关于复位电路的作用
主板复位电路检修方法

主板复位电路检修方法摘要:一、主板复位电路的作用与重要性二、主板复位电路故障的判断方法三、主板复位电路的检修步骤四、检修过程中应注意的问题五、总结正文:主板复位电路是计算机系统中的重要组成部分,它的作用在于确保硬件设备在正常工作状态下运行。
当计算机遇到故障或异常情况时,复位电路能及时触发系统复位,从而避免硬件损坏和数据丢失。
本文将详细介绍主板复位电路的检修方法,帮助大家掌握检修技巧,提高计算机硬件维修水平。
一、主板复位电路的作用与重要性主板复位电路的主要作用有以下几点:1.确保系统正常运行:当计算机硬件设备工作异常时,复位电路能及时触发系统复位,使硬件设备恢复到正常工作状态。
2.保护硬件设备:复位电路能够在发生故障时及时切断电源,避免硬件设备受到进一步损坏。
3.提高系统稳定性:复位电路能够对系统进行自检,发现并解决潜在问题,确保系统稳定运行。
二、主板复位电路故障的判断方法在判断主板复位电路故障时,可以从以下几个方面进行分析:1.观察复位按钮:检查复位按钮是否正常工作,按钮连接线是否松动或损坏。
2.检查复位电路元件:观察电阻、电容等元件是否有烧坏、漏液、鼓包等现象。
3.检查复位信号传输路径:检查电路板上的线路是否断裂、接触不良等。
三、主板复位电路的检修步骤1.清理故障部位:使用吹风机或棉签清理复位电路板上的灰尘和污垢,避免影响散热和电路导通。
2.检查连接线:检查复位电路连接线是否松动或损坏,如有异常,需更换连接线。
3.替换故障元件:如发现电阻、电容等元件损坏,需将其替换为相同规格的正常元件。
4.修复断裂线路:使用焊接工具修复断裂的电路线路,确保线路连接稳定。
5.清洁金手指:使用橡皮擦或酒精清理主板上的金手指,确保接触良好。
四、检修过程中应注意的问题1.在检修过程中,务必切断电源,以免发生触电事故。
2.操作时要轻拿轻放,避免对主板和其他硬件设备造成二次损坏。
3.替换元件时,要确保选用相同规格、质量良好的元件。
复位电路真正作用和设计原则

复位电路真正作用和设计原则
复位电路的简单与复杂
复位电路,所有的数字电路系统中都存在,但是以笔者二十年经验看,不管是芯片原厂的工程师,还是电路系统厂家的工程师,鲜有人理解电路系统的复位作用,能真正理解,并恰当设计复位电路的,难得一见。
很多人,觉得这个复位电路的作用太明确了,复位电路不就是对芯片复位吗,哪有什么复杂的呢?
