关于两个机器人之间的距离d2的解析式,再利用二次函数的性质即可解答.【解题过程】解:①设AD=2,如图所示,∵移动时间为t,∠A=60°,∴CK=1,FT=KB=∴AE=t,CF=2―t,∴FK=2―t―1=1+t,∴ET=2―t―(1+t)=1+2t,∴在Rt△EFT中,EF2=ET2+FT2=(1+2t)2+2=4t2+4t+4;②设AD=2,如图所示,∵移动时间为t,∠A=60°,∴BM=t―2,CM=2―(t―2)=4―t,CP=1,PD=LQ=∴MQ=CM―CQ=(4―t)―1=―t,∴在Rt△LMQ中,ML2=MQ2+LQ2=(3―t)2+2=t2―6t+12,∴函数图像为两个二次函数图象;③当从A出发的机器人在B点,从C出发的机器人在D点,此时距离是BD;从A出发的机器人在A点,从C出发的机器人在C点,此时距离是AC;∵设AD=2,∠A=60°,∴BD=2,AE=∴AC=2AE=∴BD<AC,∴函数图象的起点和终点高于中间点;综上所述:A项符合题意;故选A.12.(2024·山东聊城·二模)如图,等边△ABC与矩形DEFG在同一直角坐标系中,现将等边△ABC按箭头所指的方向水平移动,平移距离为x,点C到达点F为止,等边△ABC与矩形DEFG重合部分的面积记为S,则S关于x的函数图象大致为()A.B.C.D.【思路点拨】本题主要考查了动点问题的函数图象,二次函数的图象,等腰三角形的性质等知识,如图,作AQ⊥BC于点Q,可知AQ=0<x≤1或1<x≤2或2<x≤3三种情形,分别求出重叠部分的面积,即可得出图象.【解题过程】解:如图①,设AC与DE交于点H,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=BC=AC=2,BC=1,过点A作AQ⊥BC于点Q,则BQ=CQ=12∴AQ===∵四边形DEFG 是矩形,∴∠DEF =90°,DE =AQ ==OF ―OE =5―2=3,当0<x ≤1时,在Rt △HCE 中,∠ACE =60°,EC =x,∴∠CHE =30°,∴HC =2x ,∴HE ===∴S =12EC ×HE =12x ×=2,所以,S 关于x 的函数图象是顶点为原点,开口向上且在0<x ≤1内的一段;当1<x ≤2时,如图,设AB 与DE 交于点P ,∵EC =x,BC =2,∴BE =BC ―EC =2―x,同理可得,PE =x ―2),∴S =S △ABC ―S △PBE =12×2―12(2―x )⋅―x )=―x ―2)2+所以,图象为1<x ≤2时开口向下的一段抛物线索;当2<x ≤3时,如图,S =12×2×=此时的函数图象是在2<x≤3范围内的一条线段,即S=<x≤3),故选:C13.(2024·河南·模拟预测)如图,在等腰直角三角形ABC中,∠ABC=90°,BD是AC边上的中线,将△BCD 沿射线BA方向匀速平移,平移后的三角形记为△B1C1D1,设△B1C1D1与△ABD重叠部分的面积为y,平移距离为x,当点B1与点A重合时,△B1C1D1停止运动,则下列图象最符合y与x之间函数关系的是()A.B.C.D.【思路点拨】本题考查了二次函数与几何图形的综合,涉及等腰直角三角形,平移的性质,二次函数的性质等知识,解题的关键是灵活运用这些性质,学会分类讨论.过点D作DM⊥AB于M,由△ABC为等腰直角三角形,∠ABC=90°,可设AB=BC=2,可得AD=CD=BD=DM=AM=BM=1,然后分情况讨论:当0<x≤1时,当1<x≤2时,分别求出关于S、x的函数,再数形结合即可求解.【解题过程】解:过点D作DM⊥AB于M,∵△ABC为等腰直角三角形,∠ABC=90°,∴ AB =BC ,设AB =BC =2,∴ AD =CD =BD =DM =AM =BM =1,当0<x ≤1时,设B 1D 1交AC 于点G ,B 1C 1交BD 于N ,∴ AB 1=AB ―BB 1=2―x ,由平移知B 1G ∥BD ,∠AB 1G =∠ABD ,∴ △AB 1G 是等腰直角三角形,∴ S △AB 1G =12AB 1·12AB 1=14(2―x )2,又∵ S △ABD =12×12×2×2=1,S △BB 1N =12x 2∴ S =S △ABD ―S △AB 1G ―S △BB 1N =1―14(2―x )2―12x 2=―34x 2+x ,当x =―=23时取得最大值,故排除A 、B 选项当1<x ≤2时,B 1D 1交AC 于点G ,B 1C 1交AC 于点H ,∵ B 1H ∥BC ,∴ ∠B 1HG =∠ACB =45°,又∵ ∠D 1B 1C 1=45°,∴ △B 1GH 为等腰三角形,∵ ∠AB 1D 1=∠ABD =45°=∠A ,∴ AB 1G 为等腰三角形,∴ B 1G =1=―x ),∴ S =S △B 1GH =12·―x )―x )=14(2―x )2,即当1<x ≤2时,函数图像为开口向上的抛物线,故排除C 选项故选:D .14.(23-24九年级上·安徽滁州·期末)如图,菱形ABCD的边长为3cm,∠B=60°,动点P从点B出发以3cm/ s的速度沿着边BC―CD―DA运动,到达点A后停止运动;同时动点Q从点B出发,以1cm/s的速度沿着边BA 向A点运动,到达点A后停止运动.设点P的运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象为()A.B.C.D.【思路点拨】根据题意可知分情况讨论,分别列出当点P在BC上时,点P在CD上时,点P在AD上时表达式,再画图得到函数解析式,即可得到本题答案.【解题过程】解:设点P的运动时间为x(s),△BPQ的面积为y(cm2),①当0≤x≤1时,点P在BC上时,过点P作PE⊥BA,,∵根据题知:∠B =60°,PB =3x,BQ =x ,∴BE =32x ,PE =,∴y =12BQ·PE =12x·=2;②当1<x ≤2时,点P 在CD 上时,过点P 作PH ⊥BA ,,∵根据题知:∠B =60°,BC =3,BQ =x ,∴PH =∴y =12BQ·PH =12x·=;③当2<x ≤3时,点P 在AD 上时,过点P 作PF ⊥BA 交DA 延长线于F ,,∵根据题知:∠B =60°,即∠FAD =60°,∵BC +CD +AD =3+3+3=9cm ,BC +CD +DP =3x ,∴AP =(9―3x)cm ,∴PF =9―3x 2·∴y =12BQ·PF =12x·9―3x 2·=―2;∴结合三种情况,图像如下所示:,故选:D.15.(2023·辽宁盘锦·中考真题)如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴的正半轴上,顶点B、C在x轴的正半轴上,D,P(―1,―1).点M在菱形的边AD和DC上运动(不与点A,C重合),过点M作MN∥y轴,与菱形的另一边交于点N,连接PM,PN,设点M的横坐标为x,△PMN的面积为y,则下列图象能正确反映y与x之间函数关系的是()A.B.C.D.【思路点拨】先根据菱形的性质求出各点坐标,分M的横坐标x在0∼1,1∼2,2∼3之间三个阶段,用含x的代数式表示出△PMN的底和高,进而求出分段函数的解析式,根据解析式判断图象即可.【解题过程】解:∵菱形ABCD 的顶点A 在y 轴的正半轴上,顶点B 、C 在x 轴的正半轴上,∴ AB =AD =2,OA=∴ OB===1,∴ OC =OB +BC =1+2=3,∴ A ,B (1,0),C (3,0),设直线AB 的解析式为y =kx +b ,将A ,B (1,0)代入,得:k +b = ,解得k =b =∴直线AB 的解析式为y =―+∵ MN∥y 轴,∴N 的横坐标为x ,(1)当M 的横坐标x 在0∼1之间时,点N 在线段AB 上,△PMN 中MN 上的高为1+x ,∴ N (x,―+,∴ MN=(―+=,∴ S △PMN =12MN ⋅(1+x )=⋅(1+x)=2+,∴该段图象为开口向上的抛物线;(2)当M 的横坐标x 在1∼2之间时,点N 在线段BC 上,△PMN 中MN =MN 上的高为1+x ,∴ S △PMN =12MN ⋅(1+x)=(1+x)=∴该段图象为直线;(3)当M 的横坐标x 在2∼3之间时,点N 在线段BC 上,△PMN 中MN 上的高为1+x ,由D ,C (3,0)可得直线CD 的解析式为y =―+∴ M (x,―+,N (x,0),∴ MN =―+∴ S △PMN =12MN ⋅(1+x )=12(+⋅(1+x )=―2∴该段图象为开口向下的抛物线;观察四个选项可知,只有选项A 满足条件,故选A .16.(22-23九年级上·安徽蚌埠·期末)如图,在平面直角坐标系中,点A (2,0),点B,点C (―,点P从点O出发沿O→A→B路线以每秒1个单位的速度运动,点Q从点O出发沿O→C→B的速度运动,当一个点到达终点时另一个点随之停止运动,设y=PQ2,运动时间为t秒,则正确表达y与t 的关系图象是()A.B.C.D.【思路点拨】先分析各个线段的长,在Rt△OAB中,可知,OA=2,OB AB=4,∠BAO=60°,过点C作CM⊥y轴于点M,易得△OBC是等边三角形,OC=BC=OB P在OA上运动用时2s,在AB上运动用时4s,点Q在OC上运动用时2s,在OC上运动用时2s,则点P和点Q共用时4s,可排除D选项;再算出点P在OA上时,y的函数表达式,结合选项可得结论.【解题过程】解:如图,∵点A(2,0),点B(0,∴OA=2,OB∴AB=4,∠BAO=60°,过点C作CM⊥y轴于点M,则OM =BM CM =3,∴OC =BC ∴△OBC 是等边三角形,∠BOC =60°,∴点P 在OA 上运动用时2s ,在AB 上运动用时4s ,点Q 在OC 上运动用时2s ,在OC 上运动用时2s ,即点P 和点Q 共运动4s 后停止;由此可排除D 选项.当点P 在线段OA 上运动时,点Q 在线段OC 上运动,过点Q 作QN ⊥x 轴于点N ,由点P ,点Q 的运动可知,OP =t ,OQ ,∴QN =12OQ ==32t,∴PN =52t,∴y =PQ 2=(52t)2+2=7t 2.即当0<t <2时,函数图象为抛物线,结合选项可排除A ,C .故选:B .17.(2022·辽宁·中考真题)如图,在等边三角形ABC 中,BC =4,在Rt △DEF 中,∠EDF =90°,∠F =30°,DE =4,点B ,C ,D ,E 在一条直线上,点C ,D 重合,△ABC 沿射线DE 方向运动,当点B 与点E 重合时停止运动.设△ABC 运动的路程为x ,△ABC 与Rt △DEF 重叠部分的面积为S ,则能反映S 与x 之间函数关系的图象是( )A.B.C.D.【思路点拨】分三种情形∶①当0<x≤2时,△CDG,②当2<x≤4时,重叠部分为四边形AGDC,③当4<x≤8时,重叠部分为△BEG,分别计算即可.【解题过程】解:过点A作AM⊥BC,交BC于点M,在等边△ABC中,∠ACB=60°,在Rt△DEF中,∠F=30°,∴∠FED=60°,∴∠ACB=∠FED,∴AC∥EF,在等边△ABC中,AM⊥BC,BC=2,AM=∴BM=CM=12BC•AM=∴S△ABC=12①当0<x≤2时,设AC与DF交于点G,此时△ABC与Rt△DEF重叠部分为△CDG,由题意可得CD=x,DGCD•DG2;∴S=12②当2<x≤4时,设AB与DF交于点G,此时△ABC与Rt△DEF重叠部分为四边形AGDC,由题意可得:CD=x,则BD=4﹣x,DG4﹣x),×(4﹣x)4﹣x),∴S=S△ABC﹣S△BDG=﹣12∴S=2﹣x﹣4)2③当4<x≤8时,设AB与EF交于点G,过点G作GM⊥BC,交BC于点M,此时△ABC与Rt△DEF重叠部分为△BEG,由题意可得CD =x ,则CE =x ﹣4,DB =x ﹣4,∴BE =x ﹣(x ﹣4)﹣(x ﹣4)=8﹣x ,∴BM =4﹣12x在Rt △BGM 中,GM 4﹣12x ),∴S =12BE •GM =12(8﹣x )4﹣12x ),∴S x ﹣8)2,综上,选项A 的图像符合题意,故选:A .18.(2023·山东聊城·三模)如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P ,Q 同时从点B 出发,点P 沿折线BE ―ED ―DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒,设P ,Q 同时出发t 秒时,△BPQ 的面积为y cm 2.已知y 与t 的函数关系图像如图(2)(曲线OM 为抛物线的一部分),则下列结论不正确的是( )A .AB:AD =4:5B .当t =2.5秒时,PQ =C .当t =294时,BQ PQ =53D .当△BPQ 的面积为4cm 2时,t 或475秒【思路点拨】先由图2中的函数图像得到当t =5时,点Q 到达点C ,即BC =5cm ,然后由5<t <7时,y =10可知△BPQ的面积是定值10cm 2、BE =5cm,ED=2cm ,当t =7时点P 到达点D ,AE ==4cm ,可以判定A ;当0<t ≤5时,根据y =25t 2得到y =2.5cm 2,过点P 作PH ⊥BC 于点H ,根据y =12BQ·PH =12×2.5cm ×PH =2.5cm 2求得PH =2,设QH =x cm ,根勾股定理计算QH =1cm ,可计算PQ =根据AB =CD =4cm ,得到再运动4秒到达C 点即H (11,0),N (7,10),确定直线HN 或475秒;当t =294>284=7时,故点Q 在DC 上,把t =294代入直线HN 的解析式计算BQ PQ =43.【解题过程】解:设抛物线的解析式为y =at 2,当t =5时,y =10,∴10=25a ,解得a =25,∴y =25t 2,由图2中的函数图像得当t =5时,点Q 到达点C ,即BC =BE =5cm ,∵5<t <7时,y =10,∴△BPQ 的面积是定值10cm 2且BE =5cm,ED=2cm ,当t =7时点P 到达点D ,∴AE =5―2==4cm,AD=BC =5cm ,∴AB:AD =4:5,故A 正确,不符合题意;当0<t ≤5时,∵y =25t 2,t =2.5,∴BP =BQ =2.5cm ,y =2.5cm 2,过点P 作PH ⊥BC 于点H ,∴y =12BQ·PH =12×2.5cm ×PH =2.5cm 2解得PH =2,设QH =x cm ,则BH =BQ ―QH =(2.5―x )cm ,∴2.52=22+(2.5―x )2,解得x =1,x =4(舍去),∴QH =1cm ,∴PQ==故B 正确,不符合题意;根据AB =CD =4cm ,∴再运动4秒到达C 点即H (11,0),N (7,10),设直线HN 的解析式为y =kt +b ,根据题意,得11k +b =07k +b =10 ,解得k =―52b =552 ,∴直线HN 的解析式为y =―52t +552,∵△BPQ 的面积为4cm 2,故4=25t 2或4=―52t +552解得t==―t =475,故D 正确,不符合题意;∵t =294>284=7时,故点Q 在DC 上,当t =294时,y =―52×294+552=758,12PQ·BC =758解得PQ=154∴BQ PQ =5154=43.故C错误,符合题意.故选:C.19.(2023·辽宁·中考真题)如图,∠MAN=60°,在射线AM,AN上分别截取AC=AB=6,连接BC,∠MAN 的平分线交BC于点D,点E为线段AB上的动点,作EF⊥AM交AM于点F,作EG∥AM交射线AD于点G,过点G作GH⊥AM于点H,点E沿AB方向运动,当点E与点B重合时停止运动.设点E运动的路程为x,四边形EFHG与△ABC重叠部分的面积为S,则能大致反映S与x之间函数关系的图象是()A.B.C.D.【思路点拨】分三种情况分别求出S与x的函数关系式,根据函数的类型与其图象的对应关系进行判断即可.【解题过程】解:∵∠MAN=60°,AC=AB=6,∴△ABC是边长为6的正三角形,∵AD平分∠MAN,∴∠MAD=∠NAD=30°,AD⊥BC,CD=DB=3,①当矩形EFGH全部在△ABC之中,即由图1到图2,此时0<x≤3,∵EG∥AC,∴∠MAD=∠AGE=30°,∴∠NAD=∠AGE=30°,∴AE=EG=x,在Rt△AEF中,∠EAF=60°,∴EF==,∴S=2;②如图3时,当AE+AF=GE+AF=AF+CF=AC,x=6,解得x=4,则x+12由图2到图3,此时3<x≤4,如图4,记BC,EG的交点为Q,则△EQB是正三角形,∴EQ=EB=BQ=6―x,∴GQ=x―(6―x)=2x―6,而∠PQG=60°,∴PG==2x―6),∴S=S矩形EFHG―S△PQG=2x 2―12×(2x ―6)×2x ―6)=―2― ③如图6时,x =6,由图3到图6,此时4<x ≤6,如图5,同理△EKB 是正三角形,∴EK =KB =EB =6―x ,FC =AC ―AF =6―12x ,EF =, ∴S =S 梯形EKCF=―x +6―12x 2=―2, 因此三段函数的都是二次函数关系,其中第1段是开口向上,第2段、第3段是开口向下的抛物线, 故选:A .20.(22-23九年级上·安徽滁州·期末)如图,在平面直角坐标系中,菱形ABCD 的边长为4,且点A 与原点O 重合,边AD 在x 轴上,点B 的横坐标为―2,现将菱形ABCD 沿x 轴以每秒1个单位长度的速度向右平移,设平移时间为t (秒),菱形ABCD 位于y 轴右侧部分的面积为S ,则S 关于t 的函数图像大致为( )A .B .C .D .【思路点拨】过点B 作x 轴的垂线,垂足为点E ,如图所示,由菱形ABCD 沿x 轴以每秒1个单位长度的速度向右平移,分①当0≤t ≤2时;②当2<t <4时;③当4≤t ≤6时;④当t >6时;四种情况,作图求解S 关于t 的函数解析式,作出图像即可得到答案.【解题过程】解:过点B 作x 轴的垂线,垂足为点E ,如图所示:∵菱形ABCD 的边长为4,且点A 与原点O 重合,边AD 在x 轴上,点B 的横坐标为―2,∴OE =2,OB =4,∴∠OBE =30°,∴∠BOE =60°,BE =①当0≤t ≤2时,如图(1)所示:S =12OA ⋅OF =12×t ×=2;②当2<t <4时,如图(2)所示:S =S △ABE +S 矩形OEBG =12AE ⋅BE +BE ⋅OE =12×2×t ―2)=―③当4≤t ≤6时,如图(3)所示:∵∠C =60°,OD =OA ―AD =t ―4,∴∠KDO =60°,OK=t ―4),∵HO =BE =∴HK =HO ―OK =―t ―4)=―+∵HB =OE =OA ―AE =t ―2,∴CH =BC ―HB =4―(t ―2)=―t +6,S =S 菱形ABCD ―S △CHK =AD ⋅BE ―12CH ⋅HK =4×―12(―t +6)(―+=―2―+=―2―当t >6时,S =S 菱形ABCD =AD ⋅BE=综上所述S =20≤t ≤2―2<t <4t2+―4≤t ≤6t >6 ,∴第一段二次函数部分,开口向上;第二段一次函数部分;第三段二次函数部分,开后向下;第四段平行于x轴的射线,故选:A.。
部编数学九年级上册专题24.5圆(压轴题综合测试卷)(人教版)(解析版)含答案

专题24.5 圆(满分100)学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(本大题共10小题,每小题3分,满分30分)1.(2022·重庆忠县·九年级期中)如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是( )A.50°B.60°C.80°D.100°【思路点拨】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD 的度数,再根据圆周角的性质,即可求得答案.【解题过程】解:在圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°.故选D.2.(2022·江苏·九年级专题练习)如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是( )A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)【思路点拨】根据垂径定理的性质得出圆心所在位置,再根据切线的性质得出,∠OBD+∠EBF=90°时F点的位置即可。
