高二数学必修5试题[卷]及的答案解析
人教版高二数学必修5期末综合测试题及答案

必修5综合测试题(2010.11)班级 姓名一、选择题1. 数列1,3,6,10,…的一个通项公式是( )A. a n =n 2-(n-1) B . a n =n 2-1 C. a n =2)1(+n n D. a n =2)1(-n n 2. 2b ac =是a,b,c 成等比数列的( )A 、充分非必要条件B 、必要非充分条件C 、充要条件D 、既不充分也非必要条件 3.已知等差数列{a n }的公差d ≠0,若a 5、a 9、a 15成等比数列,那么公比为 ( )A .B .C .D .4. 等差数列{a n }共有2n+1项,其中奇数项之和为4,偶数项之和为3,则n 的值是( )A.3B.5C.7D.9 5.△ABC 中,cos cos A aB b=,则△ABC 一定是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等边三角形6.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( )A .30°B .30°或150°C .60°D .60°或120°7. 在△ABC 中,∠A =60°,a =6,b =4,满足条件的△ABC( )(A )无解 (B )有解 (C )有两解 (D )不能确定 8.若110a b<<,则下列不等式中,正确的不等式有 ( ) ①a b ab +< ②a b > ③a b < ④2b aa b+>A .1个B .2个C .3个D .4个 9.下列不等式中,对任意x ∈R 都成立的是 ( )A .2111x <+ B .x 2+1>2x C .lg(x 2+1)≥lg2x D .244xx +≤110. 下列不等式的解集是空集的是( )A.x 2-x+1>0B.-2x 2+x+1>0C.2x -x 2>5D.x 2+x>211.不等式组 (5)()0,03x y x y x -++≥⎧⎨≤≤⎩表示的平面区域是( )A 。
人教A版高中数学必修五高二答案.docx

高二数学参考答案 1.6π 2.垂直 3.3- 4.2213y x -= 5.③6. 7.28y x = 8.12π 9.③④ 10.2211612x y += 11.6,05⎡⎤-⎢⎥⎣⎦12.3)2,1 15.由24020x y x y -+=⎧⎨+-=⎩得02x y =⎧⎨=⎩,(0,2)p ∴…………………………………………4分 (1)12l k =-, ……………………………………6分 122y x =-+,即240x y +-= ……………………………………9分 (2)43l k =-, …………………………………11分 423y x =-+,即4360x y +-= ……………………………………14分 16.证明:(1)11B BC ∆中,因为N ,Q 分别为1B B ,11B C 的中点, 1//QN BC ∴, 又1QN ABC ⊄平面,11BC ABC ⊂平面,所以1//QN ABC 平面…………………3分 矩形11A B BA 中,因为M ,N 分别为1AA ,1BB 的中点,//MN AB ∴,又1MN ABC ⊄平面,1AB ABC ⊂平面1//MN ABC ∴平面 ……………………………………6分 平面1//MNQ ABC 平面 ……………………………………7分(2)因为1AA ABC ⊥平面,,AB CP ABC ⊂平面,故1AA AB ⊥,1AA CP ⊥由(1)//MN AB 得1AA MN ⊥,又11//AA CC ,所以1CC MN ⊥. ……………………………………9分 又因为P 为AB 的中点,AC BC =,所以CP AB ⊥因为CP AB ⊥,1CP AA ⊥所以11CP AA B B ⊥平面,又因为11MN AA B B ⊂平面,所以,CP MN ⊥, ……………………………………11分又因为1MN CC ⊥,所以1MN PCC ⊥平面, ……………………………………13分 又MN MNQ ⊂平面,所以1MNQ PCC ⊥平面平面. ……………………14分 17解:(1)设⊙C 的方程为22()25x m y -+=(0)m >解由题意设0m =>⎩……………………………………2分 故1m =.故⊙C 的方程为22(1)25x y -+=. ……………………4分(2)5< ……………………………………6分 故21250a a ->,所以0a <或512a >.故,实数a 的取值范围为5(,0)(,)12-∞⋃+∞ ……………………………………9分 (3)存在实数a ,使得,A B 关于l 对称.∴PC AB ⊥ ,又0a <或512a > 即⎪⎩⎪⎨⎧><-=-⋅12501)34(a a a 或 ……………………………………13分 ∴34a =,∴存在实数34a =,满足题设 ……………………15分 18(1)解:正PAD ∆中,θ为AD 的中点故PQ AD ⊥由PAD ABCDPAD ABCD AD PQ ABCD PQ PAD PQ AD ⊥⎫⎪⋂=⎪⇒⊥⎬⊂⎪⎪⊥⎭平面平面平面平面平面平面.………………………………3分 Q Q ABCD ∈平面PQ 长为P 到平面ABCD 的距离.