作用1:也是最简单的一个,就是复位系统上的芯片。
对芯片来说,复位的需求很简单,就是几ns或者几ms的低电平即可,如下图,某芯片的复位要求,上电完成后32个clock,这是多么简单的要求,一个RC复位即可。
甚至很多芯片无需复位要求,内部都有POR电路,无须外部复位,就可以正常工作。
所以,很多人在设计复位电路时,就简单的在系统上电时,输出一个复位信号,将整个系统里面有复位要求的芯片复位一遍,就算完成了。
也许这样设计也没有什么问题,但是在一些复杂。
作用2,复位可以用于修复系统,实现故障自愈。
我们在系统遇到问题时,经常会按复位按钮,来重启系统,从而达到修复系统的目的。
一些偶发性的故障,如软件出现异常挂死或者电源受到异常干扰,会导致系统进入故障状态,这时,通过复位就可以消除,这类复位有很多种。
1、看门狗复位
通过硬件心跳信号,或消息心跳信号,来监控某个系统,当系统挂死时,对其进行复位;
2、低电压复位
当电压异常低落时,对系统进行复位,很多复位芯片都具有电压监控功能,也有部分MCU有LVR功能,可以配置电压跌落到多少时,输出复位信号。
下面是某款MCU的POR和LVD功能描述,用于实现LVR。
系统进行复位;算法的读写检测。
复位电路的作用

复位电路的作用在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。
无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。
而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。
许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。
基本的复位方式单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。
89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。
当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。
单片机系统的复位方式有:手动按钮复位和上电复位1、手动按钮复位手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。
一般采用的办法是在RST端和正电源Vcc之间接一个按钮。
当人为按下按钮时,则Vcc的+5V电平就会直接加到RST端。
手动按钮复位的电路如所示。
由于人的动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位的时间要求。
图1 图22、上电复位AT89C51的上电复位电路如图2所示,只要在RST复位输入引脚上接一电容至Vcc端,下接一个电阻到地即可。
对于CMOS型单片机,由于在RST端内部有一个下拉电阻,故可将外部电阻去掉,而将外接电容减至1µF。
上电复位的工作过程是在加电时,复位电路通过电容加给RST端一个短暂的高电平信号,此高电平信号随着Vcc对电容的充电过程而逐渐回落,即RST端的高电平持续时间取决于电容的充电时间。
为了保证系统能够可靠地复位,RST端的高电平信号必须维持足够长的时间。
上电时,Vcc的上升时间约为10ms,而振荡器的起振时间取决于振荡频率,如晶振频率为10MHz,起振时间为1ms;晶振频率为1MHz,起振时间则为10ms。
单片机rc复位电路作用

单片机rc复位电路作用单片机RC复位电路作用一、什么是单片机RC复位电路?在单片机系统中,RC复位电路是指通过一个电阻(R)和一个电容(C)组成的复位电路。
这个电路提供了一种软件和硬件结合的方式来实现单片机的复位功能。
RC复位电路通过控制单片机的复位引脚,将其拉低或拉高来实现复位操作。
二、RC复位电路的作用是什么?RC复位电路在单片机系统中起到了非常重要的作用,主要有以下几个方面:1.软件复位触发机制RC复位电路可以通过软件控制,当单片机系统出现异常或需要复位时,软件可以通过相关操作将复位引脚拉低,从而强制执行复位操作。
这种软件复位触发机制可以让系统在出现故障或错误时快速恢复正常工作状态,提高系统的稳定性和可靠性。