【解题过程】解:∵过格点A,B,C作一圆弧,∴三点组成的圆的圆心为:O(2,0),∵只有∠OBD+∠EBF=90°时,BF与圆相切,∴当△BOD≌△FBE时,EF=BD=2,F点的坐标为:(5,1),∴点B与下列格点的连线中,能够与该圆弧相切的是:(5,1).故选C.3.(2022·全国·九年级课时练习)如图,在⊙О中,点C在弦AB上移动,连接OC,过点C作CD⊥OC交⊙О于点D.若AB=2,则CD的最大值是()A.4B.2C D.1【思路点拨】连接OD,如图,利用勾股定理得CD,利用垂线段最短得到当OC⊥AB时,OC最小,再求出CD即可.【解题过程】4.(2022·浙江丽水·模拟预测)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为( )A.B.cm C.或D.或【思路点拨】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解题过程】解:连接AC,AO,∵O的直径CD=10cm,AB⊥CD,AB=8cm,5.(2022·江苏·九年级)如图,AB是⊙O的直径,点C为圆上一点,AC=3,∠ABC的平分线交AC于点D,CD=1,则⊙O的直径为()A B.C.1D.2【思路点拨】【解题过程】解:如图:过D作DE⊥AB,垂足为E∵AB是直径∴∠ACB=90°∵∠ABC的角平分线BD∴DE=DC=1在Rt△DEB和Rt△DCB中6.(2022·全国·九年级课时练习)如图,在Rt△ABC中,∠ACB=90°,以该三角形的三条边为边向形外作正方形,正方形的顶点E,F,G,H,M,N都在同一个圆上.记该圆面积为S1,△ABC面积为S2,则S1的值是()S2A.5π2B.3πC.5πD.11π2【思路点拨】【解题过程】7.(2022·全国·九年级专题练习)如图,等边△ABC中,AB=3,点D,点E分别是边BC,CA上的动点,且BD=CE,连接AD、BE交于点F,当点D从点B运动到点C时,则点F的运动路径的长度为()A B C D.【思路点拨】如图,作过A、B、F作⊙O,AFB为点F的轨迹,然后计算出AFB的长度即可.【解题过程】解:如图:作过A、B、F作⊙O,过O作OG⊥AB∵等边ΔABC∴AB=BC,∠ABC=∠C=60°∵BD=CE∴△BCE≌△ABC∴∠BAD=∠CBE∵∠ABC=∠ABE+∠EBC=60°∴∠ABE+∠BAD=60°∴∠AFB=120°∵∠AFB是弦AB同侧的圆周角∴∠AOB=120°8.(2022·全国·九年级课时练习)如图,在⊙O中,点C在优弧AB上,将弧BC沿BC折叠后刚好经过AB的中点D.若⊙O AB=4,则BC的长是( )A.B.C D【思路点拨】【解题过程】解:连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,9.(2022·全国·九年级课时练习)如图,△ABC的内切圆⊙O与AB,BC,AC相切于点D,E,F,已知AB =6,AC=5,BC=7,则DE的长是()A B C D【思路点拨】【解题过程】10.(2022·江苏无锡·九年级期中)我们定义:两边平方和等于第三边平方的2倍的三角形叫做奇异三角形,根据定义:①等边三角形一定是奇异三角形;②在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,则a:b:c=12;③如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆ADB的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.则△ACE是奇异三角形;④在③的条件下,当△ACE是直角三角形时,∠AOC=120°,其中,说法正确的有()A.①②B.①③C.②④D.③④【答案】B【思路点拨】【解题过程】解:设等边三角形的边长为a,则a2+a2=2a2,满足奇异三角形的定义,∴等边三角形一定是奇异三角形,故①正确;在RtΔABC中,a2+b2=c2,∵c>b>a>0,∴2c2>a2+b2,2a2<b2+c2,若△ABC是奇异三角形,一定有2b2=a2+c2,∴2b2=a2+(a2+b2),∴b2=2a2,得b=.∵c2=b2+a2=3a2,∴c,∴a:b:c=1故②错误;在RtΔABC中,a2+b2=c2,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,在RtΔACB中,AC2+BC2=AB2;在RtΔADB中,AD2+BD2=AB2.∵D是半圆ADB的中点,∴AD=BD,∴AD=BD,∴AB2=AD2+BD2=2AD2,又∵CB=CE,AE=AD,∴AC2+CE2=2AE2.∴ΔACE是奇异三角形,故③正确;由③可得ΔACE是奇异三角形,∴AC2+CE2=2AE2.当ΔACE是直角三角形时,由②可得AC:AE:CE=1AC:AE:CE=1,(Ⅰ)当AC:AE:CE=1AC:CE=1AC:CB=1∵∠ACB=90∘,∴∠ABC=30°,∴∠AOC=2∠ABC=60°.(Ⅱ)当AC:AE:CE=1时,AC:CE=1,即AC:CB=1,∵∠ACB=90°,∴∠ABC=60°,∴∠AOC=2∠ABC=120°,∴∠AOC的度数为60°或120°,故④错误;故选:B.评卷人得分二.填空题(本大题共5小题,每小题3分,满分15分)11.(2022·全国·九年级课时练习)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为____mm.【思路点拨】先根据钢珠的直径求出其半径,再构造直角三角形,求出小圆孔的宽口AB的长度的一半,最后乘以2即为所求.【解题过程】12.(2022·全国·九年级课时练习)已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB//CD,AB=8cm,CD=6cm,则AB与CD之间的距离为________cm.【思路点拨】分两种情况考虑:当两条弦位于圆心O同一侧时,当两条弦位于圆心O两侧时;利用垂径定理和勾股定理分别求出OE和OF的长度,即可得到答案.【解题过程】解:分两种情况考虑:当两条弦位于圆心O一侧时,如图1所示,13.(2022·山东菏泽·九年级期中)如图,正方形ABCD内接于⊙O,PA,PD分别与⊙O相切于点A和点D,PD的延长线与BC的延长线交于点E.已知AB=2,则图中阴影部分的面积为___________.【思路点拨】【解题过程】14.(2022·全国·九年级课时练习)如图,⊙O是等边△ABC的外接圆,已知D是⊙O上一动点,连接AD、CD,若圆的半径r=2,则以A、B、C、D为顶点的四边形的最大面积为_____.【思路点拨】连接BO并延长交AC于E,交AC于D,根据垂径定理得到点D到AC的距离最大,根据直角三角形的性质、三角形的面积公式计算,得到答案.【解题过程】15.(2022·全国·九年级课时练习)如图,在矩形ABCD中,AB=6,BC=8,E为AD上一点,且AE=2,F为BC边上的动点,以为EF直径作⊙O,当⊙O与矩形的边相切时,BF的长为______.【思路点拨】⊙O与矩形的边相切,但没有具体说与哪个边相切,所以该题有三种情况:第一种情况是圆与边AD、BC 相切,此时BF=AE;第二种情况是圆与边AB相切,利用中位线定理以及勾股定理可求出BF的长;第三种是圆与边CD相切,同样利用中位线定理以及勾股定理求得BF.【解题过程】解:①当圆与边AD、BC相切时,如图1所示此时∠AEO=BFO=90°所以四边形AEFB为矩形即BF=AE=2;②当圆与边AB相切时,设圆的半径为R,切点为H,圆与边AD交于E、N两点,与边BC交于M、F两点,连接EM、HO,如图2所示此时OE=OF=OH=R,点O、H分别是EF、AB的中点∴2OH=AE+BF即BF=2R-2∵BM=AE=2∴MF=2R-4在Rt△EFM中,EM2+MF2=EF2∴BF=13.2评卷人得分三.解答题(本大题共9小题,满分55分)16.(2022·全国·九年级课时练习)在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理.如图,已知AB,C是弦AB上一点,请你根据以下步骤完成这个引理的作图过程.(1)尺规作图(保留作图痕迹,不写作法):①作线段AC的垂直平分线DE,分别交AB于点D,AC于点E,连接AD,CD;②以点D为圆心,DA长为半径作弧,交AB于点F(F,A两点不重合),连接DF,BD,BF.(2)直接写出引理的结论:线段BC,BF的数量关系.【思路点拨】【解题过程】解:(1)作出线段AC的垂直平分线DE,连接AD,CD;以D为圆心,DA长为半径作弧,交AB于点F,连接DF,BD,BF,如图示:(2)结论:BC=BF.理由如下:由作图可得:DE是AC的垂直平分线,DA=DF,∴DA=DC=DF,∴∠DAC=∠DCA,AD=FD,∴∠DBC=∠DBF,∵四边形ABFD是圆的内接四边形,∴∠DAB+∠DFB=180°,∵∠DCA+∠DCB=180°,∴∠DFB=∠DCB,∵DB=DB,∴△DCB≌△DFB,∴BC=BF.17.(2022·江西上饶·九年级期末)如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°.点D是圆上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.(1)如图1,当DE与⊙O相切时,求∠CFB的度数;(2)如图2,当点F是CD的中点时,求△CDE的面积.【思路点拨】(1)由题意可求∠AOD=90°,即可求∠C=45°,即可求∠CFB的度数;(2)连接OC,根据垂径定理可得AB⊥CD,利用勾股定理.以及直角三角形30度性质求出CD、DE即可.【解题过程】解:(1)如图:连接OD∵DE与⊙O相切∴∠ODE=90°∵AB∥DE18.(2022·全国·九年级专题练习)如图,AB是半圆O的直径,点D是半圆O上一点,点C是AD的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC.(1)求证:GP=GD;(2)求证:P是线段AQ的中点;(3)连接CD,若CD=2,BC=4,求⊙O的半径和CE的长.【思路点拨】(1)结合切线的性质以及已知得出∠GPD=∠GDP,进而得出答案;(2)利用圆周角定理得出PA,PC,PQ的数量关系进而得出答案;(3)直接利用勾股定理结合三角形面积得出答案.【解题过程】(1)证明:连接OD,则OD⊥GD,∠OAD=∠ODA,∵∠ODA+∠GDP=90°,∠EAP+∠GPD=∠EPA+∠EAP=90°,∴∠GPD=∠GDP;∴GP=GD;(2)证明:∵AB为直径,∴∠ACB=90°,∵CE⊥AB于E,∴∠CEB=90°,∴∠ACE+∠ECB=∠ABC+∠ECB=90°,∴∠ACE=∠ABC=∠CAP,∴PC=PA,∵∠ACB=90°,∴∠CQA+∠CAP=∠ACE+∠PCQ=90°,∴∠PCQ=∠CQA,∴PC=PQ,∴PA=PQ,即P为Rt△ACQ斜边AQ的中点;(3)连接CD,∵弧AC=弧CD,∴CD=AC,∵CD=2,∴AC=2,19.(2022·全国·九年级课时练习)对于平面直角坐标系xOy中的图形P,Q,给出如下定义:M为图形P 上任意一点,N为图形Q上任意一点,如果M,N两点间的距离有最小值,那么称这个最小值为图形P,Q 间的“非常距离”,记作d(P,Q).已知点A(−2,2),B(2,2),连接AB.(1)d(点O,AB)=;(2)⊙O半径为r,若d(⊙O,AB)=0,直接写出r的取值范围;(3)⊙O半径为r,若将点A绕点B逆时针旋转α°(0°<α<180°),得到点A′.①当α=30°时d(⊙O,A′)=0,求出此时r的值;②对于取定的r值,若存在两个α使d(⊙O,A′)=0,直接写出r的范围.【思路点拨】(1)理解题意后直接利用垂线段最短即可求解.(2)先理解当⊙O与线段有交点时,d(⊙O,AB)=0,利用⊙O与线段相切和⊙O经过A点即可求解.(3)①先确定A′位于x轴上,再求出OA′的长即可求解;②先确定A′的轨迹,再利用存在两个α使d(⊙O,A')=0,确定并求出两个界点值,即可求解.【解题过程】∴∠A′NB=90°,由旋转知BA′=BA=2−(−2)=4,∵∠ABA′=30°,BA′=2,∴A′N=12∴A′位于x轴上,BN=42−22=23,∴A′M=23,∴A′O=23−2,∵对于取定的r值,若存在两个α使d(⊙O,A')=0,∴⊙O与以AH为直径的半圆有两个交点(A点和H点除外),此时有两个界点值,分别是⊙O与该半圆内切时和⊙O由B(2,2),得OB=22+22=22,当⊙O与该半圆内切时,r=4−22,当⊙O经过A点时,r=22,∴4−22<r<22.20.(2022·四川德阳·九年级阶段练习)如图1,四边形ABCD内接于⊙O,AD为直径,过点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;②当AB=2时,求AD,AC与CD围成阴影部分的面积.【思路点拨】【解题过程】解:(1)证明:∵四边形ABCD内接于⊙O,∴∠D+∠ABC=180°,∵∠EBC+∠ABC=180°,∴∠D=∠EBC,∵AD为⊙O直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∵CE⊥AB,∴∠ECB+∠EBC=90°,∴∠CAD=∠ECB;(2)①四边形ABCO是菱形,理由如下:∵CE是⊙O的切线,∴OC⊥EC,∵AB⊥EC,∴∠OCE=∠E=90°,∴∠OCE+∠E=180°,∴OC∥AE,∴∠ACO=∠BAC,∴CF=3,21.(2022·全国·九年级专题练习)如图,以AB为直径的⊙O上有一动点C,⊙O的切线CD交AB的延长线于点D,过点B作BM∥OC交⊙O于点M,连接AM,OM,BC.(1)求证:AM∥CD(2)若OA=5,填空:①当AM=时,四边形OCBM为菱形;②连接MD,过点O作ON⊥MD于点N,若BD=,则ON=.【思路点拨】(1)首先根据圆周角定理可得∠MAB+∠ABM=90°,由切线的性质可得∠DOC+∠CDO=90°,再根据平行线的性质即可证得∠MAB=∠CDO,据此即可证得结论;(2)①根据菱形性质可得OM= OA=MB= 5,即可求得AB,再根据勾股定理即可求得;②首先可证得△ODC 是等腰直角三角形,再根据勾股定理及三角形的面积,即可求解.【解题过程】(1)证明:∵AB是⊙O的直径,∴∠AMB=90°,∴∠MAB+∠ABM=90°,∵CD是⊙O的切线,∴OC⊥CD,∴∠DOC+∠CDO=90°,又∵BM∥OC,∴∠ABM=∠DOC,∴∠MAB=∠CDO,∴AM∥CD;(2)解:①若四边形OCBM为菱形,则OM=OA=MB =5,∵AB是⊙O的直径,∴∠AMB=90°,∵BD=52−5,OB=5,∴OD=OB+BD=5+5∵CD是⊙O的切线,∴∠OCD=90°,22.(2022·全国·九年级课时练习)如图,AB是⊙O的直径,P为AB上一点,弦CD与弦EF交于点P,PB平分∠DPF,连DF交AB于点G.(1)求证:CD=EF;(2)若∠DPF=60°,PE∶PF=1∶3,AB=OG的长.【思路点拨】【解题过程】(1)证明:如图,过点O作OM⊥EF于点M,ON⊥CD于点N,连接OF、OD,则∠OMF=∠OND=90°,∵PB平分∠DPF,OM⊥EF,ON⊥CD,∴OM=ON,在Rt△OFM和Rt△ODN中,∵OF=OD OM=ON,∴Rt△OFM≌Rt△ODN(HL),∴FM=DN,∵OM⊥EF,ON⊥CD,23.(2022·全国·九年级课时练习)问题提出:(1)如图1,已知△ABC是边长为2的等边三角形,则△ABC 的面积为______.问题探究:(2)如图2,在△ABC中,已知∠BAC=120°,BC=△ABC的最大面积.问题解决:(3)如图3,某校学生礼堂的平面示意图为矩形ABCD,其宽AB=20米,长BC=24米,为了能够监控到礼堂内部情况,现需要在礼堂最尾端墙面CD上安装一台摄像头M进行观测,并且要求能观测到礼堂前端墙面AB区域,同时为了观测效果达到最佳,还需要从点M出发的观测角∠AMB=45°.请你通过所学的知识进行分析,在墙面CD区域上是否存在点M满足要求?若存在,求出MC的长度;若不存在,请说明理由.【思路点拨】(1)作AD⊥BC于D,由勾股定理求出AD的长,即可求出面积;(2)作△ABC的外接圆⊙O,可知点A在BC上运动,当A'O⊥BC时,△ABC的面积最大,求出A'H的长,从而得出答案;(3)以AB为边,在矩形ABCD的内部作一个等腰直角三角形AOB,且∠AOB=90°,过O作HG⊥AB于H,交CD于G,利用等腰直角三角形的性质求出OA,OG的长,则以O为圆心,OA为半径的圆与CD相交,从而⊙O上存在点M,满足∠AMB=45°,此时满足条件的有两个点M,过M1作M1F⊥AB于F,作EO⊥M1F 于E,连接OF,利用勾股定理求出OE的长,从而解决问题.【解题过程】24.(2022·江苏·苏州中学九年级阶段练习)在Rt△ABC中,∠BCA=90°,CA=CB,点D是△ABC外一动点(点B,点D位于AC两侧),连接CD,AD.(1)如图1,点O是AB的中点,连接OC,OD,当△AOD为等边三角形时,∠ADC的度数是;(2)如图2,连接BD,当∠ADC=135°时,探究线段BD,CD,DA之间的数量关系,并说明理由;(3)如图3,⊙O是△ABC的外接圆,点D在AC上,点E为AB上一点,连接CE,DE,当AE=1,BE=7时,直接写出△CDE面积的最大值及此时线段BD的长.【思路点拨】【解题过程】即△CDE面积的面积最大值为4,此时,BD。
2022-2023学年人教版九年级数学上学期压轴题汇编专题04 一元二次方程的实际应用(含详解)

2022-2023学年人教版数学九年级上册压轴题专题精选汇编专题04 一元二次方程的实际应用考试时间:120分钟 试卷满分:100分姓名:__________ 班级:__________考号:__________ 题号 一二三总分得分评卷人 得 分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022·肥西模拟)在肥西悬主城区,共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多690辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的为( ) A .()2100011000690x +=+ B .()210001690x += C .()269011000x +=D .()1000121000690x +=+2.(2分)(2022·兖州模拟)欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2a BC =,AC b =,再在斜边AB 上截取2aBD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长3.(2分)(2022八下·余杭月考)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有 x 名同学,根据题意,列出方程为( ) A .()x x 11035+= B .()1x x 110352+= C .()x x 11035-=D .()1x x 110352-=4.(2分)(2022八下·杭州月考)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( )A .x(x +1)=1035B .x(x -1)=1035C .12 x(x +1)=1035 D .12x(x -1)=1035 5.(2分)()某厂家1~5月份的口罩产量统计如图所示,设从2月份到4月份,该厂家口罩产量的平均月增长率为x ,则根据题意可列方程为( )A .180(1-x )2=461B .180(1+x )2=461C .368(1-x )2=442D .368(1+x )2=4426.(2分)(2018九上·孝感月考)如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为 xm ,则下面所列方程正确的是( )A .()()32203220570x x --=⨯-B .322203220570x x +⨯=⨯-C .2322202570x x x +⨯-=D .()()32220570x x --=7.(2分)某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的12.则新品种花生亩产量的增长率为( ) A .20%B .30%C .50%D .120%8.(2分)(2020九上·遵化期末)已知 a , b , c 是1,3,4中的任意一个数( a , b ,c 互不相等),当方程 20ax bx c -+= 的解均为整数时,以1,3和此方程的所有解为边长能构成的多边形一定是( ) A .轴对称图形 B .中心对称图形C .轴对称图形或中心对称图形D .非轴对称图形或中心对称图形9.(2分)(2022八下·杭州开学考)现有x 支球队参加篮球比赛,比赛采用单循环制即每个球队必须和其余球队比赛一场,共比赛了45场,则下列方程中符合题意的是( ) A .()11452x x -= B .()11452x x +=C.x(x﹣1)=45 D.x(x+1)=4510.(2分)一个两位数,个位数字比十位数字小4,且个位数字与十位数字的平方和比这个两位数小4,设个位数字为x,则方程为()A.x2+(x+4)2=10(x+4)+x-4 B.x2+(x+4)2=10x+x-4-4C.x2+(x-4)2=10(x+4)+x-4 D.x2+(x-4)2=10x+(x-4)-4评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2021九上·临江期末)某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有个飞机场12.(2分)(2021九上·太原期中)学校秋季运动会上,九年级准备队列表演,一开始排成8行12列,后来又有84名同学积极参加,使得队列增加的行数比增加的列数多1.现在队列表演时的列数是.13.(2分)(2021九上·阆中期中)某校九年级举行篮球赛(每两班比赛一场),共比赛了15场,则九年级共有个班.14.(2分)(2021九上·海安月考)某学习小组全体同学都为本组其他人员送了一张新年贺卡,若全组共送贺卡20张,设这个小组的同学共有x人,可列方程:.15.(2分)(2021九上·茂南月考)如图,在△ABC中,∠B=90°,AB=6cm,点P从点A开始沿AB向B 以1cm/s的速度移动,点Q从点B开始沿BC向C点以2cm/s的速度移动,如果P,Q分别从A,B同时出发,秒后△PBQ的面积等于8cm2.16.(2分)(2021九上·厦门期中)一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,若主干、支干和小分支的总数是31,每个支干长出个小分支.17.(2分)(2021九上·安义月考)在2021年10月的日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为180,则这个最小数为.18.(2分)(2021·甘井子模拟)在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感按此比例,如果雕像的高为3m,那么它的下部应设计为多高?设它的下部设计高度为xm,根据题意,可列方程为.19.(2分)(2021八下·宁波期中)某校准备组织一次篮球比赛,参赛的每两个队之间都要比赛一场,赛程计划安排7天,每天安排4场比赛,那么共有个队参加.20.(2分)如图,点A为x轴负半轴上一点,点B为x轴正半轴上一点,OA,OB(OA<OB)的长分别是关于x的一元二次方程x2﹣4mx+m2+2=0的两根,C(0,3),且S△ABC=6,则∠ABC的度数为.评卷人得分三.解答题(共10小题,满分60分)21.(4分)(2022·大连模拟)第24届北京冬奥会冰壶混合双人循环赛在冰立方举行.参加比赛的每两队之间都进行一场比赛,共要比赛45场,共有多少个队参加比赛?22.(6分)(2022八下·杭州月考)某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。
九年级上册压轴题数学考试试卷精选含详细答案