因为4AD =,所以PQ =所以,P 平行ABCD的距离为……………………………………5分(2)证明:连AC 交BD 于O ,连MO则ABCD 为正方形,所以O 为AC 中点,M 为PC 中点,所以//MO AP , ……………………………………7分又AP MBD ⊄平面,MO MBD ⊂平面,则//AP MBD 平面. ……………………………………10分(3)N 为AB 中点时,平面PCN PQB ⊥平面. ……………………………………11分证明如下:由(1)证明知PQ ABCD ⊥平面,又CN ABCD ⊂平面,则PQ CN ⊥………12分又因为正方形ABCD 中,Q N 分别为,AD AB 中点,则CN BQ ⊥………………………13分 CN PQB ∴⊥平面 ……………14分 又Q CN PCN ⊂平面所以,平面PCN PQB ⊥平面. ……………………………………15分 19解(1),因为(3,1)A 在⊙C 上,所以,2(3)43m m ⎧-=⎨<⎩,1m =.所以,⊙C :22(1)5x y -+=. ……………………………………2分易知直线1PF 的斜率存在,设直线1PF 方程:4(4)y k x -=-,即:(44)0kx y k -+-= 题设有=112k =或12k = ……………………………………4分 112k =时,直线1PF 方程111802x y --=,令0y =,则36011x =>,不合题意(舍去)12k =时,直线1PF 方程:240x y -+=.令0y =,则40x =-<满足题设. 所以,直线1PF 方程为:240x y -+=. ……………………………………6分 (2)由(1)知1(4,0)F -,所以,2(4,0)F ,2216a b -=①……………………………………7分又122a AF AF =+==所以,a =……………………………………9分 所以,22b = ……………………………………10分 椭圆E 的方程:221182x y +=. ……………………………………11分 (3)设1QF 的中点为M ,连2QF .则2111)22OM QF QF ==112QF = …………………15分所以,以1QF 为直径的圆内切于圆222x y +=,即2218x y +=.…………………16分20解(1)对22640x y y +--=,令0y =,则2x =±.所以,(2,0)A -,2a = ……………………………………2分又因为,c e a ==,所以,c =……………………3分 2221b a c =-=……………………………………4分所以,椭圆C 的方程为:2214x y +=. ……………………5分 (2)由图知AFQ ∆为等腰三角形 2a a c AF QF c c+==>-………………………………7分 所以,2220c ac a +->,2210e e +->,(21)(1)0e e -+>又01e <<,所以112e <<,即椭圆离心率取值范围为1(,1)2.……10分 (3)连PD 交MN 于H ,连DM ,则由圆的几何性质知:H 为MN 的中点,DM PM ⊥,MN PD ⊥.所以,22MD MP MN MH PD ⋅=== 2MD =⊙D :22(3)13x y +-=,MD =所以,2131132PD MN -⋅= …………………………………13分设00(,)P x y ,则220014x y +=且010y -≤< 所以,222220000(3)3613PD x y y y =+-=--+203(1)16y =-++0(10)y -≤<所以,21316PD <≤ ……………………………………15分所以,2O MN <≤. …………………………………16分另解:设00(,)P x y ,则220014x y +=且010y -≤< 圆D:13)3(22=-+y x ,所以直线MN 的方程:13)3)(3(00=--+y y x x即:043)3(000=---+y y y x x …………………………………12分)01(16)1(3131132)3(131132])3(13[132020202022020<≤-++--⋅=-+-⋅=-+-=∴y y y x y x MN …………………15分∴2O MN <≤ …………………………………16分 附加题:21解(1)由1110113a -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,得13a +=-,则4a =-…………………………………3分(2)1141A -⎡⎤=⎢⎥-⎣⎦, 所以,由211()23041F λλλλλ-==--=-得: 11λ=-,23λ= ……………………………………7分11λ=-时,由20x y -+=得:2y x =-取112α⎡⎤=⎢⎥⎣⎦u u v23λ=时,由20x y +=得:2y x =-,取212α⎡⎤=⎢⎥-⎣⎦u u v . (9)分所以,A 的特征值为1-或3.属于1-的一个特征向量112α⎡⎤=⎢⎥⎣⎦u u v ,属于3的一个特征向量212α⎡⎤=⎢⎥-⎣⎦u u v ……………………………………10分22解:将方程)4πρθ=-,415315x t y t ⎧=+⎪⎪⎨⎪=--⎪⎩(t 为系数) 化为普通方程分别为:22220x y x y ++-=,3410x y ++=. …………………………6分曲线c 为圆22(1)(1)2x y ++-=所以直线l 被曲线c截得的弦长为=……………………………10分 23解:由题设1CC AC ⊥,1CC BC ⊥,AC BC ⊥所以,以C 为坐标原点,CA ,CB ,1CC 所在直线为,,x y z 轴,建立空间直角坐标系则(0,0,0)C ,(2,0,0)A ,(0,2,0)B ,1(0,0,2)C ,1(2,0,2)A ,1(0,2,2)B ,所以(0,0,1)D ,(1,1,1)E ,221(,,)333G .