2.硬件复位保护机制RC复位电路可以在单片机系统上电时自动执行复位操作,保证系统在上电后可以正确初始化。
在单片机系统上电瞬间,各个器件可能会出现不稳定的电压和电流情况,而这些不稳定因素有可能导致单片机系统无法正常启动。
RC复位电路可以通过控制复位引脚,确保系统在上电瞬间能够恢复到预定的初始状态,避免不稳定因素对系统正常工作的影响。
3.电源干扰屏蔽单片机系统中往往存在着各种电子器件,这些器件可能会受到电源线路中的电磁干扰影响,导致系统工作不稳定或出现错误。
RC复位电路的存在可以通过复位引脚将这些电磁干扰屏蔽在外,确保系统的稳定性和可靠性。
三、RC复位电路的设计考虑在设计单片机系统的RC复位电路时,需要考虑以下几个方面:1.计算合适的RC时间常数RC时间常数决定了RC复位电路的响应速度,一般需要根据实际需求来计算合适的值。
过小的时间常数会导致系统对干扰过于敏感,容易误触发复位;过大的时间常数则会导致复位响应时间过长,影响系统的反应速度。
因此,在设计RC复位电路时需要仔细选择合适的RC时间常数。
2.选择合适的复位电平和电源电压RC复位电路需要根据单片机的复位引脚输入电平要求和系统的电源电压来选择相应的电阻和电容数值。
单片机复位电路工作原理

单片机复位电路工作原理在单片机系统中,复位电路是一个非常重要的部分,它能够确保单片机在启动和运行过程中始终处于正常的工作状态。
复位电路的主要作用是在单片机系统上电、复位或异常情况下,将单片机的内部逻辑电路恢复到初始状态,以保证系统的可靠性和稳定性。
复位电路通常由复位电路芯片、电源监控芯片、电容、电阻等元器件组成。
其中,复位电路芯片是复位电路的核心部分,它能够监测电源电压,并在电源电压低于一定数值时生成复位信号,将单片机复位。
电源监控芯片则能够监测电源电压的稳定性,以确保单片机在电源电压异常时能够及时地进行复位。
复位电路的工作原理可以简单描述如下,当单片机系统上电或复位时,电源电压会逐渐上升,复位电路芯片会监测电源电压,并在电源电压达到一定数值后生成一个复位信号,将单片机复位。
在单片机系统正常工作时,复位电路会持续监测电源电压,以确保系统在电源异常时能够及时地进行复位,从而保证系统的稳定性和可靠性。
除了电源异常情况下的复位外,复位电路还可以监测单片机系统的工作状态,当系统出现异常情况时,复位电路也能够及时地将单片机复位,以确保系统能够恢复到正常工作状态。
这种功能对于单片机系统的稳定性和可靠性至关重要,尤其是在一些对系统稳定性要求较高的应用中,如工业控制、汽车电子等领域。
在设计单片机系统时,复位电路的设计是至关重要的。
合理的复位电路设计能够确保单片机系统在各种异常情况下能够及时地进行复位,从而保证系统的稳定性和可靠性。
因此,在设计复位电路时,需要充分考虑系统的工作环境、电源电压的波动范围、单片机的工作状态等因素,以确保复位电路能够可靠地工作。
总之,复位电路作为单片机系统中的重要组成部分,其工作原理是确保单片机在启动和运行过程中始终处于正常的工作状态。
合理的复位电路设计能够确保系统在各种异常情况下能够及时地进行复位,从而保证系统的稳定性和可靠性。
因此,在单片机系统的设计中,复位电路的设计是非常重要的,需要充分考虑系统的工作环境、电源电压的波动范围、单片机的工作状态等因素,以确保复位电路能够可靠地工作。
单片机复位电路的作用

单片机复位电路的作用随着科技的不断进步,单片机已经成为了现代电子设备中必不可少的一部分。
单片机是一种可以实现多种功能的集成电路,它在电子设备中的使用范围非常广泛,包括计算机、通信、控制、测量等多个领域。
然而,单片机在使用过程中也会遇到一些问题,比如程序出现异常、芯片电源电压波动等,这些问题都可能导致单片机无法正常工作。
为了解决这些问题,单片机复位电路应运而生。
一、单片机的复位在单片机中,复位是指将整个系统恢复到初始状态的过程。
当单片机出现异常或故障时,复位可以让单片机重新启动,以恢复正常工作状态。
复位电路是单片机系统中非常重要的一部分,它可以在单片机系统出现故障时,自动将单片机复位到初始状态,以确保单片机正常工作。
二、复位电路的作用复位电路是单片机系统中一个非常重要的组成部分,它的作用主要有以下几个方面:1.保证单片机系统启动时处于正确状态单片机系统启动时,各个模块之间的时序关系非常重要,如果某个模块启动时出现异常,就会导致整个系统无法正常工作。