九年级上册压轴题数学考试试卷精选含详细答案一、压轴题1.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.2.已知抛物线2y ax bx c =++经过原点,与x 轴相交于点F ,直线132y x =+与抛物线交于()()2266A B -,,,两点,与x 轴交于点C ,与y 轴交于点D ,点E 是线段OC 上的一个动点(不与端点重合),过点E 作//EG BC 交BF 于点C ,连接DE DG ,.(1)求抛物线的解析式及点F 的坐标;(2)当DEG ∆的面积最大时,求线段EF 的长;(3)在(2)的条件下,若在抛物线上有一点()4H n ,和点P ,使EHP ∆为直角三角形,请直接写出点P 的坐标.3.如图,过原点的抛物线y=﹣12x 2+bx+c 与x 轴交于点A (4,0),B 为抛物线的顶点,连接OB ,点P 是线段OA 上的一个动点,过点P 作PC ⊥OB ,垂足为点C .(1)求抛物线的解析式,并确定顶点B 的坐标;(2)设点P 的横坐标为m ,将△POC 绕着点P 按顺利针方向旋转90°,得△PO′C′,当点O′和点C′分别落在抛物线上时,求相应的m 的值;(3)当(2)中的点C′落在抛物线上时,将抛物线向左或向右平移n(0<n<2)个单位,点B、C′平移后对应的点分别记为B′、C″,是否存在n,使得四边形OB′C″A的周长最短?若存在,请直接写出n的值和抛物线平移的方向,若不存在,请说明理由.4.已知点P(2,﹣3)在抛物线L:y=ax2﹣2ax+a+k(a,k均为常数,且a≠0)上,L交y轴于点C,连接CP.(1)用a表示k,并求L的对称轴及L与y轴的交点坐标;(2)当L经过(3,3)时,求此时L的表达式及其顶点坐标;(3)横、纵坐标都是整数的点叫做整点.如图,当a<0时,若L在点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有4个整点,求a的取值范围;(4)点M(x1,y1),N(x2,y2)是L上的两点,若t≤x1≤t+1,当x2≥3时,均有y1≥y2,直接写出t的取值范围.5.如图,A是以BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA 的延长线相交于点E,G是AD的中点,连接并延长CG与BE相交于点F,连接并延长AF 与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是圆O的切线;(3)若FG=EF=3,求圆O的半径和BD的长度.6.如图①是一张矩形纸片,按以下步骤进行操作:(Ⅰ)将矩形纸片沿DF折叠,使点A落在CD边上点E处,如图②;(Ⅱ)在第一次折叠的基础上,过点C 再次折叠,使得点B 落在边CD 上点B′处,如图③,两次折痕交于点O ;(Ⅲ)展开纸片,分别连接OB 、OE 、OC 、FD ,如图④.(探究)(1)证明:OBC ≌OED ;(2)若AB =8,设BC 为x ,OB 2为y ,是否存在x 使得y 有最小值,若存在求出x 的值并求出y 的最小值,若不存在,请说明理由.7.如图1,抛物线24y ax bx =+-与x 轴交于(3,0)A -、(4,0)B 两点,与y 轴交于点C ,作直线BC .点D 是线段BC 上的一个动点(不与B ,C 重合),过点D 作DE x ⊥轴于点E .设点D 的横坐标为(04)m m <<.(1)求抛物线的表达式及点C 的坐标;(2)线段DE 的长用含m 的式子表示为 ;(3)以DE 为边作矩形DEFC ,使点F 在x 轴负半轴上、点G 在第三象限的抛物线上. ①如图2,当矩形DEFC 成为正方形时,求m 的值;②如图3,当点O 恰好是线段EF 的中点时,连接FD ,FC .试探究坐标平面内是否存在一点P ,使以P ,C ,F 为顶点的三角形与FCD ∆全等?若存在,直接写出点P 的坐标;若不存在,说明理由.8.如图1,在平面直角坐标系中,抛物线与x 轴交于点 A (-1,0) ,B (点A 在点B 的左侧),交y 轴与点(0,-3),抛物线的对称轴为直线x =1,点D 为抛物线的顶点. (1)求该抛物线的解析式;(2)已知经过点A 的直线y =kx +b (k >0)与抛物线在第一象限交于点E ,连接AD ,DE ,BE ,当2ADE ABE S S ∆∆=时,求点E 的坐标.(3)如图2,在(2)中直线AE 与y 轴交于点F ,将点F 向下平移233+到Q ,连接QB .将△OQB 绕点O 逆时针旋转一定的角度α(0°<α<360°)得到OQ B '',直线B Q ''与x 轴交于点G .问在旋转过程中是否存在某个位置使得OQ G '是等腰三角形?若存在,请直接写出所有满足条件的点Q '的坐标;若不存在,请说明理由.9.将一个直角三角形纸片OAB 放置在平面直角坐标系中,点()0,0O ,点()2,0A ,点B 在第一象限,90OAB ∠=︒,30B ∠=︒,点P 在边OB 上(点P 不与点,O B 重合).(1)如图①,当1OP =时,求点P 的坐标;(2)折叠该纸片,使折痕所在的直线经过点P ,并与x 轴的正半轴相交于点Q ,且OQ OP =,点O 的对应点为O ',设OP t =.①如图②,若折叠后O PQ '与OAB 重叠部分为四边形,,O P O Q ''分别与边AB 相交于点,C D ,试用含有t 的式子表示O D '的长,并直接写出t 的取值范围;②若折叠后O PQ '与OAB 重叠部分的面积为S ,当13t ≤≤时,求S 的取值范围(直接写出结果即可).10.直线m ∥n ,点A 、B 分别在直线m ,n 上(点A 在点B 的右侧),点P 在直线m 上,AP =13AB ,连接BP ,将线段BP 绕点B 顺时针旋转60°得到BC ,连接AC 交直线n 于点E ,连接PC ,且ABE 为等边三角形.(1)如图①,当点P 在A 的右侧时,请直接写出∠ABP 与∠EBC 的数量关系是 ,AP 与EC 的数量关系是 .(2)如图②,当点P 在A 的左侧时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.(3)如图②,当点P 在A 的左侧时,若△PBC 的面积为934,求线段AC 的长.11.如图,在平面直角坐标系中,以原点O 为中心的正方形ABCD 的边长为4m ,我们把AB y ∥轴时正方形ABCD 的位置作为起始位置,若将它绕点O 顺时针旋转任意角度α时,它能够与反比例函数(0)k y k x=>的图象相交于点E ,F ,G ,H ,则曲线段EF ,HG 与线段EH ,GF 围成的封闭图形命名为“曲边四边形EFGH”.(1)①如图1,当AB y ∥轴时,用含m ,k 的代数式表示点E 的坐标为________;此时存在曲边四边形EFGH ,则k 的取值范围是________;②已知23k m =,把图1中的正方形ABCD 绕点O 顺时针旋转45º时,是否存在曲边四边形EFGH ?请在备用图中画出图形,并说明理由.当把图1中的正方形ABCD 绕点O 顺时针旋转任意角度α时,直接写出使曲边四边EFGH 存在的k 的取值范围.③若将图1中的正方形绕点O 顺时针旋转角度()0180a a ︒<<︒得到曲边四边形EFGH ,根据正方形和双曲线的对称性试探究四边形EFGH 是什么形状的四边形?曲边四边形EFGH 是怎样的对称图形?直接写出结果,不必证明;(2)正方形ABCD 绕点O 顺时针旋转到如图2位置,已知点A 在反比例函数(0)k y k x=>的图象上,AB 与y 轴交于点M ,8AB =,1AM =,试问此时曲边四边EFGH 存在吗?请说明理由.12.如图,⊙O 经过菱形ABCD 的三个顶点A 、C 、D ,且与AB 相切于点A .(1)求证:BC 为⊙O 的切线;(2)求∠B 的度数.(3)若⊙O 半径是4,点E 是弧AC 上的一个动点,过点E 作EM ⊥OA 于点M ,作EN ⊥OC 于点N ,连接MN ,问:在点E 从点A 运动到点C 的过程中,MN 的大小是否发生变化?如果不变化,请求出MN 的值;如果变化,请说明理由.13.如图①,在ABC 中,AB AC =,BAC α∠=,点D 、E 分别在边AB 、AC 上,AD AE =,连接BE ,点M 、P 、N 分别为DE 、BE 、BC 的中点.(1)观察猜想:图①中,线段PM 与PN 的数量关系是_____________,用含α的代数式表示MPN ∠的度数是________________________;(2)探究证明:把ADE 绕点A 顺时针方向旋转到图②的位置,连接MN ,BD ,CE ,当120α=︒时,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内任意旋转,若90α=︒,3AD =,7AB =,请直接写出线段MN 的最大值和最小值.14.公司经销某种商品,经研究发现,这种商品在未来40天的销售单价1y (元/千克)关于时间t 的函数关系式分别为11602y t =-+(040t <≤,且t 为整数);()()21030,3033040,20t t t y t t ⎧<≤-+⎪=⎨<≤⎪⎩且为整数且为整数,他们的图像如图1所示,未来40天的销售量m (千克)关于时间t 的函数关系如图2的点列所示.(1)求m 关于t 的函数关系式;(2)那一天的销售利润最大,最大利润是多少? (3)若在最后10天,公司决定每销售1千克产品就捐赠a 元给“环保公益项目”,且希望扣除捐赠后每日的利润不低于3600元以维持各种开支,求a 的最大值(精确到0.01元).15.如图1,与为等腰直角三角形,与 重合,,.固定,将绕点顺时针旋转,当边与边重合时,旋转终止.现不考虑旋转开始和结束时重合的情况,设(或它们的延长线)分别交(或它们的延长线)于点,如图2. (1)证明:;(2)当为何值时,是等腰三角形?16.如图,在平面直角坐标系中,点O 为坐标原点,抛物线21y x bx c 3=-++交x 轴于点A 、点B(点A 在点B 的左边),交y 轴于点C ,直线()y kx 6k k 0=-≠经过点B ,交y 轴于点D ,且CD OD =,1tan OBD 3∠=. ()1求b 、c 的值;()2点()P m,m 在第一象限,连接OP 、BP ,若OPB ODB ∠∠=,求点P 的坐标,并直接判断点P 是否在该抛物线上;()3在()2的条件下,连接PD ,过点P 作PF //BD ,交抛物线于点F ,点E 为线段PF 上一点,连接DE 和BE ,BE 交PD 于点G ,过点E 作EH BD ⊥,垂足为H ,若DBE 2DEH ∠∠=,求EG EF的值.17.如图,抛物线23y ax bx =++经过点A (1,0),B (4,0)与y 轴交于点C .(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P ,使得四边形PAOC 的周长最小?若存在,求出四边形PAOC 周长的最小值;若不存在,请说明理由.(3)如图②,点Q 是线段OB 上一动点,连接BC ,在线段BC 上是否存在这样的点M ,使△CQM 为等腰三角形且△BQM 为直角三角形?若存在,求M 的坐标;若不存在,请说明理由.18.如图,已知矩形ABCD 中,AB=8,AD=6, 点E 是边CD 上一个动点,连接AE ,将△AED 沿直线AE 翻折得△AEF.(1) 当点C 落在射线AF 上时,求DE 的长;(2)以F 为圆心,FB 长为半径作圆F ,当AD 与圆F 相切时,求cos ∠FAB 的值;(3)若P 为AB 边上一点,当边CD 上有且仅有一点Q 满∠BQP=45°,直接写出线段BP 长的取值范围.19.如图,在直角ABC ∆中,90C ∠=︒,5AB =,作ABC ∠的平分线交AC 于点D ,在AB 上取点O ,以点O 为圆心经过B 、D 两点画圆分别与AB 、BC 相交于点E 、F (异于点B ).(1)求证:AC 是O 的切线;(2)若点E 恰好是AO 的中点,求BF 的长;(3)若CF 的长为34. ①求O 的半径长;②点F 关于BD 轴对称后得到点F ',求BFF '∆与DEF '∆的面积之比.20.在平面直角坐标系xOy 中,函数1F 和2F 的图象关于y 轴对称,它们与直线(0)x t t =>分别相交于点,P Q .(1)如图,函数1F 为1y x =+,当2t =时,PQ 的长为_____; (2)函数1F 为3y x=,当6PQ =时,t 的值为______; (3)函数1F 为2(0)y ax bx c a =++≠,①当b t b=时,求OPQ △的面积; ②若0c >,函数1F 和2F 的图象与x 轴正半轴分别交于点(5,0),(1,0)A B ,当1c x c ≤≤+时,设函数1F 的最大值和函数2F 的最小值的差为h ,求h 关于c 的函数解析式,并直接写出自变量c 的取值范围.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【解析】【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【详解】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点, //PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥; (2)PMN ∆是等腰直角三角形. 由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =, ()ABD ACE SAS ∴∆≅∆, ABD ACE ∴∠=∠,BD CE =,利用三角形的中位线得,12PN BD =,12PM CE =, PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠, MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠, 90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面, MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,22AM ∴=,在Rt ABC ∆中,10AB AC ==,52AN =MN ∴=最大22211114922242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=, 7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大. 2.(1)抛物线的解析式为21142y x x =-,点F 的坐标为()20,;(2)4EF =;(3)点P 的坐标为()()()466121456---,,,,,或()22.-, 【解析】 【分析】(1)因为抛物线经过原点,A,B 点,利用待定系数法求得抛物物线的解析式,再令y=0,求得与x 轴的交点F 点的坐标。
【期末专项复习】人教版数学九年级(上)第24章:圆 压轴题专项训练(附详细解答)

【期末专项复习】第24章:圆压轴题专项训练1.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.2.如图,AB是⊙O的直径,AC平分∠DAB交⊙O于点C,过点C的直线垂直于AD 交AB的延长线于点P,弦CE交AB于点F,连接BE.(1)求证:PD是⊙O的切线;(2)若PC=PF,试证明CE平分∠ACB.3.如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以A为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)若DC=4,AC=6,求圆心O到AD的距离.4.在直角三角形ABC中,∠C=90°,∠BAC的角平分线AD交BC于D,作AD的中垂线交AB于O,以O为圆心,OA为半径画圆,则BC与⊙O的位置关系为证明你的猜想.5.如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.(1)求证:CF=DF;(2)连接OF,若AB=10,BC=6,求线段OF的长.6.如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,∠D =2∠A.(1)求证:CD是⊙O的切线;(2)求证:DE=DC;(3)若OD=5,CD=3,求AC的长.7.如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)请直接写出⊙M的直径,并求证BD平分∠ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E 的坐标.8.如图,在△ABC中,BA=BC,以AB为直径作⊙O,交AC于点D,连接DB,过点D作DE⊥BC,垂足为E.(1)求证:AD=CD.(2)求证:DE为⊙O的切线.(3)若∠C=60°,DE=,求⊙O半径的长.9.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.10.已知:△ABC内接于⊙O,AB是⊙O的直径,作EG⊥AB于H,交BC于F,延长GE交直线MC于D,且∠MCA=∠B,求证:(1)MC是⊙O的切线;(2)△DCF是等腰三角形.11.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过上一点E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE.(1)求证:EG是⊙O的切线;(2)延长AB交GE的延长线于点M,若AH=3,CH=4,求EM的值.12.如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB 的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.13.已知:AB为⊙O的直径,AB=AC,BC交⊙O于点D,DE⊥AC于E.(1)求证:DE为⊙O的切线;(2)连接BE交圆于F,连AF并延长ED于G,若GE=2,AF=3,求∠EAF的度数.14.如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.15.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.16.已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.17.如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.(1)求证: DE是⊙O的切线;(2)若AB=2,BC=,求DE的长.18.如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是OA的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.参考答案1.(1)证明:连接OC.∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线.(2)解:设⊙O的半径为r.在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,∵tan∠E==,∴=,∴CD=BC=6,在Rt△ABC中,AC===6.2.证明:(1)连接OC,如图,∵AC平分∠DAB,∴∠1=∠2,∵OA=OC,∴∠1=∠3,∴∠2=∠3,∴OC∥AD,∵AD⊥CD,∴OC⊥CD,∴PD是⊙O的切线;(2)∵OC⊥PC,∴∠PCB+∠BCO=90°,∵AB为直径,∴∠ACB=90°,即∠3+∠BCO,∴∠3=∠PCB,而∠1=∠3,∴∠1=∠PCB,∵PC=PF,∴∠PCF=∠PFC,而∠PCF=∠PCB+∠BCF,∠PFC=∠1+∠ACF,∴∠BCF=∠ACF,即CE平分∠ACB.3.(1)证明:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,又∵∠C=90°,∴∠ODB=∠C=90°,∴OD⊥BC,(2)过O作OF⊥AD于F,由勾股定理得:AD==2,∴DF=AD=,∵∠OFD=∠C=90°,∠ODA=∠CAD,∴△ACD∽△DFO,∴,∴,∴FO=,即圆心O到AD的距离是.4.解:BC与⊙O相切.理由如下:连接OD,如图,∵AD平分∠CAB,∴∠1=∠2,∵AD的中垂线交AB于O,∴OA=OD,∴∠2=∠3,∴∠1=∠3,∴OD∥AC,∵AC⊥BC,∴OD⊥BC,故答案为相切.5.(1)证明:连接OC,如图,∵CF为切线,∴OC⊥CF,∴∠1+∠3=90°,∵BM⊥AB,∴∠2+∠4=90°,∵OC=OB,∴∠1=∠2,∴∠3=∠4,∵AB为直径,∴∠ACB=90°,∴∠3+∠5=90°,∠4+∠BDC=90°,∴∠BDC=∠5,∴CF=DF;(2)解:在Rt△ABC中,AC==8,∵∠BAC=∠DAB,∴△ABC∽△ABD,∴=,即=,∴AD=,∵∠3=∠4,∴FC=FB,而FC=FD,而BO=AO,∴OF为△ABD的中位线,∴OF=AD=.6.(1)证明:连接OC,如图,∵OA=OC,∴∠ACO=∠A,∴∠COB=∠A+∠ACO=2∠A,又∵∠D=2∠A,∴∠D=∠COB.又∵OD⊥AB,∴∠COB+∠COD=90°.∴∠D+∠COD=90°.即∠DCO=90°,∴OC⊥DC,又点C在⊙O上,∴CD是⊙O的切线;(2)证明:∵∠DCO=90°,∴∠DCE+∠ACO=90°.又∵OD⊥AB,∴∠AEO+∠A=90°,又∵∠A=∠ACO,∠DEC=∠AEO,∴∠DEC=∠DCE,∴DE=DC;(3)解:∵∠DCO=90°,OD=5,DC=3,∴AB=2OC=8,又DE=DC=3,∴OE=OD﹣DE=2,∵∠A=∠A,∠AOE=∠ACB=90°,∴△AOE∽△ACB,∴=,即===,∴BC=AC,在△ABC中,∵AC2+BC2=AB2,∴AC2+AC2=82,∴AC=.7.解:∵点A(,0)与点B(0,﹣1),∴OA=,OB=1,∴AB==2,∵AB是⊙M的直径,∴⊙M的直径为2,∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,∵在Rt△ACB中,tan∠OAB===,∴∠OAB=30°,∵∠ABO=90°,∴∠OBA=60°,∴∠ABC=∠OBC==30°,∴OC=OB•tan30°=1×=,∴AC=OA﹣OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等边三角形,∴AE=AC=,∴AF=AE=,EF==1,∴OF=OA﹣AF=,∴点E的坐标为(,1).8.(1)证明:∵AB为直径,∴∠ADB=90°,∵BA=BC,∴AD=CD;(2)证明:连接OD,如图,∵AD=CD,AO=OB,∴OD为△BAC的中位线,∴OD∥BC,∴DE⊥BC,∴OD⊥DE,∴DE为⊙O的切线;(3)解:在Rt△CDE中,∠C=60°,DE=,∴CE=DE=×2=2,∴CD=2CE=4,∵∠A=∠C=60°,AD=CD=4,在Rt△ADB中,AB=2AD=8,即⊙O半径的长为4.9.(1)解:连接OE,过O作OM⊥AC于M,则∠AMO=90°,∵DF⊥AC,∴∠DFC=90°,∵∠FDC=15°,∴∠C=180°﹣90°﹣15°=75°,∵AB=AC,∴∠ABC=∠C=75°,∴∠BAC=180°﹣∠ABC﹣∠C=30°,∴OM=OA==,AM=OM=,∵OA=OE,OM⊥AC,∴AE=2AM=3,∴∠BAC=∠AEO=30°,∴∠AOE=180°﹣30°﹣30°=120°,∴阴影部分的面积S=S扇形AOE﹣S△AOE=﹣=3π﹣;(2)证明:连接OD,∵AB=AC,OB=OD,∴∠ABC=∠C,∠ABC=∠ODB,∴∠ODB=∠C,∴AC∥OD,∵DF⊥AC,∴DF⊥OD,∵OD过O,∴DF是⊙O的切线;(3)证明:连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∴BE⊥AC,∵DF⊥AC,∴BE∥DF,∴∠FDC=∠EBC,∵∠EBC=∠DAC,∴∠FDC=∠DAC,∵A、B、D、E四点共圆,∴∠DEF=∠ABC,∵∠ABC=∠C,∴∠DEC=∠C,∵DF⊥AC,∴∠EDF=∠FDC,∴∠EDF=∠DAC.10.证明:(1)连接OC,如图,∵AB是⊙O的直径,∴∠ACB=90°,即∠2+∠3=90°,∵OB=OC,∴∠B=∠3,而∠1=∠B,∴∠1=∠3,∴∠1+∠2=90°,即∠OCM=90°,∴OC⊥CM,∴MC是⊙O的切线;(2)∵EG⊥AB,∴∠B+∠BFH=90°,而∠BFH=∠4,∴∠4+∠B=90°,∵MD为切线,∴OC⊥CD,∴∠5+∠3=90°,而∠3=∠B,∴∠4=∠5,∴△DCF是等腰三角形.11.解:(1)如图,连接OE,∵FG=EG,∴∠GEF=∠GFE=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵CD⊥AB,∴∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线;(2)连接OC,设⊙O的半径为r,∵AH=3、CH=4,∴OH=r﹣3,OC=r,则(r﹣3)2+42=r2,解得:r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴=,即=,解得:EM=.12.(1)证明:如图1,∵PC=PB,∴∠PCB=∠PBC,∵四边形ABCD内接于圆,∴∠BAD+∠BCD=180°,∵∠BCD+∠PCB=180°,∴∠BAD=∠PCB,∵∠BAD=∠BFD,∴∠BFD=∠PCB=∠PBC,∴BC∥DF,∵DE⊥AB,∴∠DEB=90°,∴∠ABC=90°,∴AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥CD;(2)由(1)得:BC∥DF,BG∥CD,∴四边形BCDH是平行四边形,∴BC=DH,在Rt△ABC中,∵AB=DH,∴tan∠ACB==,∴∠ACB=60°,∠BAC=30°,∴∠ADB=60°,BC=AC,∴DH=AC,①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,∴∠AMD+∠ADM=90°∵DE⊥AB,∴∠BED=90°,∴∠BDE+∠ABD=90°,∵∠AMD=∠ABD,∴∠ADM=∠BDE,∵DH=AC,∴DH=OD,∴∠DOH=∠OHD=80°,∴∠ODH=20°∵∠ADB=60°,∴∠ADM+∠BDE=40°,∴∠BDE=∠ADM=20°,②当点O在DE的右侧时,如图3,作直径DN,连接BN,由①得:∠ADE=∠BDN=20°,∠ODH=20°,∴∠BDE=∠BDN+∠ODH=40°,综上所述,∠BDE的度数为20°或40°.13.(1)证明:连接OD,如图,∵OB=OD,∴∠OBD=∠ODB,∵AB=AC,∴∠ABC=∠C,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE为⊙O的切线;(2)解:∵AB为直径,∴∠AFB=90°,∵∠EGF=∠AGF,∴Rt△GEF∽△Rt△GAE,∴=,即=,整理得GF2+3GF﹣4=0,解得GF=1或GF=﹣4(舍去),在Rt△AEG中,sin∠EAG===,∴∠EAG=30°,即∠EAF的度数为30°.14.(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67。