复位电路可以在单片机系统启动时,将所有模块都复位到初始状态,确保系统处于正确的启动状态。
2.保证单片机系统在运行过程中的稳定性单片机系统在运行过程中,可能会受到很多干扰,如电源电压波动、电磁干扰等。
这些干扰可能会导致单片机系统出现异常,影响系统的稳定性。
复位电路可以在单片机系统出现异常时,自动将单片机复位到初始状态,以保证系统的稳定性。
3.保证单片机系统在程序出现异常时的恢复能力在单片机系统运行过程中,程序出现异常是非常常见的情况。
如果程序出现异常,可能会导致单片机系统无法正常工作。
复位电路可以在程序出现异常时,自动将单片机复位到初始状态,以恢复系统的正常工作。
三、复位电路的实现单片机复位电路可以采用多种实现方法,下面介绍几种常见的复位电路实现方法:1.电源复位电路电源复位电路是一种简单的复位电路,它通过检测电源电压的变化来实现复位。
当电源电压降低到一定程度时,复位电路会自动将单片机复位到初始状态。
单片机复位电路的作用

单片机复位电路的作用
关于单片机的置位和复位,都是为了把电路初始化到一个确定的状态,一般来说,单片机复位电路作用是把一个例如状态机初始化到空状态,而在单片机内部,复位的时候单片机是把一些寄存器以及存储设备装入厂商预设的一个值。
单片机复位电路就好比电脑的重启部分,当电脑在使用中消失死机,按下重启按钮电脑内部的程序从头开头执行。
单片机也一样,当单片机系统在运行中,受到环境干扰消失程序跑飞的时候,按下复位按钮内部的程序自动从头开头执行。
单片机复位电路原理是在单片机的复位引脚rst 上外接电阻和电容,(详细电路可去搜寻复位这两个字有许多),实现上电复位,而复位时间是(时钟周期=12×振荡周期,振荡周期=1/f),这个时间只能大不能小,详细数值可以由rc电路计算出时间常数。
单片机复位后各寄存器的状态
A=00H,表明累加器已被清零;PSW=00H,表明选寄存器0组为工作寄存器组;SP=07H,表明堆栈指针指向片内RAM 07H字节单元,依据堆栈操作的先加后压法则,第一个被压入的内容写入到08H单元中;Po-P3=FFH,表明已向各端口线写入1,此时,各端口既可用于输入又可用于输出;IP=×××00000B,表明各个中断源处于低优先级;IE=0××00000B,表明各个中断均被关断;
而置位可以把它初始化到任意一个状态.复位、置位是指将器件的规律值设为特定的值,一般我所了解“复位”一般指将寄存器
的Q端输出设为0,“置位”指将寄存器的Q端输出设为1.利用单片机的setb指令可以实现置1这个操作。
复位电路的作用及基本的复位方式

复位电路的作用及基本的复位方式复位电路的作用在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。
无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。
而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。
许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。
数字电路刚通电时都需要进行复位,复位的功能是将单片机里的重新开始,主要防止程序混乱,也就是跑飞、或者死机等现象,目的是使系统进入初始状态,以便随时接受各种指令进行工作,CPU的复位可靠性决定着产品系统的稳定性,因此在电路当中,发生任何一种复位后,系统程序将从重新开始执行,系统寄存器也都将恢复为默认值。
下面总结几种CPU复位方式。
1、上电复位上电复位就是直接给产品上电,上电复位与低压LVR操作有联系,电源上电的过程是逐渐上升的曲线过程,这个过程不是瞬间的完成的,一上电时候系统进行初始化,此时振荡器开始工作并提供系统时钟,系统正常工作2、看门狗复位看门狗定时器CPU内部系统,它是一个自振式的RC振荡定时器,与外围电路无关,也与CPU主时钟无关,只要开启看门狗功能也能保持计时,该溢出时候也会溢出,并产生复位3、LVR低压复位每个CPU都有一个复位电压,这个电压很低,有1.8V、2.5V等,当系统由于受到外界的影响导致输入电压过低,当低至复位电压时候系统自动复位,当然,前提是系统要打开LVR功能,有时候也叫掉电复位。