一元二次方程(压轴题综合测试卷)(解析版)—2024-2025学年九年级数学上册压轴题专项(人教版)

一元二次方程(满分100)学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一、选择题(本大题共10小题,每小题3分,满分30分)1.(22-23八年级下·浙江·开学考试)已知下面三个关于x的一元二次方程ax2+bx+c=0, bx2+cx+a=0, cx2+ax+b=0恰好有一个相同的实数根b,则a+b+c的值为()A.0B.1C.3D.不确定【思路点拨】本题考查了一元二次方程的解,使方程左右两边相等的未知数的值叫方程的解.把x=b代入3个方程得出ax2+bx+c=0, bx2+cx+a=0, cx2+ax+b=0,3个方程相加即可得出(a+b+c)(b2+a+1)=0,即可求出答案.【解题过程】把x=b代入ax2+bx+c=0, bx2+cx+a=0, cx2+ax+b=0得:ab2+b·b+c=0, b·b2+cb+a=0, cb2+ab+b=0,相加得:(a+b+c)b2+(b+c+a)b+(a+b+c)=0,(a+b+c)(b2+a+1)=0,∵b2+b+1=b+34>0,∴a+b+c=0,故选:A.2.(23-24九年级上·福建泉州·期末)若x=2是关于x的一元二次方程x2―52ax―a2=0(a>0)的一个根,下面对a的值估计正确的是()A.0<a<12B.12<a<1C.1<a<32D.32<a<2【思路点拨】本题主要考查了一元二次方程的解、解一元二次方程、实数大小估算等知识,利用公式法解关于a 的方程a 2+5a ―4=0是解题关键.将x =2代入方程x 2―52ax ―a 2=0(a >0)并整理,获得关于a 的方程a 2+5a ―4=0,然后估计a 的大小即可.【解题过程】解:将x =2代入方程x 2―52ax ―a 2=0(a >0),可得22―52×a ×2―a 2=0,整理可得a 2+5a ―4=0,解得a ==∴a 1=a 2=∵a >0,∴a =<<6<<7,∴1<―5+<2,∴12<<1,即12<a <1.故选:B .3.(23-24九年级下·浙江·自主招生)若方程x 2―3x ―1=0的根也是方程x 4+ax 2+bx +c =0的根,则a +b ―2c 的值为( )A .―13B .―9C .―5D .前三个答案都不对【思路点拨】本题主要考查了一元二次方程的解.设m 是方程x 2―3x ―1=0的一个根.根据方程解的意义知,m 既满足方程x 2―3x ―1=0,也满足方程x 4+ax 2+bx +c =0,将m 代入这两个方程,并整理,得(9+a )m 2+(6+b )m +c +1=0.从而可知:方程x 2―3x ―1=0的两根也是方程(9+a )x 2+(6+b )x +c +1=0的根,这两个方程实质上应该是同一个一元二次方程,然后根据同一个一元二次方程的定义找出相对应的系数间的关系即可.【解题过程】解:设m 是方程x 2―3x ―1=0的一个根,则m 2―3m ―1=0,∴m 2=3m +1.由题意得:m也是方程x4+ax2+bx+c=0的根,∴m4+am2+bm+c=0,把m2=3m+1,代入得(3m+1)2+am2+bm+c=0,整理得:(9+a)m2+(6+b)m+c+1=0.∴方程x2―3x―1=0的两根也是方程(9+a)x2+(6+b)x+c+1=0的根,∴可设(9+a)x2+(6+b)x+c+1=k(x2―3x―1),∴k=9+a,―3k=6+b,―k=c+1,∴b=―3a―33,c=―a―10,∴a+b―2c=a+(―3a―33)―2(―a―10)=―13.故选:A.4.(22-23九年级上·重庆璧山·期中)使得关于x的不等式组6x―a≥―10―1+12x<―18x+32有且只有4个整数解,且关于x的一元二次方程(a―5)x2+4x+1=0有实数根的所有整数a的值之和为()A.35B.30C.26D.21【思路点拨】先求出不等式组的解集,根据有且只有4个整数解可确定a的取值范围,再通过根的判别式确定a的取值范围,最后结合两个取值范围找出满足条件的整数相加即可.【解题过程】解:整理不等式组得:6x―a≥―10①―8+4x<―x+12②由①得:x≥a―106,由②得:x<4∵不等式组有且只有4个整数解,∴不等式组的4个整数解是:3,2,1,0,∴―1<a―106≤0,解得:4<a≤10,∵(a―5)x2+4x+1=0有实数根,∴Δ=b2―4ac=16―4×(a―5)×1=36―4a≥0,解得:a≤9,∵方程(a―5)x2+4x+1=0是一元二次方程,∴a≠5∴4<a≤9,且a≠5,满足条件的整数有:6、7、8、9;∴6+7+8+9=30,故选:B.5.(2024九年级·全国·竞赛)已知关于x的一元二次方程x2―kx+2k―1=0的两个实数根分别为x1、x2,且x21+x22=7,那么(x1―x2)2的值为()A.13或―11B.13C.―11D.11【思路点拨】本题主要考查一元二次方程根的判别式以及一元二次方程根与系数的关系,首先根据一元二次方程根与系数的关系结合x21+x22=7求出k=―1,k=5,再根据根的判别式得出k=―1,从而得出x1+x2=―1,x1x2 =―3,再把(x1―x2)2变形为(x1―x2)2=x21+x22―2x1x2,然后再代入计算即可.【解题过程】解:∵一元二次方程x2―kx+2k―1=0的两个实数根分别为x1、x2,∴x1+x2=―(―k)=k,x1x2=2k―1,又x21+x22=(x1+x2)2―2x1x2=7,∴k2―2(2k―1)=7,解得,k1=―1,k2=5,又Δ=(―k)2―4×1×(2k―1)=(k―4)2―16,当k1=―1时,△=(―1―4)2―16=9>0,当k2=5时,△=(5―4)2―16=―15<0,∴k=―1,∴x1x2=―3,∴(x1―x2)2=x21+x22―2x1x2=7―2×(―3)=7+6=13.故选:B6.(23-24八年级下·安徽亳州·阶段练习)已知关于x的一元二次方程x2―(2m+1)x+m(m+1)=0(m 是常数),若一个等腰三角形的一边长为6,另两边长是该方程的两个实数根,则该三角形的周长为( )A.17或19B.15或17C.13或15D.17【思路点拨】本题考查一元二次方程的判别式与根的个数的关系,以及一元二次方程与几何的综合应用.熟练掌握一元二次方程的判别式与根的个数的关系,一元二次方程的解的定义,是解题的关键.根据方程有两个实数根,得到6是等腰三角形的腰长,是方程的一个根,进行求解即可.【解题过程】解:∵一元二次方程有两个实数根,∴Δ=[―(2m+1)]2―4m(m+1)≥0,=4m2+4m+1―4m2―4m=1>0;∴不管m去何值,方程x2―(2m+1)x+m(m+1)=0都有两个不相等的实数根,∵一个等腰三角形的一边长为6,另两边长是该方程的两个实数根,∴6是腰长,x=6是方程x2―(2m+1)x+m(m+1)=0的一个根,∴62―6(2m+1)+m(m+1)=0,整理,得:m2―11m+30=0,解得:m=5或m=6,当m=5时,x2―11x+30=0,解得x1=5,x2=6,此时等腰三角形的三边长:6,6,5,周长=6+6+5=17;当m=6时,x2―13x+42=0,解得x1=6,x2=7,此时等腰三角形的三边长:6,6,7,周长=6+6+7=19.故选:A.7.(2024·浙江·模拟预测)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”.以下关于倍根方程的说法:①方程x2―x―2=0是倍根方程;②若p,q满足pq=2,则关于x的方程px2+3x+q=0是倍根方程;③若(x―2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0.其中正确的个数为()A.0B.1C.2D.3【思路点拨】本题考查解一元二次方程,新定义的倍根方程的意义,理解倍根方程的意义和正确求出方程的解是解决问题的关键.①求出方程的解,再判断是否为倍根方程;②当p,q满足pq=2,则px2+3x+q=(px+1)(x+q)=0,求出两个根,再根据pq=2代入可得两个根之间的关系,进而判断是否为倍根方程;③根据倍根方程和其中一个根,可求出另一个根,进而得到m、n之间的关系,然后代入验证即可判断.【解题过程】解:①解方程x2―x―2=0(x―2)(x+1)=0,∴x―2=0或x+1=0,解得,x1=2,x2=―1,得,x1≠2x2,∴方程x2―x―2=0不是倍根方程;故①不正确;②∵pq=2,则:px2+3x+q=(px+1)(x+q)=0,∴x1=―1p,x2=―q,∴x2=―q=―2p=2x1,因此是倍根方程,故②正确;③若(x―2)(mx+n)=0是倍根方程,x1=2,因此x2=1或x2=4,当x2=1时,m+n=0,当x2=4时,4m+n=0,∴4m2+5mn+n2=(m+n)(4m+n)=0,故③正确;故选:C.8.(23-24八年级下·浙江杭州·阶段练习)对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则方程必有一根为x=1;②若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;③若ax2+bx+c=0(a≠0)两根为x1,x2且满足x1≠x2≠0,则方程cx2+bx+a=0(c≠0),必有实根1 x1,1x2;④若x0是一元二次方程ax2+bx+c=0的根,则b2―4ac=(2ax0+b)2其中正确的()A.①②B.①④C.①③④D.①②③④【思路点拨】本题考查一元二次方程根的判断,根据一元二次方程根的判别式及根的定义以及求根公式逐个判断排除.【解题过程】解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,故①正确;②若c是方程ax2+bx+c=0的一个根,∴ac2+bc+c=0∴当c≠0时,有ac+b+1=0成立;,故②不正确;③∵方程ax2+bx+c=0(a≠0)两根为x1,x2且满足x1≠x2≠0,∴Δ=b2―4ac≥0,令x1=x2=∴方程cx2+bx+a=0(c≠0)有两个实数根,令两根分别为x′1,x′2∴x′1===1x2,x′2===1x1,∴方程cx2+bx+a=0(c≠0),必有实根1x1,1x2,故③正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=∴2ax0+b=±∴b2―4ac=(2ax0+b)2,故④正确.故正确的有①③④,故选:C.9.(22-23九年级下·重庆渝中·阶段练习)根据绝对值的定义可知|x|=x(x≥0)―x(x<0),下列结论正确的个数有()①化简|a|+|b|+|c|一共有8种不同的结果;②|x +3|+|2―x |的最大值是5;③若a n =|3n ―19|,S n =a 1+a 2+⋅⋅⋅+a n (n 为正整数),则当S n =1327时,n =35;④若关于x 的方程|13x 2―23x ―83|=x +b 有2个不同的解,其中b 为常数,则―4<b <2或b >3312A .4个B .3个C .2个D .1个【思路点拨】由|a |、|b |、|c |的结果分别有2种,则|a|+|b|+|c|的结果共有2×2×2=8种,可判断①;根据x 的取值,化简运算|x +3|+|2―x |即可判断②;根据【解题过程】解:∵ |a |、|b |、|c |的结果分别有2种,∴ |a|+|b|+|c|的结果共有2×2×2=8种,故①正确;当x >2时,|x +3|+|2―x |=x +3+x ―2=2x +1,当0≤x ≤2时,|x +3|+|2―x |=x +3+2―x =5,当―3≤x <0时,|x +3|+|2―x |=3―x +2―x =5―2x ,当x <―3时,|x +3|+|2―x |=―x ―3+2―x =―2x ―1,故②错误;∵n 是正整数,∴a n =|3n ―19|=19―3n,1≤n ≤63n ―19,n ≥7 ,S 6=16+13+10+7+4+1=51,S n =51+(2+3n―19)(n―6)2,n ≥7,当n =35时,S n =51+(2+3×35―19)×(35―6)2=51+1276=1327,故③正确;|13x 2―23x ―83|=2―23x ―83,x ≤―2或x ≥413x 2+23x +83,―2<x <4 ,当x ≤―2或x ≥4时,13x 2―23x ―83=x +b ,∴13x 2―53x ―83―b =0,∵方程有2个不同的解,Δ=b 2―4ac =――4×13×―83―b >0,解得:b >―5712,当―2<x <4时,―13x 2+23x +83=x +b ,∴―13x 2―13x +83―b =0,∵方程有2个不同的解,Δ=b 2―4ac =――4××―b >0,解得:b <3312,故④错误;综上,正确的有①③,故选:C .10.(22-23八年级下·浙江绍兴·期末)空地上有一段长为a 米的旧墙MN ,利用旧墙和木栏围成一个矩形菜园(如图1或图2),已知木栏总长为40米,所围成的菜园面积为S .下列说法错误的是( )A .若a =16,S =196,则有一种围法B .若a =20,S =198,则有一种围法C .若a =24,S =198,则有两种围法D .若a =24,S =200,则有一种围法【思路点拨】分两种情况讨论:,图2围法,设矩形菜园垂直于墙的边为x 米,分别表示矩形的长,再利用矩形面积列方程,解方程,注意检验x 的范围,从而可得答案.【解题过程】解:设矩形菜园的宽为x 米,则长为(40―2x )米,∴S =x (40―2x )=―2x 2+40x,当a =16时,采用图1围法,则此时12≤x <20,当S=196时,―2x2+40x=196,解得:x1=10+2=10―此时都不符合题意,采用图2围法,如图,此时矩形菜园的宽为x米,即AB=CD=x,则AD+BC=40―2x+16,则BC=28―x,所以长为(28―x)米,结合28―x>16可得0<x<12,∴x(28―x)=196,解得:x1=x2=14,经检验不符合题意,综上:若a=16,S=196,,则没有围法,故A符合题意;设矩形菜园的宽为x米,则长为―2x)米,∴S=x(40―2x)=―2x2+40x,当a=20时,采用图1围法,则此时10≤x<20,当S=198时,―2x2+40x=198,解得:x1=11,x2=9,经检验x=11符合题意;采用图2围法,如图,此时矩形菜园的宽为x米,即AB=CD=x,则AD+BC=40―2x+20,则BC=30―x,所以长为(30―x)米,结合30―x>20可得0<x<10,∴x(30―x)=198,解得:x1=15+x2=15―经检验x=15―综上:若a=20,S=198,则有两种围法,故B不符合题意;设矩形菜园的宽为x米,则长为(40―2x)米,∴S=x(40―2x)=―2x2+40x,当a=20时,采用图1围法,则此时10≤x<20,当S=198时,―2x2+40x=198,解得:x1=11,x2=9,经检验都符合题意;采用图2围法,如图,此时矩形菜园的宽为x米,即AB=CD=x,则AD+BC=40―2x+24,则BC=32―x,所以长为(32―x)米,结合32―x>24可得0<x<8,∴x(32―x)=198,解得:x1=16+x2=16―经检验都不符合题意,若a=24,S=198,则有两种围法,C不符合题意,设矩形菜园的宽为x米,则长为(40―2x)米,∴S=x(40―2x)=―2x2+40x,当a=20时,采用图1围法,则此时10≤x<20,当S=200时,―2x2+40x=200,解得:x1=x2=10,经检验符合题意;采用图2围法,如图,此时矩形菜园的宽为x米,即AB=CD=x,则AD+BC=40―2x+24,则BC=32―x,所以长为(32―x)米,结合32―x>24可得0<x<8,∴x(32―x)=200,解得:x1=16+2=16―经检验都不符合题意,综上所述,若a=24,S=200,则有一种围法,D不符合题意;故选A.评卷人得分二、填空题(本大题共5小题,每小题3分,满分15分)11.(23-24九年级上·四川凉山·阶段练习)已知关于x的一元二次方程m(x―ℎ)2―k=0(m,ℎ,k均为常数,且m≠0)的解是x1=2,x2=5,则关于x的一元二次方程m(x―ℎ+3)2=k的解是.【思路点拨】的解为y1=2,y2=5,解方程即可本题考查同解方程,涉及换元法,令x+3=y,由题意得到(y―ℎ)2=km得到答案,读懂题意,由同解方程求解是解决问题的关键.【解题过程】解:∵关于x的一元二次方程m(x―ℎ)2―k=0(m,ℎ,k均为常数,且m≠0)的解是x1=2,x2=5,即(x―ℎ)2=k的解为x1=2,x2=5;m令x+3=y,∴关于x的一元二次方程m(x―ℎ+3)2=k化为m(y―ℎ)2=k,∵(x―ℎ)2=k的解为x1=2,x2=5,m∴(y―ℎ)2=km的解为y1=2,y2=5,即x+3=2或x+3=5,∴x1=―1,x2=2,∴关于x的一元二次方程m(x―ℎ+3)2=k的解是x1=―1,x2=2,故答案为:x1=―1,x2=2.12.(23-24九年级上·湖南岳阳·期中)在京珠高速公路上行驶着一辆时速为108千米的汽车,突然发现前面有情况,紧急刹车后又滑行30米才停车.刹车后汽车滑行10米时用了秒.【思路点拨】本题考查一元一次方程及一元二次方程的应用,是匀减速运动的问题,速度应为平均速度,基本等量关系:平均速度×时间=路程,列方程并解方程即可解决,注意速度单位的转化和题目的问题相符.【解题过程】解:时速为108千米=30米/秒,设紧急刹车后又滑行30米需要时间为x秒,则30+02⋅x=30,解得:x=2.平均每秒减速=(30―0)÷2=15(米/秒);设刹车后汽车滑行10米时用了t秒,依题意列方程:30+(30―15t)2⋅t=,解方程得x1=x2=>2(不合题意,舍去),即x=故答案为:x=13.(23-24九年级上·重庆江津·期末)如果关于x的一元二次方程x2+4x+m+2=0有实数根,且关于y的分式方程my+1y―3=5+23―y有正整数解,那么符合条件的所有整数m的和为.【思路点拨】本题考查了一元二次方程根的判别式,解分式方程,利用一元二次方程根的判别式,得到关于m的一元一次不等式,解之得到m的取值范围,解分式方程得到分式方程的解,再由分式方程有正整数解得到m的值,结合m取值范围确定符合条件的所有整数m,将其相加即可求解,由一元二次方程和分式方程得到符合条件的所有整数m是解题的关键.【解题过程】解:∵关于x的一元二次方程x2+4x+m+2=0有实数根,∴Δ=16―4(m+2)≥0,解得m≤2,解分式方程my+1y―3=5+23―y得,y=185―m(m≠5),∵关于y的分式方程my+1y―3=5+23―y有正整数解,∴5―m=1,2,3,6,9,18,解得m=4,3,2,―1,―4,―13,∵y―3≠0,∴185―m≠3,∴m≠―1,又∵m≤2,∴符合条件的整数m有2,―4,―13,∴为2+(―4)+(―13)=―15,故答案为:―15.14.(23-24九年级上·湖南湘西·阶段练习)已知关于x的一元二次方程(2n―mn)x2+2(m―n)x―2m+mn=0有两个相等的实数根,那么1m +1n的值为.【思路点拨】本题考查了一元二次方程判别式,根据题意得b2―4ac=[2(m―n)]2―4(2n―mn)(―2m+mn)=0,整理可得(m+n)2=mn(2n―mn+2m),两边同时除m2n2得12×(m+n)2m2n2+12=1m+1n,由1m+1n=m+nmn,通过换元法即可求解.【解题过程】解:由题意得:b2―4ac=[2(m―n)]2―4(2n―mn)(―2m+mn)=0化简得:(m―n)2=mn(2―m)(n―2)∴(m+n)2―4mn=mn(2n―4―mn+2m)(m+n)2―4mn=2mn2―4mn―m2n2+2m2n(m+n)2=2mn2―m2n2+2m2n(m+n)2=mn(2n―mn+2m)两边同时除m2n2得:(m+n)2m2n2=2m―1+2n两边同时除2得:12×(m+n)2m2n2+12=1m+1n∵1 m +1n=m+nmn令t=m+nmn,∴1 2×(m+n)2m2n2+12=1m+1n可转化为12×t2+12=t,化简得:t2―2t+1=0,即(t―1)2=0,解得:t=1,∴1 m +1n=m+nmn=1,故答案为:1.15.(23-24八年级下·浙江杭州·阶段练习)若关于x的一元二次方程(x―2)(x―3)=m有实数根x1,x2,且x1≠x2,有下列结论:①m≥―14;②若x1=1,则x2=4;③关于x的方程(x―3)(x―4)=m的根为x1―1,x2―1;④关于x的方程(x―x1)(x―x2)+m=0的根为2,3.其中正确结论的有.【思路点拨】本题考查的是一元二次方程的解的含义,根的判别式的应用,根与系数的关系,一元二次方程的解法,理解题意是解本题的关键,把方程化为一般形式结合判别式可判定①,把方程的解代入原方程可判定②,结合整体思想可判定③,利用根与系数的关系把(x―x1)(x―x2)+m=0变形,再解方程可判定④,从而可得答案.【解题过程】解:①(x―2)(x―3)=m化为一般形式为x2―5x+6―m=0,∵原方程有实数根x1、x2,且x1≠x2,∴Δ=b2―4ac=(―5)2―4(6―m)>0解得:m>―14,故①错误,∵关于x的一元二次方程(x―2)(x―3)=m有实数根x1、x2,当x1=1,则m=2,∴方程为x2―5x+4=0,解得:x1=1,x2=4,故②正确;∵关于x的一元二次方程(x―2)(x―3)=m有实数根x1,x2,且x1≠x2,而(x―3)(x―4)=m可化为:[(x―1)―2][(x―1)―3]=m,∴x―1=x1,x―1=x2,∴x=x1+1或x=x2+1,故③错误;∵(x―2)(x―3)=m化为一般形式为x2―5x+6―m=0,∵原方程有实数根x1、x2,且x1≠x2,∴x1+x2=5,x1x2=6―m,∵(x―x1)(x―x2)+m=x2―(x1+x2)x1+m+x1x2=x2―5x+m+6―m=x2―5x+6,∴x2―5x+6=0,解得:x=2或x=3,故④正确,故答案为:②④评卷人得分三、解答题(本大题共8小题,满分55分)16.