diangon如图,当LVR<工作电压<VDD 时候,比如在V1时候工作是正常的,当VSS<工作电压<LVR时候,系统有可能出错,比如在V2时候,也就是我们常说的死区,这个状态不确定。
4、外围电路复位如果系统内部不能正常复位或者软件复位无效的时候,可以依靠外部硬件复位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问:单片机没接复位电路也可以工作吗,书上说使单片机要工作的条件要有复位电路,可是用面包板搭了一个流水灯的小电路,复位引脚悬空,它还是能照常工作,这个矛盾吗
答:因为在上电的一瞬间,电压不是直接跳变到单片机可工作的电压范围。
并且在外部输入电压较低的时候(电压在临界范围),这时候单片机可能工作可能不工作,所以会引起芯片内程序的无序执行。
所以复位电路需要确保在上电时候暂时不让单片机立刻进入工作状态,这就是上电延时状态(时间只有几百微秒,依单片机种类和工作电压而定);或者确保单片机的供电电压不足的时候,复位,让程序重新执行,而不会陷入无序执行状态。
你的单片机没有接也可以工作,但很不稳定。
所以一个强壮的单片机系统必须包括复位电路、时钟电路、正常供电的电源电路……
单片机复位电路汇总
复位电路的作用
在上电或复位过程中,控制CPU的复位状态:这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。
无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。
而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。
许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。
基本的复位方式
单片机在启动时都需要复位,以使CPU及系统各部件处于确定的初始状态,并从初态开始工作。
89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。
当系统处于正常工作状态时,且振荡器稳定后,如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上,则CPU就可以响应并将系统复位。
单片机系统的复位方式有:手动按钮复位和上电复位
1、手动按钮复位
手动按钮复位需要人为在复位输入端RST上加入高电平(图1)。
一般采用的办法是在RST 端和正电源Vcc之间接一个按钮。
当人为按下按钮时,则Vcc的+5V电平就会直接加到RST 端。
手动按钮复位的电路如所示。
由于人的动作再快也会使按钮保持接通达数十毫秒,所以,完全能够满足复位的时间要求。
图1
2、上电复位
AT89C51的上电复位电路如图2所示,只要在RST复位输入引脚上接一电容至Vcc端,下接一个电阻到地即可。
对于CMOS型单片机,由于在RST端内部有一个下拉电阻,故可将外部电阻去掉,而将外接电容减至1µF。
上电复位的工作过程是在加电时,复位电路通过电容加给RST端一个短暂的高电平信号,此高电平信号随着Vcc对电容的充电过程而逐渐回落,即RST端的高电平持续时间取决于电容的充电时间。
为了保证系统能够可靠地复位,RST端的高电平信号必须维持足够长的时间(脉冲宽度一般数十至数百毫秒。
外部复位电路通常用一个电阻和一个电容实现)。
上电时,Vcc的上升时间约为10ms,而振荡器的起振时间取决于振荡频率,如晶振频率为10MHz,起振时间为1ms;晶振频率为1MHz,起振时间则为10ms。
在图2的复位电路中,当Vcc掉电时,必然会使RST端电压迅速下降到0V以下,但是,由于内部电路的限制作用,这个负电压将不会对器件产生损害。
另外,在复位期间,端口引脚处于随机状态,复位后,系统将端口置为全“l”态。
如果系统在上电时得不到有效的复位,则程序计数器PC将得不到一个合适的初值,因此,CPU可能会从一个未被定义的位置开始执行程序。
图2
3、积分型上电复位
常用的上电或开关复位电路如图3所示。
上电后,由于电容C3的充电和反相门的作用,使RST持续一段时间的高电平。