(6分)(22-23八年级上·上海青浦·期末)解方程:(1=2;(2)2xx2―2x―3―1x―3=1;(3)2x2―=0【思路点拨】(1)移项后两边平方得出x+2=4++8―x,求出x―5=x2―10x+25=4(8―x),求出x,再进行检验即可;(2)观察可得最简公分母是(x―3)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解;(3)令t=2x2―1―=0,代入原方程,得t2―3t+2=0,所以t1=2,t2=1,然后分两种情况分别解方程即可.【解题过程】(1=2=2+两边平方得,x+2=4++8―x,合并同类项得,2x―10=∴x―5=两边平方得,x2―10x+25=4(8―x),整理得,x2―6x―7=0,∴(x+1)(x―7)=0,解得:x1=―1,x2=7,经检验,x1=―1,不是原方程的解,∴原方程的解为:x=7.(2)2xx2―2x―3―1x―3=1解:方程两边同时乘以(x―3)(x得,2x―(x+1)=x2―2x―3整理得,x2―3x―2=0,解得,x==∴x1=x2=经检验,x1=x2=(x―3)(x+1)≠0,∴原方程的根为:x1=x2=(3)2x2―=0解:2x2―1―+2=0令t=t2―3t+2=0,∴(t―2)(t―1)=0,解得:t1=2,t2=1,当t1=2=2,即:2x2―1=4,∴x2=52,解得:x1=―x2=当t2=1=1,即:2x2―1=1,∴x2=1,解得:x3=―1,x4=1,经检验x1,x2,x3,x4都为原方程的解∴原方程的解为:x1=―x2=x3=―1,x4=1.17.(6分)(22-23九年级上·福建龙岩·阶段练习)已知关于x的方程(2m―1)x2―(2m+1)x+1=0.(1)求证:不论m为何值,方程必有实数根;(2)当m为整数时,方程是否有有理根?若有求出m的值,若没有请说明理由.【思路点拨】(1)①当2m―1=0时,方程为一元一次方程,即可求解;②当2m―1≠0时,方程为二元一次方程,由一元二次方程根的判别式:Δ>0时,方程有两个不相等的实数根;Δ=0时,方程有两个相等的实数根;Δ<0时,方程有无的实数根;据此进行求解即可.(2)①当2m―1=0时,即:m=12,即可求解;②当2m―1≠0时,当m为整数时,假设方程有有理根,则需满足:Δ=(2m―1)2+4是完全平方数,设(2m―1)2+4=n2(n为整数),则有(2m―1+n)(2m―1―n) =―4,即可求解.∴2m―1+n=12m―1―n=―4或2m―1+n=―12m―1―n=4或2m―1+n=22m―1―n=―2或2m―1+n=―22m―1―n=2,【解题过程】(1)解:由题意得①当2m―1=0时,即:m=12,方程为一元一次方程:―2x+1=0,此时方程必有实数根;②当2m―1≠0时,即:m≠12,此时方程为一元二次方程,a=2m―1,b=―(2m+1),c=1,∴Δ=[―(2m+1)]2―4(2m―1)=4m 2―4m +5=(2m ―1)2+4,∵(2m ―1)2≥0,∴(2m ―1)2+4>0,∴Δ>0,故不论m 为何值,方程必有实数根;综上所述:不论m 为何值,方程必有实数根.(2)解:当m 为整数时,方程没有有理根,理由如下:①当2m ―1=0时,即:m =12,方程为一元一次方程,方程有有理根,∵ m 为整数,∴此情况不存在;②当2m ―1≠0时,当m 为整数时,假设方程有有理根,则需满足:Δ=(2m ―1)2+4是完全平方数,设(2m ―1)2+4=n 2(n 为整数),则有(2m ―1+n )(2m ―1―n )=―4∴ 2m ―1+n =12m ―1―n =―4 或2m ―1+n =―12m ―1―n =4 或2m ―1+n =22m ―1―n =―2 或2m ―1+n =―22m ―1―n =2 ,解得:m =―14或m =12,此时与m 为整数矛盾,∴当m 为整数时,方程没有有理根;综上所述:当m 为整数时,方程没有有理根.18.(6分)(23-24八年级上·山东德州·阶段练习)阅读材料:200多年前,数学王子高斯用他独特的方法快速计算出1+2+3+⋯+100的值.我们从这个算法中受到启发,用下面方法计算数列1,2,3,…,n ,…的前n 项和:由1+2+⋯+n ―1+n n +n ―1+⋯+2+1(n +1)+(n +1)+⋯+(n +1)+(n +1).可知1+2+3+⋯+n=(n+1)×n2应用以上材料解决下面问题:(1)有一个三角点阵(如图),从上向下数有无数多行,其中第一行有1个点,第二行有2个点,…,第n 行有n个点,⋯.若该三角点阵前n行的点数和为325,求n的值.(2)在第一问的三角点阵图形中,前n行的点数和能是900吗?如果能,求出n;如果不能,说明理由.(3)如果把上图中的三角点阵中各行的点数依次换为3,6,9,…,3n,…,前n行的点数和能是900吗?如果能,求出n;如果不能,说明理由.【思路点拨】(1)直接由所给公式列一元二次方程求解即可;(2)由所给公式列方程整理后求解,根据n为正整数判断即可;(3)根据题意列方程,提公因数3后利用所给公式和一元二次方程的解法求解即可.【解题过程】=325,(1)解:根据题意,得1+2+3+…+n=(n+1)×n2即n2+n―650=0,解得n1=25,n2=―26(负值舍去),∴n的值为25;(2)解:不能,理由为:=900得n2+n―1800=0,由1+2+3+…+n=(n+1)×n2∵Δ=1+4×1800=7201>0,∴n=∵n∴不存在n值,使前n行的点数和是900.即在第一问的三角点阵图形中,前n行的点数不能是900;(3)解:能,n =24,理由为:由3+6+9+…+3n =900得3(1+2+3+…+n)=900,则1+2+3+…+n =(n+1)×n2=300,∴n 2+n ―600=0,解得n 1=24,n 2=―25(负值舍去),∴当n =24时,前n 行的点数和是900.19.(6分)(22-23八年级下·重庆北碚·期末)甲、乙两工程队共同承建某高速铁路桥梁工程,计划每天各施工6米.已知甲乙每天施工所需成本共108万元.因地质情况不同,甲每合格完成1米桥梁施工成本比乙每合格完成1米的桥梁施工成本多2万元.(1)分别求出甲,乙每合格完成1米的桥梁施工成本;(2)实际施工开始后,甲每合格完成1米隧道施工成本增加16a 万元,且每天多挖124a .乙每合格完成1米隧道施工成本增加13a 万元,且每天多挖18a 米.若最终每天实际总成本比计划多24+112a 万元,求a 的值.【思路点拨】(1)设乙每合格完成1米的桥梁施工成本为x 万元,则甲每合格完成1米桥梁施工成本为(x +2)万元,根据题意列方程即可求解;(2)根据题意分别表示出甲、乙每天的实际工作量,实际成本,根据数量关系列方程即可求解.【解题过程】(1)解:设乙每合格完成1米的桥梁施工成本为x 万元,则甲每合格完成1米桥梁施工成本为(x +2)万元,∴6x +6(x +2)=108,解得,x =8,∴甲每合格完成1米桥梁施工成本为10万元,乙每合格完成1米的桥梁施工成本为8万元.(2)解:由(1)可知,甲每合格完成1米桥梁施工成本为10万元,乙每合格完成1米的桥梁施工成本为8万元,∴实际施工开始后,甲每合格完成1米隧道施工成本增加16a 万元,则甲每合格完成1米实际成本为10+16a万元,且每天多挖124a ,则甲每天实际完成量为6×1+124a =6+14a 米,乙每合格完成1米隧道施工成本增加13a 万元,则乙每合格完成1米实际成本为8+13a 万元,且每天多挖18a 米,则乙每天实际完成量为6+18a 米,终每天实际总成本比计划多24+112a 万元,则最中每天的实际总成本为108+24+112a =132+112a万元,∴10+16a×6+14a+8+13a×6+18a=132+112a,整理得,a2+12a―288=0,解得,a1=12,a2=―24(不符合题意,舍去),∴a的值为12.20.(6分)(22-23九年级下·重庆沙坪坝·开学考试)正月十五是中华民族传统的节日——元宵节,家家挂彩灯、户户吃汤圆已成为世代相沿的习俗.位于北关古城内的盼盼手工汤圆店,计划在元宵节前用21天的时间生产袋装手工汤圆,已知每袋汤圆需要0.3斤汤圆馅和0.5斤汤圆粉,而汤圆店每天能生产450斤汤圆馅或300斤汤圆粉(每天只能生产其中一种).(1)若这21天生产的汤圆馅和汤圆粉恰好配套,且全部及时加工成汤圆,则总共生产了多少袋手工汤圆?(2)为保证手工汤圆的最佳风味,汤圆店计划把达21天生产的汤圆在10天内销售完毕.据统计,每袋手工汤圆的成本为13元,售价为25元时每天可售出225袋,售价每降低2元,每天可多售出75袋.汤圆店按售价25元销售2天后,余下8天进行降价促销,第10天结束后将还未售出的手工汤圆以15元/袋的价格全部卖给古城小吃店,若最终获利40500元,则促销时每袋应降价多少元?【思路点拨】(1)设总共生产了a袋手工汤圆,利用这21天生产的汤圆馅和汤圆粉恰好配套做等量关系列出方程即可;(2)设促销时每袋应降价x元,利用最终获利40500元做等量关系列出方程即可.【解题过程】(1)设总共生产了a袋手工汤圆,依题意得,0.3a450+0.5a300=21解得a=9000,经检验a=9000是原方程的解,答:总共生产了9000袋手工汤圆(2)设促销时每袋应降价x元,当刚好10天全部卖完时,依题意得,225×2×(25―13)+8(25―13―x)225+752x=40500整理得:x2―6x+45=0Δ=62―4×45<0,∴方程无解∴10天不能全部卖完∴第10天结束后将还未售出的手工汤圆以15元/袋的价格全部卖给古城小吃店的利润为(15―13)9000―2×225―8225+752x =12600―600x∴依题意得,225×2×(25―13)+8(25―13―x )225+752x +12600―600x =40500解得x 1=1,x 2=3∵要促销∴x =3即促销时每袋应降价3元.21.(8分)(23-24九年级上·福建泉州·期中)阅读材料,解答问题:已知实数m ,n 满足m 2―m ―1=0,n 2―n ―1=0,且m ≠n ,则m ,n 是方程x 2―x ―1=0的两个不相等的实数根,由根与系数的关系可知m +n =1,mn =―1.根据上述材料,解决以下问题:(1)直接应用:已知实数a ,b 满足:a 2―5a +1=0,b 2―5b +1=0且a ≠b ,则a +b =______,ab =______;(2)间接应用:已知实数m ,n 满足:2m 2―7m +10,n 2―7n +2=0,且mn ≠1,求2mn+2mn+3n+1的值.(3)拓展应用:已知实数p ,q 满足:p 2―2p =3―t ,12q 2―q =12(3―t )且p ≠q ,求q 2+1(2p +4―t )的取值范围.【思路点拨】本题考查一元二次方程根与系数的关系的应用(1)根据根与系数的关系即可求解;(2)先验证m ≠0,再在2m 2―7m +1=0两边同时除以m 2,得1m ,n 是一元二次方程x 2―7x +2=0的两个不等实数根,求出1m +n =7,1m ⋅n =2,变形代入即可;(3)先根据题意得到p,q 是一元二次方程x 2―2x =3―t 的两个不等实数根,求出p +q =2,pq =t ―3代入q 2+1(2p +4―t )化简,又因为p,q 是方程x 2―2x =3―t 的两个不等实数根,利用根与系数的关系即可求解.【解题过程】解:(1)由题意得:a ,b 是方程x 2―5x +1=0的两个不相等的实数根,由根与系数的关系可知a +b =5,ab =1;解:(2)∵把m =0代入2m 2―7m +1得1≠0不合题意,∴m ≠0∴2m 2―7m +1=0两边同时除以m 2―71m +2=0,又∵n 2―7n +2=0,且mn ≠1,∴可将1m ,n 看作一元二次方程x 2―7x +2=0的两个不等实数根,∴利用根与系数的关系可得出1m +n =7,1m ⋅n =2,∴mn +1=7m,n =2m ,∴2mn+2mn+3n+1=2(mn+1)(mn+1)+3n =2⋅7m7m+3⋅2m =1413.解:(3)将方程12q 2―q =12(3―t)两边同时乘以2得q 2―2q =3―t ,又∵p 2―2p =3―t ,且p ≠q ,∴可将p,q 看作一元二次方程x 2―2x =3―t 的两个不等实数根,∴利用根与系数的关系可得出p +q =2,pq =t ―3,q 2=2q +3―t,∴q 2+1(2p +4―t)=(2q +3―t +1)(2p +4―t)=(2q +4―t)(2p +4―t)=4pq +8q ―2qt +8p +16―4t ―2pt ―4t +t 2=4pq +8(p +q)―2t(p +q)+16―8t +t 2=4(t ―3)+8×2―2t ⋅2+16―8t +t 2=4t ―12+16―4t +16―8t +t 2=t 2―8t +20=(t ―4)2+4∵p,q 是方程x 2―2x =3―t 的两个不等实数根,∴Δ=(―2)2―4(t ―3)=4―4t +12=16―4t >0,∴t <4.∵(t―4)2+4>4,∴q2+1(2p+4―t)>4.22.(8分)(23-24九年级上·江苏连云港·阶段练习)如图,矩形ABCD中,AB=6cm,AD=2cm,动点P,Q分别从点A,C同时出发,点P以2cm/s的速度向终点B移动,点Q以1cm/s的速度向点D移动,当有一点到达终点时,另一点也停止运动,设运动的时间为t(s).(1)当t=2s时,四边形BCQP面积是______cm(2)当t为何值时,点P和点Q距离是4cm?(3)当t为何值时,以点P,Q、D为顶点的三角形是等腰三角形.【思路点拨】(1)当t=2时,可以得出CQ=2cm,AP=4cm,就有PB=6―4=2(cm),由矩形的面积就可以得出四边形BCQP的面积;(2)如图1,作QE⊥AB于E,在Rt△PEQ中,由勾股定理建立方程求出其解即可,如图2,作PE⊥CD于E,在Rt△PEQ中,由勾股定理建立方程求出其解即可;(3)分情况讨论,如图3,当PQ DQ时,如图4,当PD=PQ时,如图5,当PD=QD时,由等腰三角形的性质及勾股定理建立方程就可以得出结论.【解题过程】(1)如图,∵四边形ABCD是矩形,∴AB=CD=6,AD=BC=2,∠A=∠B=∠C=∠D=90°.∵CQ=2cm,AP=4cm,∴PB=6―4=2(cm).∴S=2×2=4(cm2).∴四边形BCQP面积是4cm2,故答案为:4;(2)如图1,作QE⊥AB于E,∴∠PEQ=90°,∵∠B=∠C=90°,∴四边形BCQE是矩形,∴QE=BC=2cm,BE=CQ=t cm.∵AP=2t cm,∴PE=6―2t―t=(6―3t)cm.在Rt△PQE中,由勾股定理,得(6―3t)2+4=16,解得:t=t=.如图2,作QE⊥AB于E,∴∠PEQ=90°.∵∠B=∠C=90°,∴四边形BCQE是矩形,∴QE=BC=2cm,BP=6―2t.∵CQ=t,∴PE=t―(6―2t)=3t―6在Rt△PEQ中,由勾股定理,得(3t―6)2+4=16,解得:t=t=,综上所述:t=(3)如图3,当PQ=DQ时,作QE⊥AB于E,∴∠PEQ=90°,∵∠B=∠C=90°,∴四边形BCQE是矩形,∴QE=BC=2cm,BE=CQ=t(cm).∵AP=2t,∴PE=6―2t―t=6―3t.DQ=6―t.∵PQ=DQ,∴PQ=6―t.在Rt△PQE中,由勾股定理,得(6―3t)2+4=(6―t)2,解得:t=如图4,当PD=PQ时,作PE⊥DQ于E,DQ,∠PED=90°.∴DE=QE=12∵∠A=∠D=90°,∴四边形APED是矩形,∴PE=AD=2cm.DE=AP=2t cm,∵DQ=(6―t)cm,cm.∴DE=6―t2∴2t=6―t,2解得:t=6;5如图5,当PD=QD时,∵AP=2t cm,CQ=t cm,∴DQ=6―t(cm),∴PD=6―t(cm).在Rt△APD中,由勾股定理,得4+4t2=(6―t)2,解得t1=t2=.或综上所述:t=或6523.(9分)(23-24八年级上·四川成都·期末)已知平面直角坐标系中,直线AB图象上有两点A和点B,与x轴交于点C,与y轴交于点D.(1)求直线AB的表达式;(2)若在y轴上有一异于原点的点P,使△PAB为等腰三角形,求点P的坐标;(3)若将线段AB沿直线y=mx+n(m≠0)进行对折得到线段A1B1,且点A1始终在直线OA上,当线段A1B1与x轴有交点时,求n的取值的最大值.【思路点拨】(1)运用待定系数法即可求得答案;(2)设P(0,t),表示出PA2,PB2,AB2,根据△PAB为等腰三角形,则PA=PB或PA=AB或PB=AB,分别建立方程求解即可得出答案;(3)由于点A关于直线y=mx+n的对称点点A1始终在直线OA上,因此直线y=mx+n必与直线OA垂直,当点B1落到x轴上时,n的取值的最大,根据BB1∥OA,求出点B1的坐标,求出BB1和AA1的中点坐标代入y=mx+n(m≠0),即可求得n的最大值.【解题过程】(1)解:设直线AB的解析式为y=kx+b(k≠0),∵A,B,∴2k+b=5k+b=,解得:k=―b=,∴直线AB的解析式为y=―(2)解:设P(0,t),则PA2=(0―2)2+(t―2=t2―+16,PB2=(0―5)2+(t―2=t2―+28,AB2=(2―5)2+2=12,∵△PAB为等腰三角形,∴PA=PB或PA=AB或PB=AB,当PA=PB时,PA2=PB2,∴t2―+16=t2―+28,解得:t=―∴P(0,―;当PA=AB时,PA2=AB2,∴t2―+16=12,∴t=t=∴P+或P当PB=AB时,PB2=AB2,∴t2―+28=12,∵Δ=(―2―4×16=―52<0,∴此方程无解;综上所述,△PAB为等腰三角形时,点P的坐标为(0,―或+或―;(3)解:当点B1落到x轴上时,n的取值的最大,如图,设直线OA的解析式为y=ax,∵点A的坐标为A,∴2a=a=∴直线OA的解析式为y=,∵BB1∥OA,∴直线BB1可设为y=+e,∵点B的坐标为,∴e=解得:e=―∴直线BB1解析式为y=―当y=0―=0,解得:x=4.∴点B1的坐标为(4,0),∴BB1过点A1作A1E⊥x轴于点E,设点A1p,p,则A1E=,OE=p,∴B1E=4―p,根据对称性可知,A1B12=AB2=12,根据勾股定理得:A1E2+B1E2=A1B12,p2+(4―p)2=12,解得:p1=p2=1,∴A1,∴AA1y=mx+n+n=+n=,解得:m=―n=,∴当线段A1B1与x轴有交点时,n的取值的最大值为。
人教版九年级上册数学期末二次函数压轴题(最值问题)专题训练(含解析)

人教版九年级上册数学期末二次函数压轴题(最值问题)专题训练(1)求三个点,,的坐标;(2)当点运动至抛物线的顶点时,求此时(3)设点的横坐标为,的长度为范围;是否存在最值,如有写出最值.(1)求二次函数的解析式;(2)当x 为何值时,函数有最大值还是最小值?并求出最值;(3)在抛物线上是否存在点,若存在,请求出点A B C N N t MN L 8AOP S =△(1)求抛物线的表达式和点D 的坐标.(2)连接AD ,交y 轴于点E ,P 是抛物线上的一个动点.Q 是抛物线对称轴上一个点,是否存在以B ,E ,P ,Q 为顶点的四边形为平行四边形,若存在,求出存在,请说明理由.(3)如图,点P 在第四象限的抛物线上,连接AP 、BE 交于点G ,设(1)求二次函数解析式;(2)设的面积为,试判断PCD ∆S S请说明理由;(3)在上是否存在点,使为直角三角形?若存在,请写出点的坐标若不存在,请说明理由.5.如图,抛物线与轴相交于两点(点位于点的左侧),与轴相交于点,是抛物线的顶点,直线是抛物线的对称轴,且点的坐标为.(1)求抛物线的解析式.(2)已知为线段上一个动点,过点作轴于点.若的面积为.①求与之间的函数关系式,并写出自变量的取值范围;②当取得最值时,求点的坐标.(3)在(2)的条件下,在线段上是否存在点,使为等腰三角形?如果存在,请求出点的坐标;如果不存在,请说明理由.6.如图,已知二次函数,回答下列问题:(1)求出此抛物线的对称轴和顶点坐标;MB P PCD ∆P 2y x bx c =-++x ,A B A B y C M 1x =C (0,3)P MB P PD x ⊥D ,PD m PCD =∆S S m m S P MB P PCD ∆P 243y x x =++(2)写出抛物线与轴交点、的坐标,与轴的交点的坐标;(3)写出函数的最值和增减性;(4)取何值时,①,②.7.如图,抛物线y =﹣x 2+bx +c 与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为B (3,0),C (0,3),点M 是抛物线的顶点.(1)求二次函数的关系式;(2)点P 为线段MB 上一个动点,过点P 作PD ⊥x 轴于点D .若OD =m ,△PCD 的面积为S ,①求S 与m 的函数关系式,写出自变量m 的取值范围.②当S 取得最值时,求点P 的坐标;(3)在MB 上是否存在点P ,使△PCD 为直角三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.8.已知抛物线y =x 2﹣2ax+m .(1)当a =2,m =﹣5时,求抛物线的最值;(2)当a =2时,若该抛物线与坐标轴有两个交点,把它沿y 轴向上平移k 个单位长度后,得到新的抛物线与x 轴没有交点,请判断k 的取值情况,并说明理由;(3)当m =0时,平行于y 轴的直线l 分别与直线y =x ﹣(a ﹣1)和该抛物线交于P ,Q 两点.若平移直线l ,可以使点P ,Q 都在x 轴的下方,求a 的取值范围.9.如图,Rt △OAB 如图所示放置在平面直角坐标系中,直角边OA 与x 轴重合,∠OAB=90°,OA=4,AB=2,把Rt △OAB 绕点O 逆时针旋转90°,点B 旋转到点C 的位置,一条抛物线正好经过点O ,C ,A 三点.x A B y C x 0y <0y >(1)填空:点B 的坐标为 ,点D 的坐标为 .(2)如图1,连结,P 为x 轴上的动点,当以O ,D ,P 为顶点的三角形是等腰三角形时,求点P 的坐标;(3)如图2,M 是点B 关于抛物线对称轴的对称点,Q 是抛物线上的动点,m ,连结,,与直线交于点E .设别为和,设己,试求t 关于m 的函数解析式并求出OD (05)m <<MQ BQ MQ OB 1S 2S 12S t S =(1)求抛物线的解析式;(2)如图1,点P为直线CB上方抛物线上一点,过P作PE∥y轴交BC于点E,连接CP,PD,DE,求四边形CPDE面积的最值及点P的坐标;(3)如图2,将抛物线沿射线CB方向平移得新抛物线y=a1x2+b1x+c1(a1≠0),是否在新抛物线上存在点M,在平面内存在点N,使得以A,C,M,N为顶点的四边形为正方形?若存在,直接写出此时新抛物线的顶点坐标,若不存在,请说明理由.13.如图1,抛物线y=ax2+bx+c(a≠0),与x轴交于A(4,0)、O两点,点D(2,-2)为抛物线的顶点.(1)求该抛物线的解析式;(2)点E为AO的中点,以点E为圆心、以1为半径作⊙E交x轴于B、C两点,点M 为⊙E上一点.①射线BM交抛物线于点P,设点P的横坐标为m,当tan∠MBC=2时,求m的值;②如图2,连接OM,取OM的中点N,连接DN,则线段DN的长度是否存在最大值或最小值?若存在,请求出DN的最值;若不存在,请说明理由.14.在平面直角坐标系xOy中,已知抛物线y=x2﹣2x﹣3与x轴交于A、B两点,与y 轴交于C点,D为抛物线顶点.连接AD,交y轴于点E,P是抛物线上的一个动点.参考答案:∴β=1,∴A(-1,0),B (3,0),∴,解得:,∴抛物线的表达式为,当x =1时,y =1-2-3=-4,∴点D 的坐标为(1,4);(2)解:∵A (-1,0),B (3,0),D (1,4),设直线AD 的表达式为y =kx +c ,∴,解得,∴直线AD 的表达式为y =-2x -2,当x =0时,y =-2,∴点E 的坐标为(0,-2),∵P 是抛物线上的一个动点,Q 是抛物线对称轴上一个点,∴设P (m ,),Q (1,t ),①当BE 为边时,PQ BE 且PQ =BE ,当E 对应Q ,由(0,-2)变为(1,t ),要向右平移1个单位,则当B (3,0)对应P (m ,),也要向右平移1个单位,即m =3+1=4,∴=5,∴P (4,5);309330a b a b --=⎧⎨+-=⎩12a b =⎧⎨=-⎩2=23y x x --04k c k c -+=⎧⎨+=⎩22k c =-⎧⎨=-⎩223m m --∥223m m --223m m --∵∠OBC=45°,∵轴∴时,轴∴,即,解得:,∴此时;②时,如图②,PD x ⊥90CDP ∠=︒//CP x 3c p y y ==263m -+=32m =3,32P ⎛⎫ ⎪⎝⎭90P CD ''∠=︒∵轴,∴,∴,又∵,∴,即,∵,,,P D x ''⊥//P D OC ''12∠=∠90P CD D OC '''∠=∠=︒P CD D OC '''∆∆∽OC CD CD P D '='''(0,3)C (,0)D m (,26)P m m -+【点睛】本题考查了二次函数的动点问题,掌握二次函数的性质以及解二次函数的方法是解题的关键.8.(1)-9;(2)当m=0时,k>4或当m=4时,k>0时,得到新的抛物线与x轴没有交点;(3)a>1或a<﹣1【分析】(1)把a=2,m=﹣5代入抛物线解析式即可求抛物线的最值;(2)把a=2代入,当该抛物线与坐标轴有两个交点,分抛物线与x轴、y轴分别有一个交点和抛物线与x轴、y轴交于原点,分别求出m的值,把它沿y轴向上平移k个单位长度,得到新的抛物线与x轴没有交点,列出不等式,即可判断k的取值;(3)根据题意,分a大于0和a小于0两种情况讨论即可得a的取值范围.【详解】解:(1)当a=2,m=﹣5时,y=x2﹣4x﹣5=(x﹣2)2﹣9所以抛物线的最小值为﹣9.(2)当a=2时,y=x2﹣4x+m因为该抛物线与坐标轴有两个交点,①该抛物线与x轴、y轴分别有一个交点∴△=16-4m=0,∴m=4,∴y=x2﹣4x+4=(x-2)2沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,则k>0;②该抛物线与x轴、y轴交于原点,即m=0,∴y=x2﹣4x∵把它沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,∴y=x2﹣4x+k此时△<0,即16﹣4k<0解得k>4;综上,当m=0时,k>4或当m=4时,k>0时,得到新的抛物线与x轴没有交点;(3)当m=0时,y=x2﹣2ax抛物线开口向上,与x轴交点坐标为(0,0)(2a,0),a≠0.直线l分别与直线y=x﹣(a﹣1)和该抛物线交于P,Q两点,平移直线l,可以使点P,Q都在x轴的下方,①当a>0时,如图1所示,此时,当x=0时,0﹣a+1<0,解得a>1;②当a<0时,如图2所示,此时,当x=2a时,2a﹣a+1<0,解得a<﹣1.综上:a>1或a<﹣1.【点睛】本题主要考查的是二次函数的综合应用,掌握二次函数的最值问题和根据题意进行分类讨论是解本题的关键.9.(1)、y=﹣x2+4x;(2)、10;(3)、N1(2+2,﹣4),N2(2﹣2,﹣4)【详解】试题分析:(1)、根据旋转的性质可求出C的坐标和A的坐标,又因为抛物线经过原点,故设y=ax2+bx把(2,4),(4,0)代入,求出a和b的值即可求出该抛物线的解析式;(2)、四边形PEFM的周长有最大值,设点P的坐标为P(a,﹣a2+4a)则由抛物线的对称性知OE=AF,所以EF=PM=4﹣2a,PE=MF=﹣a2+4a,则矩形PEFM的周长L=2[4﹣2a+(﹣a2+4a)]=﹣2(a﹣1)2+10,利用函数的性质即可求出四边形PEFM的周长的最大值;(3)、在抛物线上存在点N,使O(原点)、C、H、N四点构成以OC为一边的平行四边形,由(1)可求出抛物线的顶点坐标,过点C作x轴的平行线,与x轴没有其它交点,过y=﹣4作x轴的平行线,与抛物线有两个交点,这两个交点为所求的N点坐标所以有﹣x2+4x=﹣4,解方程即可求出交点坐标.试题解析:(1)、因为OA=4,AB=2,把△AOB绕点O逆时针旋转90°,可以确定点C的坐标为(2,4);由图可知点A的坐标为(4,0),又因为抛物线经过原点,故设y=ax2+bx把(2,4),(4,0)代入,得,解得所以抛物线的解析式为y=﹣x2+4x;(2)、四边形PEFM的周长有最大值,理由如下:由题意,如图所示,设点P的坐标为P(a,﹣a2+4a)则由抛物线的对称性知OE=AF,∴EF=PM=4﹣2a,PE=MF=﹣a2+4a,则矩形PEFM的周长L=2[4﹣2a+(﹣a2+4a)]=﹣2(a﹣1)2+10,∴当a=1时,矩形PEFM的周长有最大值,L max=10;=2+,﹣2+,﹣,,点Q 的横坐标为m ()1,16N MN ∴--=, (,Q m m ∴,()2245KQ m m m m m ∴=--=-+()121122B E S QK x x S MN =-= ,()21S 115QK m m ∴==--=-【点睛】本题主要考查二次函数的性质,熟练掌握二次函数的性质,最值,是解题的关键.13.(1);(2)①m=2或4+2和.【分析】(1)用抛物线顶点式表达式得:y=a 2122y x x =-50.5-50.5+(2)∵点P在第四象限的抛物线上,设直线AP的解析式为代入,∵,∴,y=(1,0)A-2(,2P m m-03m<<10m+≠∵点C 与点关于对称轴对称∴设直线的解析式为解得:∴直线的解析式为:C '1x =()2,3C '-AC 'y kx b =+13432k b ⎧=-⎪⎪⎨⎪=-⎪⎩AC '3y =-设点在中,当时,在中,由勾股定理知:即:化简得:解得:(舍),233,384R k k k ⎛⎫-- ⎪⎝⎭Rt OBC 222BC OC OB =+190BCR ∠= 1Rt BCR ()222334384k k k k ⎛⎫-+--= ⎪⎝⎭29+140k k =()9+14=0k k 0k =14k =-。
九年级上册压轴题数学考试试卷含详细答案

九年级上册压轴题数学考试试卷含详细答案一、压轴题1.如图,正方形ABCD 中,对角线AC 、BD 交于点O ,E 为OC 上动点(与点O 不重合),作AF ⊥BE ,垂足为G ,交BO 于H .连接OG 、CG .(1)求证:AH=BE ;(2)试探究:∠AGO 的度数是否为定值?请说明理由;(3)若OG ⊥CG ,BG=32,求△OGC 的面积.2.如图,抛物线214y x bx c =-++经过点()6,0C ,顶点为B ,对称轴2x =与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将MPC 逆时针旋转90︒,记点P 的对应点为E ,点C 的对应点为F .当直线EF 与抛物线214y x bx c =-++只有一个交点时,求点M 的坐标. (3)MPC 在(2)的旋转变换下,若2PC =①求证:EA ED =.②当点E 在(1)所求的抛物线上时,求线段CM 的长.3.如图,在平面直角坐标系中,抛物线21322y x bx =-++与x 轴正半轴交于点A ,且点A 的坐标为()3,0,过点A 作垂直于x 轴的直线l .P 是该抛物线上的任意一点,其横坐标为m ,过点P 作PQ l ⊥于点Q ;M 是直线l 上的一点,其纵坐标为32m -+,以PQ ,QM 为边作矩形PQMN .(1)求b 的值.(2)当点Q 与点M 重合时,求m 的值.(3)当矩形PQMN 是正方形,且抛物线的顶点在该正方形内部时,求m 的值.(4)当抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小时,直接写出m 的取值范围.4.二次函数22(0)63m m y x x m m =-+>的图象交y 轴于点A ,顶点为P ,直线PA 与x 轴交于点B .(1)当m =1时,求顶点P 的坐标;(2)若点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上,且0b m ->,试求a 的取值范围;(3)在第一象限内,以AB 为边作正方形ABCD .①求点D 的坐标(用含m 的代数式表示);②若该二次函数的图象与正方形ABCD 的边CD 有公共点,请直接写出符合条件的整数m 的值.5.已知抛物线2y ax bx c =++经过原点,与x 轴相交于点F ,直线132y x =+与抛物线交于()()2266A B -,,,两点,与x 轴交于点C ,与y 轴交于点D ,点E 是线段OC 上的一个动点(不与端点重合),过点E 作//EG BC 交BF 于点C ,连接DE DG ,.(1)求抛物线的解析式及点F 的坐标;(2)当DEG ∆的面积最大时,求线段EF 的长;(3)在(2)的条件下,若在抛物线上有一点()4H n ,和点P ,使EHP ∆为直角三角形,请直接写出点P 的坐标.6.如图,直线l :y =﹣3x +3与x 轴,y 轴分别相交于A 、B 两点,抛物线y =﹣x 2+2x +b 经过点B .(1)该抛物线的函数解析式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值; (3)在(2)的条件下,当S 取得最大值时,动点M 相应的位置记为点M '. ①写出点M '的坐标;②将直线l 绕点A 按顺时针方向旋转得到直线l ',当直线l ′与直线AM '重合时停止旋转,在旋转过程中,直线l '与线段BM '交于点C ,设点B ,M '到直线l '的距离分别为d 1,d 2,当d 1+d 2最大时,求直线l '旋转的角度(即∠BAC 的度数).7.如图1,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于A ,B 两点,A 点坐标为(2,0)-,与y 轴交于点(0,4)C ,直线12y x m =-+与抛物线交于B ,D 两点.(1)求抛物线的函数表达式;(2)求m 的值和D 点坐标;(3)点P 是直线BD 上方抛物线上的动点,过点P 作x 轴的垂线,垂足为H ,交直线BD 于点F ,过点D 作x 轴的平行线,交PH 于点N ,当N 是线段PF 的三等分点时,求P 点坐标;(4)如图2,Q 是x 轴上一点,其坐标为4,05⎛⎫- ⎪⎝⎭,动点M 从A 出发,沿x 轴正方向以每秒5个单位的速度运动,设M 的运动时间为t (0t >),连接AD ,过M 作MG AD ⊥于点G ,以MG 所在直线为对称轴,线段AQ 经轴对称变换后的图形为A Q '',点M 在运动过程中,线段A Q ''的位置也随之变化,请直接写出运动过程中线段A Q ''与抛物线有公共点时t 的取值范围.8.如图1,抛物线221y x x =-+-的顶点A 在x 轴上,交y 轴于B ,将该抛物线向上平移,平移后的抛物线与x 轴交于,C D ,顶点为()1,4E .(1)求点B 的坐标和平移后抛物线的解析式;(2)点M 在原抛物线上,平移后的对应点为N ,若OM ON =,求点M 的坐标; (3)如图2,直线CB 与平移后的抛物线交于F .在抛物线的对称轴上是否存在点P ,使得以,,C F P 为顶点的三角形是直角三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.9.已知抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点(0,3)C ,顶点为点D .(1)求抛物线的解析式;(2)若过点C 的直线交线段AB 于点E ,且:3:5ACE CEB SS =,求直线CE 的解析式 (3)若点P 在抛物线上,点Q 在x 轴上,当以点D 、C 、P 、Q 为顶点的四边形是平行四边形时,求点P 的坐标;(4)已知点450,,(2,0)8H G ⎛⎫ ⎪⎝⎭,在抛物线对称轴上找一点F ,使HF AF +的值最小此时,在抛物线上是否存在一点K ,使KF KG +的值最小,若存在,求出点K 的坐标;若不存在,请说明理由.10.如图1,梯形ABCD 中,AD ∥BC ,AB=AD=DC=5,BC=11.一个动点P 从点B 出发,以每秒1个单位长度的速度沿线段BC 方向运动,过点P 作PQ ⊥BC ,交折线段BA-AD 于点Q ,以PQ 为边向右作正方形PQMN ,点N 在射线BC 上,当Q 点到达D 点时,运动结束.设点P 的运动时间为t 秒(t >0).(1)当正方形PQMN 的边MN 恰好经过点D 时,求运动时间t 的值;(2)在整个运动过程中,设正方形PQMN 与△BCD 的重合部分面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)如图2,当点Q 在线段AD 上运动时,线段PQ 与对角线BD 交于点E ,将△DEQ 沿BD 翻折,得到△DEF ,连接PF .是否存在这样的t ,使△PEF 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.11.在平面直角坐标系中,经过点()0,2A 且与33y x =-平行的直线,交x 轴于点B ,如图1所示.(1)试求B 点坐标,并直接写出ABO ∠的度数;(2)过()1,0M 的直线与AB 成45︒夹角,试求该直线与AB 交点的横坐标;(3)如图2,现有点(,)C m n 在线段AB 上运动,点,(320)D m -+在x 轴上,N 为线段CD 的中点.①试求点N 的纵坐标y 关于横坐标x 的函数关系式;②直接写出N 点的运动轨迹长度为 .12.如图,在平面直角坐标系中,点O 为坐标原点,抛物线21y x bx c 3=-++交x 轴于点A 、点B(点A 在点B 的左边),交y 轴于点C ,直线()y kx 6k k 0=-≠经过点B ,交y 轴于点D ,且CD OD =,1tan OBD 3∠=. ()1求b 、c 的值;()2点()P m,m 在第一象限,连接OP 、BP ,若OPB ODB ∠∠=,求点P 的坐标,并直接判断点P 是否在该抛物线上;()3在()2的条件下,连接PD ,过点P 作PF //BD ,交抛物线于点F ,点E 为线段PF 上一点,连接DE 和BE ,BE 交PD 于点G ,过点E 作EH BD ⊥,垂足为H ,若DBE 2DEH ∠∠=,求EG EF的值.13.在直角坐标平面内,O 为原点,点A 的坐标为(10),,点C 的坐标为(0)4,,直线CM x ∥轴(如图所示).点B 与点A 关于原点对称,直线y x b =+(b 为常数)经过点B ,且与直线CM 相交于点D ,联结OD .(1)求b 的值和点D 的坐标;(2)设点P 在x 轴的正半轴上,若POD 是等腰三角形,求点P 的坐标;14.如图,在平面直角坐标系xOy 中,过⊙T 外一点P 引它的两条切线,切点分别为M ,N ,若60180MPN ︒︒≤∠<,则称P 为⊙T 的环绕点.(1)当⊙O 半径为1时,①在123(1,0),(1,1),(0,2)P P P 中,⊙O 的环绕点是___________;②直线y =2x +b 与x 轴交于点A ,y 轴交于点B ,若线段AB 上存在⊙O 的环绕点,求b 的取值范围;(2)⊙T 的半径为1,圆心为(0,t ),以3,(0)3m m m ⎛⎫> ⎪ ⎪⎝⎭为圆心,33m 为半径的所有圆构成图形H ,若在图形H 上存在⊙T 的环绕点,直接写出t 的取值范围. 15.如图,在平面直角坐标系xOy 中,直线y =12x+2与x 轴交于点A ,与y 轴交于点C .抛物线y =ax 2+bx+c 的对称轴是x =32-且经过A 、C 两点,与x 轴的另一交点为点B . (1)求抛物线解析式.(2)若点P 为直线AC 上方的抛物线上的一点,连接PA ,PC .求△PAC 的面积的最大值,并求出此时点P 的坐标.(3)抛物线上是否存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.16.定义:如果一个三角形中有两个内角α,β满足α+2β=90°,那我们称这个三角形为“近直角三角形”.(1)若△ABC 是“近直角三角形”,∠B >90°,∠C =50°,则∠A = 度;(2)如图1,在Rt △ABC 中,∠BAC =90°,AB =3,AC =4.若BD 是∠ABC 的平分线, ①求证:△BDC 是“近直角三角形”;②在边AC 上是否存在点E (异于点D ),使得△BCE 也是“近直角三角形”?若存在,请求出CE 的长;若不存在,请说明理由.(3)如图2,在Rt △ABC 中,∠BAC =90°,点D 为AC 边上一点,以BD 为直径的圆交BC 于点E ,连结AE 交BD 于点F ,若△BCD 为“近直角三角形”,且AB =5,AF =3,求tan ∠C 的值.17.如图,在直角坐标系中,点C 在第一象限,CB x ⊥轴于B ,CA y ⊥轴于A ,3CB =,6CA =,有一反比例函数图象刚好过点C .(1)分别求出过点C 的反比例函数和过A ,B 两点的一次函数的函数表达式;(2)直线l x ⊥轴,并从y 轴出发,以每秒1个单位长度的速度向x 轴正方向运动,交反比例函数图象于点D ,交AC 于点E ,交直线AB 于点F ,当直线l 运动到经过点B 时,停止运动.设运动时间为t (秒).①问:是否存在t 的值,使四边形DFBC 为平行四边形?若存在,求出t 的值;若不存在,说明理由;②若直线l 从y 轴出发的同时,有一动点Q 从点B 出发,沿射线BC 方向,以每秒3个单位长度的速度运动.是否存在t 的值,使以点D ,E ,Q ,C 为顶点的四边形为平行四边形;若存在,求出t 的值,并进一步探究此时的四边形是否为特殊的平行四边形;若不存在,说明理由.18.如图,在平面直角坐标系中,抛物线()20y ax bx c a =++>与x 轴交于点()1,0A -和点()3,0B ,与y 轴交于点C ,且30OBC ∠=︒.点E 在第四象限且在抛物线上.(1)如(图1),当四边形OCEB 面积最大时,在线段BC 上找一点M ,使得12EM BM +最小,并求出此时点E 的坐标及12EM BM +的最小值; (2)如(图2),将AOC △沿x 轴向右平移2单位长度得到111AO C △,再将111AO C △绕点1A 逆时针旋转α度得到122AO C △,且使经过1A 、2C 的直线l 与直线BC 平行(其中0180α︒<<︒),直线l 与抛物线交于K 、H 两点,点N 在抛物线上.在线段KH 上是否存在点P ,使以点B 、C 、P 、N 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.19.我们规定:有一组邻边相等,且这组邻边的夹角为60︒的凸四边形叫做“准筝形”.(1)如图1,在四边形ABCD 中,270A C ∠+∠=︒,30D ∠=︒,AB BC =,求证:四边形ABCD 是“准筝形”;(2)如图2,在“准筝形”ABCD 中,AB AD =,60BAC BCD ∠=∠=︒,4BC =,3CD =,求AC 的长;(3)如图3,在ABC 中,45A ∠=︒,120ABC ∠=︒,33AB =-D 是ABC 所在平面内一点,当四边形ABCD 是“准筝形”时,请直接写出四边形ABCD 的面积.20.(问题发现)(1)如图①,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E是AB边上一动点,则EC+ED的最小值是.(问题研究)(2)如图②,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、3为半径作⊙A、⊙B,M、N分別是⊙A、⊙B上的动点,点P为x轴上的动点,试求PM+PN的最小值.(问题解决)(3)如图③,该图是某机器零件钢构件的模板,其外形是一个五边形,根据设计要求,边框AB长为2米,边框BC长为3米,∠DAB=∠B=∠C=90°,联动杆DE长为2米,联动杆DE的两端D、E允许在AD、CE所在直线上滑动,点G恰好是DE的中点,点F可在边框BC上自由滑动,请确定该装置中的两根连接杆AF与FG长度和的最小值并说明理由.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)见解析;(2)45°;(3)9.【解析】【分析】(1)利用正方形性质,证△ABH ≌△BCE.可得AH=BE .(2)证△AOH∽△BGH,OH AHGH BH=,OH GHAH BH=,再证△OHG∽△AHB.,得∠AGO=∠ABO=45°;(3)先证△ABG ∽△BFG.得AG BGBG GF=,所以,AG·GF=BG 2=(322=18. 再证△AGO ∽△CGF.得GO AGGF CG=,所以,GO·CG =AG·GF=18.所以,S△OGC =12 CG·GO.【详解】解:(1)∵四边形ABCD是正方形,∴∠ABC=90°,AB=CB,∠ABO=∠ECB =45°∵AF⊥BE,∴∠BAG+∠ABG =∠CBE +∠ABG =90°. ∴∠BAH =∠CBE .∴△ABH ≌△BCE .∴AH =BE .(2)∵∠AOH =∠BGH =90°, ∠AHO =∠BHG , ∴△AOH ∽△BGH ∴OH AH GH BH = ∴OH GH AH BH= ∵∠OHG =∠AHB .∴△OHG ∽△AHB .∴∠AGO =∠ABO =45°,即∠AGO 的度数为定值 (3)∵∠ABC =90°,AF ⊥BE , ∴∠BAG =∠FBG ,∠AGB =∠BGF =90°, ∴△ABG ∽△BFG . ∴AG BG BG GF=,∴AG ·GF =BG 2 =(2=18. ∵△AHB ∽△OHG ,∴∠BAH =∠GOH =∠GBF .∵∠AOB =∠BGF =90°, ∴∠AOG =∠GFC .∵∠AGO =45°,CG ⊥GO , ∴∠AGO =∠FGC =45°. ∴△AGO ∽△CGF . ∴GO AG GF CG=, ∴GO ·CG =AG ·GF =18. ∴S △OGC =12CG ·GO =9. 【点睛】此题为综合题,要熟练掌握正方形性质和相似三角形判定方法还有相似三角形的性质.2.(1)2134y x x =-++;(2)(32,0);(3)①见解析;②CM =1或CM =123+ 【解析】 【分析】 (1)根据点C 在抛物线上和已知对称轴的条件可求出解析式;(2)根据抛物线的解析式求出点B 及已知点C 的坐标,证明△ABC 是等腰直角三角形,根据旋转的性质推出直线EF 与x 轴的夹角为45°,因此设直线EF 的解析式为y=x+b ,设点M 的坐标为(m ,0),推出点F (m ,6-m ),直线EF 与抛物线2134y x x =-++只有一个交点,联立两个解析式,得到关于x 的一元二次方程,根据根的判别式为0得到关于m 的方程,解方程得点M 的坐标.注意有两种情况,均需讨论.(3)①过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,设点M 的坐标为(m ,0),由2PC =及旋转的性质,证明△EHM ≌△MGP ,得到点E 的坐标为(m-1,5-m ),再根据两点距离公式证明EA ED =,注意分两种情况,均需讨论;②把E (m-1,5-m )代入抛物线解析式,解出m 的值,进而求出CM 的长.