当单片机已在运行当中时,按下复位键K后松开,也能使RST 为一段时间的高电平,从而实现上电或开关复位的操作。
根据实际操作的经验,下面给出这种复位电路的电容、电阻参考值。
图3中:C:=1uF,Rl=lk,R2=10k
图3 积分型上电复位电路
专用芯片复位电路:
上电复位电路在控制系统中的作用是启动单片机开始工作。
但在电源上电以及在正常工作时电压异常或干扰时,电源会有一些不稳定的因素,为单片机工作的稳定性可能带来严重的影响。
因此,在电源上电时延时输出给芯片输出一复位信号。
上复位电路另一个作用是,*正常工作时电源电压。
若电源有异常则会进行强制复位。
复位输出脚输出低电平需要持续三个(12/fc s)或者更多的指令周期,复位程序开始初始化芯片内部的初始状态。
等待接受输入信号(若如遥控器的信号等)。
图4 上电复位电路原理图
上电复位电路原理分析
5V电源通过MC34064的2脚输入,1脚便可输出一个上升沿,触发芯片的复位脚。
电解电容C13是调节复位延时时间的。
当电源关断时,电解电容C13上的残留电荷通过D13和MC34064内部电路构成回路,释放掉电荷。
以备下次复位启用。
四、上电复位电路的关键性器件
关键性器件有:MC34064 。
图6 内部结构框图
输入输出特性曲线:
上电复位电路关键点电气参数
MC34064的输出脚1脚的输出(稳定之后的输出)如下图所示:
三极管欠压复位电路
欠压复位电路工作原理(图6)w 接通电源,+5V电压从“0V”开始上升,在升至3.6V之前,稳压二极管DH03都处于截止状态,QH01(PNP管)也处于截止状态,无复位电压输出。
w 当+5V电源电压高于3.6V以后,稳压二极管DH03反向击穿,将其两端电压“箝位”于3.6V。
当+5V电源电压高于4.3V以后,QH01开始导通,复位电压开始形成,当+5V电源电压接
近+5V时,QH01已经饱和导通,复位电压达到稳定状态。
图6 欠压复位电路图
看门狗型复位电路
看门狗型复位电路主要利用CPU正常工作时,定时复位计数器,使得计数器的值不超过某一值;当CPU不能正常工作时,由于计数器不能被复位,因此其计数会超过某一值,从而产生复位脉冲,使得CPU恢复正常工作状态。
典型应用的Watchdog复位电路如图7所示。
此复位电路的可靠性主要取决于软件设计,即将定时向复位电路发出脉冲的程序放在何处。
一般设计,将此段程序放在定时器中断服务子程序中。
然而,有时这种设计仍然会引起程序走飞或工作不正常。
原因主要是:当程序“走飞”发生时定时器初始化以及开中断之后的话,这种“走飞”情况就有可能不能由Watchdog复位电路校正回来。
因为定时器中断一真在产生,即使程序不正常,Watchdog也能被正常复位。
为此提出定时器加预设的设计方法。
即在初始化时压入堆栈一个地址,在此地址内执行的是一条关中断和一条死循环语句。
在所有不被程序代码占用的地址尽可能地用子程序返回指令RET代替。
这样,当程序走飞后,其进入陷阱的可能性将大大增加。
而一旦进入陷阱,定时器停止工作并且关闭中断,从而使Watchdog复位电路会产生一个复位脉冲将CPU复位。
当然这种技术用于实时性较强的控制或处理软件中有一定的困难
图7 看门狗型复位电路
比较器型复位电路
比较器型复位电路的基本原理如图8所示。
上电复位时,由于组成了一个RC低通网络,所以比较器的正相输入端的电压比负相端输入电压延迟一定时间。
而比较器的负相端网络的时间常数远远小于正相端RC网络的时间常数,因此在正端电压还没有超过负端电压时,比较器输出低电平,经反相器后产生高电平。
复位脉冲的宽度主要取决于正常电压上升的速度。
由于负端电压放电回路时间常数较大,因此对电源电压的波动不敏感。
但是容易产生以下二种不利现象:(1)电源二次开关间隔太短时,复位不可靠;(2)当电源电压中有浪涌现象时,可能在浪涌消失后不能产生复位脉冲。
为此,将改进比较器重定电路,如图9所示。
这个改进电路可以消除第一种现象,并减少第二种现象的产生。
为了彻底消除这二种现象,可以利用数字逻辑的方法与比较器配合,设计如图9所示的比较器重定电路。
此电路稍加改进即可作为上电复位与看门狗复位电路共同复位的电路,大大提高了复位的可靠性。
图8 比较器型复位电路
图9 改进型比较器型复位电路。