【详解】(1)∵点()6,0C 在抛物线上,∴103664b c =-⨯++, 得到6=9b c +,又∵对称轴2x =,∴2122()4b b x a =-=-=⨯-, 解得1b =,∴3c =,∴二次函数的解析式为2134y x x =-++; (2)当点M 在点C 的左侧时,如下图:∵抛物线的解析式为2134y x x =-++,对称轴为2x =,()6,0C∴点A (2,0),顶点B (2,4),∴AB=AC=4,∴△ABC 是等腰直角三角形,∴∠1=45°;∵将MPC 逆时针旋转90︒得到△MEF ,∴FM=CM ,∠2=∠1=45°,设点M 的坐标为(m ,0),∴点F (m ,6-m ),又∵∠2=45°,∴直线EF 与x 轴的夹角为45°,∴设直线EF 的解析式为y=x+b ,把点F (m ,6-m )代入得:6-m=m+b ,解得:b=6-2m ,直线EF 的解析式为y=x+6-2m ,∵直线EF 与抛物线2134y x x =-++只有一个交点, ∴262134y x m y x x =+-⎧⎪⎨=-++⎪⎩, 整理得:213204x m +-=, ∴Δ=b 2-4ac=0,解得m=32, 点M 的坐标为(32,0). 当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45°,因此直线EF 与抛物线2134y x x =-++不可能只有一个交点.综上,点M 的坐标为(32,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H , ∵2PC 2)知∠BCA=45°,∴PG=GC=1,∴点G (5,0),设点M 的坐标为(m ,0),∵将MPC 逆时针旋转90︒得到△MEF ,∴EM=PM ,∵∠HEM+∠EMH=∠GMP+∠EMH =90°,∴∠HEM=∠GMP ,在△EHM 和△MGP 中,EHM MGP HEM GMP EM MP ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EHM ≌△MGP (AAS ),∴EH=MG=5-m ,HM=PG=1,∴点H (m-1,0),∴点E 的坐标为(m-1,5-m );∴22(12)(50)m m --+--221634m m -+又∵D 为线段BC 的中点,B (2,4),C (6,0),∴点D (4,2),∴22(14)(52)m m --+--221634m m -+∴EA= ED .当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(m-1,5-m ),因此EA= ED .②当点E 在(1)所求的抛物线2134y x x =-++上时, 把E (m-1,5-m )代入,整理得:m 2-10m+13=0,解得:m=523+m=523-,∴CM =231或CM =123+.【点睛】本题是二次函数综合题,熟练掌握二次函数的图象和性质、旋转的性质、分类讨论的思想是解题的关键.3.(1)1b =;(2)120,4m m ;(3)71m =-;(4)03m <<或4m >. 【解析】【分析】(1)将A 点坐标代入函数解析式即可求得b 的值;(2)分别表示出P 、Q 、M 的坐标,根据Q 、M 的横坐标相同,它们重合时纵坐标也相同,列出方程求解即可;(3)分别表示出PQ 和MQ 的长度,根据矩形PQMN 是正方形时PQ MQ =,即可求得m 的值,再根据顶点在正方形内部,排除不符合条件的m 的值;(4)分1m ,13m <<,3m =,3m >四种情况讨论,结合图形分析即可.【详解】解:(1)将点()3,0A 代入21322y x bx =-++ 得21303322b =-⨯++, 解得b=1,; (2)由(1)可得函数的解析式为21322y x x =-++, ∴213,22P m m m ⎛⎫-++ ⎪⎝⎭,∵PQ l ⊥于点Q , ∴233,122m m Q ⎛⎫ ⎪⎝-+⎭+, ∵M 是直线l 上的一点,其纵坐标为32m -+, ∴3(3,)2m M -+,若点Q 与点M 重合,则 2133222m m m -++=-+, 解得120,4m m ;(3)由(2)可得|3|PQ m ,223131)2222|(()||2|MQ m m m m m ,当矩形PQMN 是正方形时,PQ MQ = 即212|2||3|m m m , 即22123m m m 或22123m m m , 解22123m m m 得1271,71m m , 解22123m m m 得3233,33m m ,又2131(1)2222y x x x =-++=--+, ∴抛物线的顶点为(1,2),∵抛物线的顶点在该正方形内部,∴P 点在抛物线对称轴左侧,即1m <,且M 点的纵坐标大于抛物线顶点的纵坐标,即322m ,解得12m <-,故m 的值为71;(4)①如下图当1m 时,若抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小, 则M 点的纵坐标应该小于P 点纵坐标,且P 点应该在x 轴上侧, 即2313222m m m 且213022m m -++>, 解2313222mm m 得04m <<, 解213022m m -++>得13m -<<, ∴01m <≤,②如下图当13m <<时,若抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小, 则M 点的纵坐标应该小于P 点纵坐标,即2313222m m m ,解得04m <<, ∴13m <<;③当3m =时,P 点和M 点都在直线x=3上不构成矩形,不符合题意;④如下图当3m >时,若抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小, 则M 点的纵坐标应该大于P 点纵坐标, 即2313222m m m ,解得0m <或4m >, 故4m >,综上所述03m <<或4m >.【点睛】本题考查二次函数综合,正方形的性质定理,求二次函数解析式.能分别表示出M 、P 、Q 的坐标并结合图形分析是解决此题的关键,注意分类讨论. 4.(1)P (2,13);(2)a 的取值范围为:a <0或a >4;(3)①D (m ,m +3); ②2,3,4.【解析】 【分析】(1)把m =1代入二次函数22(0)63m m y x x m m =-+>解析式中,进而求顶点P 的坐标即可; (2)把点Q (a ,b )代入二次函数22(0)63m m y x x m m =-+>解析式中,根据0b m ->得到关于a 的一元二次不等式即一元一次不等式组,解出a 的取值范围即可; (3)①过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,求出二次函数与y 轴的交点A 的坐标,得到OA 的长,再根据待定系数法求出直线AP 的解析式,进而求出与x 轴的交点B 的坐标,得到OB 的长;通过证明△ADF ≌△ABO ,得到AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,求出点D 的坐标;②因为二次函数的图象与正方形ABCD 的边CD 有公共点,由①同理可得:C (m+3,3),分当x 等于点D 的横坐标时与当x 等于点C 的横坐标两种情况,进行讨论m 可能取的整数值即可.【详解】解:(1)当m =1时,二次函数为212163y x x =-+, ∴顶点P 的坐标为(2,13); (2)∵点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上, ∴2263m m b a a m =-+, 即:2263m m b m a a -=- ∵0b m ->,∴2263m m a a ->0, ∵m >0,∴2263a a ->0, 解得:a <0或a >4,∴a 的取值范围为:a <0或a >4;(3)①如下图,过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,∵二次函数的解析式为2263m m y x x m =-+, ∴顶点P (2,3m ), 当x=0时,y=m ,∴点A (0,m ),∴OA=m ;设直线AP 的解析式为y=kx+b(k≠0),把点A (0,m ),点P (2,3m )代入,得:23m b m k b =⎧⎪⎨=+⎪⎩, 解得:3m k b m⎧=-⎪⎨⎪=⎩,∴直线AP 的解析式为y=3m -x+m , 当y=0时,x=3,∴点B (3,0);∴OB=3;∵四边形ABCD 是正方形,∴AD=AB ,∠DAF+∠FAB=90°,且∠OAB+∠FAB =90°,∴∠DAF=∠OAB ,在△ADF 和△ABO 中, DAF OAB AFD AOB AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△ABO (AAS ),∴AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,∴点D 的坐标为:(m ,m+3);②由①同理可得:C (m+3,3),∵二次函数的图象与正方形ABCD 的边CD 有公共点,∴当x =m 时,3y m ≤+,可得322363m m m m -+≤+,化简得:32418m m -≤. ∵0m >,∴2184m m m -≤,∴218(2)4m m--≤, 显然:m =1,2,3,4是上述不等式的解,当5m ≥时,2(2)45m --≥,18 3.6m ≤,此时,218(2)4m m-->, ∴符合条件的正整数m =1,2,3,4; 当x = m +3时,y ≥3,可得2(3)2(3)363m m m m m ++-+≥, ∵0m >,∴21823m m m ++≥,即218(1)2m m++≥, 显然:m =1不是上述不等式的解,当2m ≥时,2(1)211m ++≥,189m ≤,此时,218(1)2m m++>恒成立, ∴符合条件的正整数m =2,3,4;综上:符合条件的整数m 的值为2,3,4.【点睛】本题考查二次函数与几何问题的综合运用,熟练掌握二次函数的图象和性质、一次函数的图象和性质、正方形的性质是解题的关键.5.(1)抛物线的解析式为21142y x x =-,点F 的坐标为()20,;(2)4EF =;(3)点P 的坐标为()()()466121456---,,,,,或()22.-, 【解析】【分析】(1)因为抛物线经过原点,A,B 点,利用待定系数法求得抛物物线的解析式,再令y=0,求得与x 轴的交点F 点的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三九年级上册上册数学压轴题专题练习(解析版)一、压轴题1.已知P是⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有动点A、B(不与P,Q重合),连接AP、BP. 若∠APQ=∠BPQ.(1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O的半径;(2)如图2,选接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,若∠NOP+2∠OPN=90°,探究直线AB与ON的位置关系,并证明.2.如图1,△ABC中,AB=AC=4,∠BAC=100,D是BC的中点.小明对图1进行了如下探究:在线段AD上任取一点E,连接EB.将线段EB绕点E逆时针旋转80°,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.3.如图,在平面直角坐标系中,直线1l:162y x=-+分别与x轴、y轴交于点B、C,且与直线2l:12y x=交于点A.(1)分别求出点A 、B 、C 的坐标;(2)若D 是线段OA 上的点,且COD △的面积为12,求直线CD 的函数表达式; (3)在(2)的条件下,设P 是射线CD 上的点,在平面内里否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.4.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.5.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连接AP 、BP ,过点C 作CM BP 交PA 的延长线于点M .(1)求APC ∠和BPC ∠的度数;(2)求证:ACM BCP △≌△;(3)若1PA =,2PB =,求四边形PBCM 的面积;(4)在(3)的条件下,求AB 的长度.6.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F .(1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).7.如图, AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得DAC AED ∠=∠.(1)求证: AC 是⊙O 的切线;(2)若点E 是BC 的中点, AE 与BC 交于点F ,①求证: CA CF =;②若⊙O 的半径为3,BF =2,求AC 的长.8.如图,在Rt △AOB 中,∠AOB =90°,tan B =34,OB =8. (1)求OA 、AB 的长;(2)点Q 从点O 出发,沿着OA 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点A 出发,沿着AB 方向也以1个单位长度秒的速度匀速运动,设运动时间为t 秒(0<t ≤5)以P 为圆心,PA 长为半径的⊙P 与AB 、OA 的另一个交点分别为C 、D ,连结CD ,QC .①当t 为何值时,点Q 与点D 重合?②若⊙P 与线段QC 只有一个公共点,求t 的取值范围.9.已知抛物线y =﹣14x 2+bx +c 经过点A (4,3),顶点为B ,对称轴是直线x =2.(1)求抛物线的函数表达式和顶点B 的坐标;(2)如图1,抛物线与y 轴交于点C ,连接AC ,过A 作AD ⊥x 轴于点D ,E 是线段AC 上的动点(点E 不与A ,C 两点重合);(i )若直线BE 将四边形ACOD 分成面积比为1:3的两部分,求点E 的坐标;(ii )如图2,连接DE ,作矩形DEFG ,在点E 的运动过程中,是否存在点G 落在y 轴上的同时点F 恰好落在抛物线上?若存在,求出此时AE 的长;若不存在,请说明理由.10.如图 1,抛物线21:4C y ax ax c =-+交x 轴正半轴于点()1,0,A B ,交y 轴正半轴于C ,且OB OC =.(1)求抛物线1C 的解析式;(2)在图2中,将抛物线1C 向右平移n 个单位后得到抛物线2C ,抛物线2C 与抛物线1C 在第一象限内交于一点P ,若CAP ∆的内心在CAB △内部,求n 的取值范围(3)在图3中,M 为抛物线1C 在第一象限内的一点,若MCB ∠为锐角,且3tan MCB ∠>,直接写出点M 横坐标M x 的取值范围___________11.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB 及线段AB 外一点C ,我们称∠ACB 为点C 关于线段AB 的视角. 如图2,点Q 在直线l 上运动,当点Q 关于线段AB 的视角最大时,则称这个最大的“视角”为直线l 关于线段AB 的“视角”.(1)如图3,在平面直角坐标系中,A (0,4),B (2,2),点C 坐标为(﹣2,2),点C 关于线段AB 的视角为 度,x 轴关于线段AB 的视角为 度;(2)如图4,点M 是在x 轴上,坐标为(2,0),过点M 作线段EF ⊥x 轴,且EM =MF =1,当直线y =kx (k ≠0)关于线段EF 的视角为90°,求k 的值;(3)如图5,在平面直角坐标系中,P 3,2),Q 3,1),直线y =ax +b (a >0)与x 轴的夹角为60°,且关于线段PQ 的视角为45°,求这条直线的解析式.12.如图,抛物线y =﹣(x +1)(x ﹣3)与x 轴分别交于点A 、B (点A 在B 的右侧),与y 轴交于点C ,⊙P 是△ABC 的外接圆.(1)直接写出点A 、B 、C 的坐标及抛物线的对称轴;(2)求⊙P 的半径;(3)点D 在抛物线的对称轴上,且∠BDC >90°,求点D 纵坐标的取值范围;(4)E 是线段CO 上的一个动点,将线段AE 绕点A 逆时针旋转45°得线段AF ,求线段OF 的最小值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1) ☉O 的半径是32;(2)AB ∥ON ,证明见解析. 【解析】【分析】(1) 连接AB ,根据题意可AB 为直径,再用勾股定理即可.(2) 连接OA , OB , OQ ,根据圆周角定理可得Q 2APQ,B0Q 2BPO AO ∠=∠∠=∠,从而证出OC AB ⊥,延长PO 交☉0于点R ,则有2OPN QOR ∠=∠,再根据三角形内角和定理求得OQN ∠=90︒得证.【详解】解:(1)连接AB ,在☉0中,o APQ BPQ 45∠=∠=,o APB APQ BPQ 90∴∠=∠+∠=AB ∴是☉0的直径.Rt APB ∴∆在中,22AB AP BP =+AB=3∴∴☉0的半径是32(2)AB//ON证明:连接OA , OB , OQ ,在☉0中, AQ AQ =, BQ BQ =,Q 2APQ,B0Q 2BPO AO ∴∠=∠∠=∠.又APQ BPQ ∠=∠,AOQ BOQ ∴∠=∠.在AOB ∆中,OA OB =, AOQ BOQ ∠=∠,OC AB ∴⊥,即o OCA 90∠=连接OQ ,交AB 于点C在☉0中,OP OQ =OPN OQP.∴∠=∠延长PO 交☉0于点R ,则有2OPN QOR ∠=∠o NOP 2OPN 90∴∠+∠=,又:o NOP NOQ QOR 180∠+∠+∠=,NOQ 90O ∴∠=NOQ OCA 180O ∴∠+∠= .AB//ON ∴【点睛】本题考查了圆周角定理,勾股定理、等腰三角形的性质以及三角形的内角和定理,是一道综合题,灵活运用相关知识是解题的关键.2.(1)//CF AB ,证明见解析;(2)成立,证明见解析;(3)AF 的最小值为4【解析】【分析】(1)结合题意,根据旋转的知识,得BE EF =,80BEF ∠= ,再根据三角形内角和性质,得50BFD ∠=;结合AB=AC=4,D 是BC 的中点,推导得CFD BAD ∠=∠,即可完成解题;(2)由(1)可知:EB=EF=EC ,得到B ,F ,C 三点共圆,点E 为圆心,得∠BCF=12∠BEF=40°,从而计算得ABC BCF ∠=∠,完成求解; (3)由(1)和(2)知,CF ∥AB ,因此得点F 的运动路径在CF 上;故当点E 与点A 重合时,AF 最小,从而完成求解.【详解】(1)∵将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F∴BE EF =,80BEF ∠=∴180502BEF EBF BFE -∠∠=∠== ,即50BFD ∠= ∵AB=AC=4,D 是BC 的中点∴BD DC =,AD BC ⊥∴BF CF =,ABD ACD △≌△∴FBD FCD △≌△,1005022BAC BAD CAD ∠∠=∠=== ∴50BFD CFD ∠=∠=∴50CFD BAD ∠=∠=∴//CF AB(2)如图,连接BE 、EC 、BF 、EF由(1)可知:EB=EF=EC∴B ,F ,C 三点共圆,点E 为圆心∴∠BCF=12∠BEF=40° ∵50BAD ∠=,AD BC ⊥∴9040ABC BAD ∠=-∠=∴ABC BCF∠=∠∴//CF AB,(1)中的结论仍然成立(3)由(1)和(2)知,//CF AB∴点F的运动路径在CF上如图,作AM⊥CF于点M∵8090BEF∠=<∴点E在线段AD上运动时,点B旋转不到点M的位置∴故当点E与点A重合时,AF最小此时AF1=AB=AC=4,即AF的最小值为4.【点睛】本题考查了旋转、等腰三角形及底边中线、垂直平分线、全等三角形、三角形内角和、平行线、圆心角、圆周角的知识;解题的关键是熟练掌握等腰三角形、旋转、垂直平分线、平行线、圆心角和圆周角的知识,从而完成求解.3.(1)A(6,3),B(12,0),C(0,6);(2)y=-x+6;(3)满足条件的Q点坐标为:(-3,3)或22)或(6,6).【解析】【分析】(1)根据坐标轴上点的坐标特点,可求出B,C两点坐标.两个函数解析式联立形成二元一次方程组,可以确定A点坐标.(2)根据坐标特点和已知条件,采用待定系数法,即可作答.(3)在(2)的条件下,设P是射线CD上的点,在平面内存在点Q,使以O、C、P、2为顶点的四边形是菱形,如图所示,分三种情况考虑:①当四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形;②当四边形OP2CQ2为菱形时;③当四边形OQ3P3C为菱形时;分别求出Q坐标即可.【详解】解:(1)由题意得16212y xy x⎧=-+⎪⎪⎨⎪=⎪⎩解得63xy=⎧⎨=⎩∴A(6,3)在y=-162x+中,当y=0时,x=12,∴B(12,0)当x=0时,y=6,∴C(0,6).(2)∵点D在线段OA上,∴设D(x,12x) (0≤x≤6)∵S△COD=12∴12×6x=12x=4∴D(4,2),设直线CD的表达式为y=kx+b,把(10,6)与D(4,2)代入得624bk b=⎧⎨=+⎩解得16 kb=-⎧⎨=⎩直线CD的表达式为y=-x+6(3) 存在点2,使以O、C、P、Q为顶点的四边形是菱形,如图所示,分三种情况考虑:①当四边形OP1Q1C为菱形时OC==OP1,由∠COP1=90°,得到四边形OP1Q1C为正方形,此时Q1P1=OP1=OC=6,即Q:(6,6);②当四边形OP2CQ2为菱形时,OP2=CP2,由C坐标为(0,6),得到Q2纵坐标为3,把y=3代入直线OQ2解析式y=-x中,得:x=-3,此时Q2(-3,3);③当四边形0Q3P3C为菱形时,OC=CP3,则有OQ3=OC=CP3=P3Q3=6,设坐标为(x,-x+6),∵OC=CP3∴x2+x2= CP32= OC2=62解得,2P的坐标为2,2)此时Q322).综上,点Q的坐标是(-3,3)或2,2)或(6,6).【点睛】 本题是一次函数、勾股定理、特殊的平行四边形的综合应用,是一道压轴题,在考试中第一问必须作答,二三问可以根据自己的情况进行取舍.4.(1)12;(2)53;(3)202.【解析】【分析】(1)如图1中,过点B 作BD CA ⊥,交CA 延长线于点D ,通过构造直角三角形,求出BD 利用三角形面积公式求解即可.(2)如图示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,确定点P 的位置,利用勾股定理与矩形的性质求出CQ 的长度即为答案.(3)解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、,通过轴对称性质的转化,最终确定最小值转化为SN 的长.【详解】(1)如解图1所示,过点B 作BD CA ⊥,交CA 延长线于点D ,135BAC ∠=,180********BAD BAC ∴∠=-∠=-=,BD CA ⊥,交CA 延长线于点D ,BAD ∴为等腰直角三角形,且90BDA ∠=,BD AD ∴=,在BAD 中,,90BD AD BDA =∠=,222BD AD AB ∴+=,即222BD AB =,42AB =,2222(42)32BD AB ∴===,解得:4BD =,6AC =,11641222ABC S AC BD ∴=⋅=⨯⨯=.(2)如解图2所示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M , D 关于AB 的对称点Q ,CQ 交AB 于点P ,PD PQ ∴=,PC PD PC PQ CQ ∴+=+=,点P 为AB 上的动点,PC PD CQ ∴+≥,∴当点P 处于解图2中的位置,PC PD +取最小值,且最小值为CQ 的长度, 点C 为半圆AB 的中点,90COB ∴∠=,90BOD COD COB ∠+∠=∠=,11903033BOD COB ∴∠=∠=⨯=, 10AB =,1110522OD AB ∴==⨯=, 在Rt ODH △中,由作图知,90OHD ∠=,且30HOD BOD ∠=∠=,155,222DH OD QH DH ∴==∴==,2OH ∴===, 由作图知,四边形OMQH 为矩形,5,22OM QH MQ OH ∴====, 515522CM OM OC ∴=+=+=,CQ ∴===,PC PD ∴+的最小值为.(3)如解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、, 点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,PE SE ∴=,FP FN =,SOA POA ∠=∠,,NOB POB OS OP ON ∠=∠==,.PE EF FP SE EF FN SN ∴++=++=,SOA NOB POA POB ∠+∠=∠+∠,E 为OA 上的点,F 为OB 上的点PE EF FP SN ∴++≥,∴当点E F 、处于解图3的位置时,PE EF FP ++的长度取最小值,最小值为SN 的长度,45POA POB AOB ∠+∠=∠=,45SOA NOB ∴∠+∠=,454590SON SOA AOB NOB ∴∠=∠+∠+∠=+=.扇形AOB 的半径为20,20OS ON OP ∴===,在Rt SON 中,90SON ∠=,20,90OS ON SON ==∠=PE EF FP ∴++的长度的最小值为202【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.5.(1)∠APC=60°,∠BPC=60°;(2)见解析;(315344)219【解析】【分析】(1)由△ABC是等边三角形,可知∠ABC=∠BAC=∠ACB=60°,由圆周角定理可知∠APC=∠ABC=60°,∠BPC=∠BAC=60°;(2)利用上题中得到的相等的角和等边三角形中相等的线段利用AAS证得两三角形全等即可;(3)根据CM∥BP说明四边形PBCM是梯形,利用上题证得的两三角形全等判定△PCM为等边三角形,进而求得PH的长,利用梯形的面积公式计算四边形的面积即可;(4)过点B作BQ⊥AP,交AP的延长线于点Q,过点A作AN⊥BC于点N,连接OB,利用勾股定理求出AB的长,在△ABC中,利用等边三角形的性质求出BN,在△BON中利用勾股定理求出OB,最后根据弧长公式求出弧AB的长.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵=BC BC,=AC AC,∴∠APC=∠ABC=60°,∠BPC=∠BAC=60°;(2)证明:∵CM∥BP,∴∠BPM+∠M=180°,∠PCM=∠BPC,∵∠BPC=∠BAC=60°,∴∠PCM=∠BPC=60°,∴∠M=180°-∠BPM=180°-(∠APC+∠BPC)=180°-120°=60°,∴∠M=∠BPC=60°,又∵A、P、B、C四点共圆,∴∠PAC+∠PBC=180°,∵∠MAC+∠PAC=180°∴∠MAC=∠PBC∵AC=BC,在△ACM和△BCP中,M BPCMAC PBCAC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACM≌△BCP(AAS);(3)∵CM∥BP,∴四边形PBCM为梯形,作PH⊥CM于H,∵△ACM≌△BCP,∴CM=CP,AM=BP,又∠M=60°,∴△PCM为等边三角形,∴CM=CP=PM=PA+AM=PA+PB=1+2=3,在Rt△PMH中,∠MPH=30°,∴PH=332,∴S四边形PBCM=12(PB+CM)×PH=12(2+3)×33=153;(4)过点B作BQ⊥AP,交AP的延长线于点Q,过点A作AN⊥BC于点N,连接OB,∵∠APC=∠BPC=60°,∴∠BPQ=60°,∴∠PBQ=30°,∴PQ=12PB=1, ∴在△BPQ 中,BQ=2221=3-,∴在△AQB 中,AB=()()2222=113=7AQ BQ +++,∵△ABC 为等边三角形,∴AN 经过圆心O ,∴BN=12AB=72, ∴AN=2221=AB BN -, 在△BON 中,设BO=x ,则ON=212x -, ∴222721=22x x ⎛⎫⎛⎫+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 解得:x=21, ∵∠BOA =2∠BCA =120°,∴AB =211202213=1809ππ⨯.【点睛】本题考查了圆周角定理,全等三角形的判定与性质,等边三角形的判定,四边形的面积,勾股定理,弧长公式,是一道比较复杂的几何综合题,解题关键是能够掌握并灵活运用全等三角形的判定与性质等知识.6.(1)证明见解析;(2)1323 【解析】【分析】(1)根据△ABC 是等边三角形,从而可以得出∠BAC=∠C ,结合圆周角定理即可证明;(2)过点A 作AG ⊥BC 于点G ,根据△ABC 是等边三角形,可以得到BG 、AG 的值,由BF ∥AG 可得到AF BG EF EB =,求出BE ,最后利用勾股定理即可求解; (3)过点O 作OM ⊥BC 于点M ,由题(2)知AF BG EF EB =,CG=BG=1122AC a =,可以得到BM 的值,根据BF ∥AG ,可证得△EBF ∽△EGA ,列比例式求出BF ,从而表示出△OFB 的面积.【详解】(1)证明:∵△ABC 是等边三角形,∴∠BAC=∠C=60°, ∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D ,∴BD=BE ;(2)解:如图所示,过点A 作AG ⊥BC 于点G ,∵△ABC 是等边三角形,AC=6,∴BG=11322BC AC ==, ∴在Rt △ABG 中,333AG BG ==∵BF ⊥EC ,∴BF ∥AG ,∴AF BG EF EB=, ∵AF :EF=3:2, ∴BE=23BG=2, ∴EG=BE+BG=3+2=5,在Rt △AEG 中,()2222335213AE AG EG =+=+=(3)解:如图所示,过点O 作OM ⊥BC 于点M ,由题(2)知AF BG EF EB =,CG=BG=1122AC a =, ∴3=2AF BG EF EB =, ∴22113323EB BG a a ==⨯=, ∴EC=CG+BG+BE=11142233a a a a ++=, ∴EM=12EC =23a , ∴BM=EM-BE=211333a a a -=, ∵BF ∥AG ,∴△EBF ∽△EGA , ∴123=11532a BF BE AG EG a a ==+, ∵332AG BG a ==, ∴2335BF ==, ∴△OFB 的面积=21313223BF BM a a ⋅=⨯=. 【点睛】本题主要考查了圆的综合题,关键是根据等边三角形的性质,勾股定理和相似三角形的判定和性质求解.7.(1)详见解析;(2)①详见解析;②8【解析】【分析】(1)先得到90ADB ∠=︒,利用圆周角定理得到DBA DAC ∠=∠,即可证明AC 是切线;(2)①利用等弧所对的圆周角相等,得到BAE DAE ∠=∠,然后得到CFA CAF ∠=∠,即可得到结论成立;②设AC CF x ==,利用勾股定理,即可求出AC 的长度.【详解】(1)证明: ∵AB 是⊙O 的直径,∴90ADB ∠=︒,∴90DBA DAB ∠+∠=︒,∵DEA DBA ∠=∠,DAC DEA ∠=∠,∴DBA DAC ∠=∠,∴90DAC DAB ∠+∠=︒,∴90CAB ∠=︒,∴AC 是⊙O 的切线;(2)① ∵点E 是弧BD 的中点,∴BAE DAE ∠=∠,∵CFA DBA BAE ∠=∠+∠,CAF CAD DAE ∠=∠+∠,∴CFA CAF ∠=∠∴CA CF =;② 设CA CF x ==,在Rt ABC ∆中,2BC x =+,CA x =,6AB =,由勾股定理可得222(2)6x x +=+,解得:8x =,∴8AC =.【点睛】本题考查了切线的判定,等角对等边,以及勾股定理,要证直线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.8.(1)OA =6,AB =10;(2)3011;(3)0<t≤1813或3011<t≤5. 【解析】【分析】(1)在Rt △AOB 中,tan B =34,OB =8,即可求解; (2)利用△ACD ∽△ABO 、AD +OQ =OA ,即可求解;(3)分QC 与圆P 相切、QC ⊥OA 两种情况,求解即可.【详解】解:(1)在Rt △AOB 中,tan B =34,OB =8, ∴34OA OB = ,∴OA =6,则AB =10; (2)OP =AP ﹣t ,AC =2t ,∵AC 是圆直径,∴∠CDA =90°,∴CD ∥OB ,∴△ACD ∽△ABO ,∴AC AD AB AO = ,即: 2,106t AD = ∴AD =65t , 当Q 与D 重合时,AD +OQ =OA , ∴66,5t t += 30.11t ∴= (3)当QC 与圆P 相切时,∠QAC =90°,∵OQ =AP =t ,∴AQ =6﹣t ,AC =2t ,∵∠A =∠A ,∠QCA =∠ABO ,∴△AQC ∽△ABO ,∴,AQ AC AB AO = 即:62106t t -= ,18.13t ∴= ∴当18013t <≤时,圆P 与QC 只有一个交点, 当QC ⊥OA 时,D 、Q 重合,由(1)知: 30.11t =∴30511t <≤时,圆P 与线段QC 只有一个交点, 故:当圆P 与线段只有一个交点,t 的取值范围为:18013t <≤或30511t <≤. 【点睛】本题为圆的综合题,涉及到圆与直线的关系、三角形相似等知识点,(3)是本题的难点,要注意分析QC 和圆及线段的位置关系分类求解.9.(1)y =﹣14x 2+x +3,顶点B 的坐标为(2,4);(2)(i )点E 的坐标为(85,3)或(125,3);(ii )存在;当点G 落在y 轴上的同时点F 恰好落在抛物线上,此时AE 的长为43. 【解析】【分析】(1)由题意得出21441,43,124b cb⎧-⨯++=⎪⎪⎨-=⎪⎛⎫⨯-⎪ ⎪⎝⎭⎩,解得1,3,bc=⎧⎨=⎩,得出抛物线的函数表达式为:y=﹣14x2+x+3=﹣14(x﹣2)2+4,即可得出顶点B的坐标为(2,4);(2)(i)求出C(0,3),设点E的坐标为(m,3),求出直线BE的函数表达式为:y=12m--x+462mm--,则点M的坐标为(4m﹣6,0),由题意得出OC=3,AC=4,OM=4m﹣6,CE=m,则S矩形ACOD=12,S梯形ECOM=15182m-,分两种情况求出m的值即可;(ii)过点F作FN⊥AC于N,则NF∥CG,设点F的坐标为:(a,﹣14a2+a+3),则NF=3﹣(﹣14a2+a+3)=14a2﹣a,NC=﹣a,证△EFN≌△DGO(ASA),得出NE=OD=AC=4,则AE=NC=﹣a,证△ENF∽△DAE,得出NF NEAE AD=,求出a=﹣43或0,当a=0时,点E与点A重合,舍去,得出AE=NC=﹣a=43,即可得出结论.【详解】(1)∵抛物线y=﹣14x2+bx+c经过点A(4,3),对称轴是直线x=2,∴21441, 43,124b cb⎧-⨯++=⎪⎪⎨-=⎪⎛⎫⨯-⎪ ⎪⎝⎭⎩解得1,3, bc=⎧⎨=⎩∴抛物线的函数表达式为:y=﹣14x2+x+3,∵y=﹣14x2+x+3=﹣14(x﹣2)2+4,∴顶点B的坐标为(2,4);(2)(i)∵y=﹣14x2+x+3,∴x=0时,y=3,则C点的坐标为(0,3),∵A(4,3),∴AC∥OD,∵AD⊥x,∴四边形ACOD是矩形,设点E的坐标为(m,3),直线BE的函数表达式为:y=kx+n,直线BE交x轴于点M,如图1所示:则24,3, k nmk n+=⎧⎨+=⎩解得:1,246,2kmmnm-⎧=⎪⎪-⎨-⎪=⎪-⎩,∴直线BE的函数表达式为:y=12m--x+462mm--,令:y=12m--x+462mm--=0,则x=4m﹣6,∴点M的坐标为(4m﹣6,0),∵直线BE将四边形ACOD分成面积比为1:3的两部分,∴点M在线段OD上,点M不与点O重合,∵C(0,3),A(4,3),M(4m﹣6,0),E(m,3),∴OC=3,AC=4,OM=4m﹣6,CE=m,∴S矩形ACOD=OC•AC=3×4=12,S梯形ECOM=12(OM+EC)•OC=12(4m﹣6+m)×3=15182m-,分两种情况:①S ECOMS ACOD梯形矩形=14,即1518212m-=14,解得:m=85,∴点E的坐标为:(85,3);②S ECOMS ACOD梯形矩形=34,即1518212m-=34,解得:m=125,∴点E的坐标为:(125,3);综上所述,点E的坐标为:(85,3)或(125,3);(ii)存在点G落在y轴上的同时点F恰好落在抛物线上;理由如下:由题意得:满足条件的矩形DEFG在直线AC的下方,过点F作FN⊥AC于N,则NF∥CG,如图2所示:设点F的坐标为:(a,﹣14a2+a+3),则NF=3﹣(﹣14a2+a+3)=14a2﹣a,NC=﹣a,∵四边形DEFG与四边形ACOD都是矩形,∴∠DAE=∠DEF=∠N=90°,EF=DG,EF∥DG,AC∥OD,∴∠NEF=∠ODG,∠EMC=∠DGO,∵NF∥CG,∴∠EMC=∠EFN,∴∠EFN=∠DGO,在△EFN和△DGO中,∠NEF=∠ODG,EF=DG,∠EFN=∠DGO,∴△EFN≌△DGO(ASA),∴NE=OD=AC=4,∴AC﹣CE=NE﹣CE,即AE=NC=﹣a,∵∠DAE=∠DEF=∠N=90°,∴∠NEF+∠EFN=90°,∠NEF+∠DEA=90°,∴∠EFN=∠DEA,∴△ENF∽△DAE,∴NE NFAD AE=,即43=214a aa--,整理得:34a2+a=0,解得:a=﹣43或0,当a=0时,点E与点A重合,∴a=0舍去,∴AE=NC=﹣a=43,∴当点G落在y轴上的同时点F恰好落在抛物线上,此时AE的长为43.【点睛】本题是二次函数综合题目,考查了二次函数解析式的求法、二次函数的性质、一次函数解析式的求法、坐标与图形性质、矩形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质、梯形面积公式等知识;本题综合性强,属于中考压轴题型.10.(1)()221y x =--;(2)1023n <<;(3)552M x << 【解析】【分析】(1)由题意可得对称轴方程,有二次函数对称性,由A 点坐标可求B 点坐标,代入解析式可得;(2)根据函数图像平移可得新抛物线解析式,画出图像可得交点P ,由题意可得ACB BCP ∠>∠,过点C 作//l x 轴.作PD l ⊥,可得ACO PCD ∠=∠,设()2,43P t t t -+,由13tan ACD tan PCD ∠=∠=可得关于t 的方程,解得t, 再将P 代入2C 解析式中得n 的值,根据Q,P 在第一象限内得n 的取值范围;(3) 当MCB ∠为直角时,可求直线CB 的解析式为:y=-x+3,直线CM 的解析式为:y=x+3,运用直线与曲线联立,可求CM 与抛物线的交点M 横坐标为:x=5;当MCB ∠为锐角且3tan MCB ∠=时,过点M 作MN CB ⊥于N,则3MN CN=,设M 点坐标为()2,43t t t -+,直线CB 解析式为y=-x+3,可求直线MN 解析式为:253y x t t =+-+,将直线MN 与直线CB 解析式联立可得:N 221515,32222t t t t ⎛⎫-+-+ ⎪⎝⎭, 由两点间距离公式可得2MN = 2213222t t ⎛⎫- ⎪⎝⎭;2CN =2215222t t ⎛⎫- ⎪⎝⎭;由3MN CN =可得:52t =,进而可得满足已知条件的点M 横坐标M x 的取值范围.【详解】解:()1对称轴为422a x a-=-= ()3,0B ∴()0,1C ∴代入 ()224321y x x x ∴=-+=-- ()()222:21C x n ---()2423x n x =-++CAP ∆的内心I 在CAB △内部,ACB BCP ∴∠>∠∴当ACB BCP ∠=∠时过C 作//l x 轴.作PD l ⊥,ACB BCP ∠=∠90,OCD ∠=45,DCB ∠=,ACO PCD ∴∠=∠13tan ACD tan PCD ∠=∠= 设()2,43P t t t -+ 13PD CD ∴= 3p y DP OC +==214333t t t ∴-++= 113t =将P 代入2C 解析式中103n ∴=又P 在第一象限内h AB ∴>2n ∴>1023n ∴<<(3) 552M x <<; 当MCB ∠为直角时,如下图所示:由(1)(2)可得:直线CB 的解析式为:y=-x+3,MCB ∠为直角,C(0,3),∴直线CM 的解析式为:y=x+3,则CM 与抛物线的交点坐标M 横坐标为:2343x x x +=-+,解得:x=5或0(舍去),所以,当MCB ∠为直角时,5M x =;当MCB ∠为锐角且3tan MCB ∠=时,如下图所示:过点M 作MN CB ⊥于N,则3MN CN=,设M 点坐标为()2,43t t t -+, MN CB ⊥,直线CB 解析式为y=-x+3,∴MN 解析式可设:y=x+b,将P ()2,43t t t -+代入解析式可得:b=253t t -+,则直线MN 解析式为:253y x t t =+-+,将直线MN 与直线CB 解析式联立可得: N 点坐标为221515,32222t t t t ⎛⎫-+-+ ⎪⎝⎭, ∴2MN =2222215154332222t t t t t t t ⎛⎫⎛⎫+-+-+-+- ⎪ ⎪⎝⎭⎝⎭ = 2213222t t ⎛⎫- ⎪⎝⎭; 2CN = 222215152222t t t t ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭ =2215222t t ⎛⎫- ⎪⎝⎭; 由3MN CN=可得:2213221522t t t t --=3; 解得:52t =或0(舍去) ; ∴MCB ∠为锐角,且3tan MCB ∠>时,点M 的横坐标M x 的取值范围为:552M x <<. 【点睛】本题综合考查了二次函数的图像和性质,题目较难,熟练掌握二次函数的图像和性质,运用数形结合解决二次函数综合问题是解题的关键.11.(1)45,45;(2)k =33±;(3)y =3x +3﹣2 【解析】【分析】(1)如图3,连接AC ,则∠ABC=45°;设M 是x 轴的动点,当点M 运动到点O 时,∠AOB=45°,该视角最大,即可求解;(2)如图4,以点M 为圆心,长度1为半径作圆M ,当圆与直线y=kx 相切时,直线y=kx (k≠0)关于线段EF 的视角为90°,即∠EQF=90°,则MQ ⊥直线OE ,OQ=1,OM=2,故直线的倾斜角为30°,即可求解;(3)直线PQ 的倾斜角为45°,分别作点Q 、P 作x 轴、y 轴的平行线交于点R ,RQ=RP=1,以点R 为圆心以长度1为半径作圆R ,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q 为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′(3-1,1),即可求解.【详解】(1)如图3,连接AC ,则∠ABC =45°;设M 是x 轴的动点,当点M 运动到点O 时,∠AOB =45°,该视角最大,由此可见:当△ABC 为等腰三角形时,视角最大;故答案为:45,45;(2)如图4,以点M 为圆心,长度1为半径作圆M ,当圆与直线y=kx相切时,直线y=kx(k≠0)关于线段EF的视角为90°,即∠EQF=90°,则MQ⊥直线OE,MQ=1,OM=2,故直线的倾斜角为30°,故k=33 ;(3)直线PQ的倾斜角为45°,分别作点Q、P作x轴、y轴的平行线交于点R,RQ=RP=1,以点R为圆心以长度1为半径作圆R,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′31,1),直线y=ax+b(a>0)与x轴的夹角为60°,则直线的表达式为:y3,将点Q′的坐标代入上式并解得:直线的表达式为:y332【点睛】本题考查的是一次函数综合运用,涉及到解直角三角形、圆的基本知识等,此类新定义题目,通常按照题设的顺序求解,一般比较容易.12.(1)点B的坐标为(﹣1,0),点A的坐标为(3,0),点C的坐标为(0,3);抛物线的对称轴为直线x=1;(2)⊙P5;(3)1<y<2;(4)3﹣322.【解析】【分析】(1)分别代入y=0、x=0求出与之对应的x、y的值,进而可得出点A、B、C的坐标,再由二次函数的对称性可找出抛物线的对称轴;(2)连接CP、BP,在Rt△BOC中利用勾股定理可求出BC的长,由等腰直角三角形的性质及圆周角定理可得出∠BPC=90°,再利用等腰直角三角形的性质可求出BP的值即可;(3)设点D的坐标为(1,y),当∠BDC=90°时,利用勾股定理可求出y值,进而可得出:当1<y<2时,∠BDC>90°;(4)将△ACO绕点A逆时针方向旋转45°,点C落在点C′处,点O落在点O′处,根据旋转的性质可找出点C′的坐标及∠AC′O′=45°,进而可找出线段C′O′所在直线的解析式,由点E在CO上可得出点F在C′O′上,过点O作OF⊥C′O′于点F,则△OC′F 为等腰直角三角形,此时线段OF取最小值,利用等腰直角三角形的性质即可求出此时OF的长即可.【详解】(1)当y=0时,﹣(x+1)(x﹣3)=0,解得:x1=﹣1,x2=3,∴点B的坐标为(﹣1,0),点A的坐标为(3,0);当x=0时,y=﹣(0+1)×(0﹣3)=3,∴点C的坐标为(0,3);∵抛物线与x轴交于点(﹣1,0)、(3,0),∴抛物线的对称轴为直线x=1;(2)连接CP、BP,如图1所示,在Rt△BOC中,BC=∵∠AOC=90°,OA=OC=3,∴∠OAC=∠OCA=45°,∴∠BPC=2∠OAC=90°,∴CP=BP∴⊙P(3)设点D的坐标为(1,y),当∠BDC=90°时,BD2+CD2=BC2,∴[(﹣1﹣1)2+(0﹣y)2]+[(0﹣1)2+(3﹣y)2]=10,整理,得:y2﹣3y+2=0,解得:y1=1,y2=2,∴当1<y<2时,∠BDC>90°;(4)将△ACO绕点A逆时针方向旋转45°,点C落在点C′处,点O落在点O′处,如图2所示.∵AC=ACO=45°,∴点C′的坐标为(3﹣,0),∠AC′O′=45°,∴线段C′O′所在直线的解析式为y=﹣x+3﹣∵点E在线段CO上,∴点F在线段C′O′上.过点O作OF⊥C′O′于点F,则△OC′F为等腰直角三角形,此时线段OF取最小值,∵△OC′F为等腰直角三角形,∴OF OC′3)=3.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、圆周角定理、勾股定理、旋转以及等腰直角三角形,解题的关键是:(1)利用二次函数图象上点的坐标特征求出点A 、B 、C 的坐标;(2)利用圆周角定理找出∠BPC =90°;(3)利用极限值法求出点D 纵坐标;(4)利用点到直线之间垂直线段最短确定点F 的位置.。