……………………………………2分 (1)112(,,)333EG =---u u u v ,(0,2,1)BD =-u u u v ……………………………4分 所以22033EG BD ⋅=-=u u u v u u u v ,EG BD ∴⊥u u u v u u u v 所以,直线EG 与直线BD 所成的角为2π.……………………………5分 (2)1(2,2,2)A B =--u u u v ……………………………………6分 (2,2,0)AB =-u u u v ,(2,0,1)AD =-u u u v 设000(,,)n x y z =v 为平面ABD 的一个法向量 则000022020n AB x y n AD x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩v u u u v v u u u v ,00002y x z x =⎧∴⎨=⎩ 取(1,1,2)n =v . ……………………………………8分设1A B 与平面ADB 所成的角为θ则1sin cos ,3A B n θ===u u u u vv . 即:1A B 与平面ADB所成的角为正弦值为3.…………………10分 24解(1)设(,)M x y ,则AM 的中点(0,)2y D .因为(1,0)C ,(1,)2y DC =-u u u v ,(,)2y DM x =u u u u v . 在⊙C 中,因为CD DM ⊥,所以,0DC DM ⋅=u u u v u u u u v ,所以204y x -=. 所以,24y x =(0)x ≠所以,点M 的轨迹E 的方程为:24y x =(0)x ≠ ……………………………………5分(说明漏了0x ≠不扣分)(2)轨迹E 的准线:1l x =-所以,可设(1,)N t -,过N 的斜率存在的直线方程为:(1)y t k x -=+ 由24()y x y kx k t ⎧=⎨=++⎩得2()04k y y k t -++=.由1()0k k t ∆=-+=得:210k kt +-=. 设直线NP ,NQ 斜率分别为1k ,2k ,则121k k =-①且12p y k =,22Q y k = 所以21122(,)P k k ,22222(,)Q k k 所以,直线PQ 的方程:121221122()()2()y k k k k x k k -+=-. 令0y =,则121222112121211k k k x k k k k k k k +--=-==- 由①知,1x =即直线PQ 过定点(1,0)B .……………………………………10分。
2020高二数学人教A必修5练习:3.2 一元二次不等式及其解法 Word版含解析

课时训练16一元二次不等式及其解法一、一元二次不等式的解法1.不等式-x2-5x+6≤0的解集为()A.{x|x≥6或x≤-1}B.{x|-1≤x≤6}C.{x|-6≤x≤1}D.{x|x≤-6或x≥1}答案:D解析:由-x2-5x+6≤0得x2+5x-6≥0,即(x+6)(x-1)≥0,∴x≥1或x≤-6.2.(2015福建厦门高二期末,12)不等式-的解集是.答案:{x|x<2或x>3}解析:因为指数函数y=2x是增函数,所以-化为x2-5x+5>-1,即x2-5x+6>0,解得x<2或x>3.所以不等式的解集为{x|x<2或x>3}.3.解不等式:-2<x2-3x≤10.解:原不等式等价于不等式组---①②不等式①为x2-3x+2>0,解得x>2或x<1.不等式②为x2-3x-10≤0,解得-2≤x≤5.故原不等式的解集为[-2,1)∪(2,5].二、三个二次之间的关系4.(2015山东威海高二期中,8)不等式ax2+bx+2>0的解集是-,则a-b的值为()A.14B.-14C.10D.-10答案:D解析:不等式ax 2+bx+2>0的解集是 - ,可得- 是一元二次方程ax 2+bx+2=0的两个实数根,∴- =- ,- ,解得a=-12,b=-2. ∴a-b=-12-(-2)=-10.故选D .5.如果ax 2+bx+c>0的解集为{x|x<-2或x>4},那么对于函数f (x )=ax 2+bx+c ,f (-1),f (2),f (5)的大小关系是 .答案:f (2)<f (-1)<f (5)解析:由ax 2+bx+c>0的解集为{x|x<-2或x>4}知a>0,且-2,4是方程ax 2+bx+c=0的两实根,所以 - - - 可得 - -所以f (x )=ax 2-2ax-8a=a (x+2)(x-4).因为a>0,所以f (x )的图象开口向上.又对称轴方程为x=1,f (x )的大致图象如图所示,由图可得f (2)<f (-1)<f (5).6.(2015山东潍坊四县联考,11)不等式x 2-ax-b<0的解集是(2,3),则不等式bx 2-ax-1>0的解集是 .答案: - -解析:∵不等式x 2-ax-b<0的解集为(2,3), ∴一元二次方程x 2-ax-b=0的根为x 1=2,x 2=3.根据根与系数的关系可得: -所以a=5,b=-6.不等式bx 2-ax-1>0,即不等式-6x 2-5x-1>0,整理,得6x 2+5x+1<0,即(2x+1)(3x+1)<0,解之得- <x<-. ∴不等式bx 2-ax-1>0的解集是 - - .三、含参不等式的解法7.不等式(x+1)(x-a )<0的解集为{x|-1<x<2},则不等式- >1的解集为 .答案:{x|x<-2或x>1}解析:由已知不等式(x+1)(x-a )<0的解集为{x|-1<x<2}得x=2是(x+1)(x-a )=0的一个根, ∴a=2.∴不等式 - >1可化为 - >1,移项通分得 ->0, ∴(x+2)(x-1)>0,解得x<-2或x>1.∴所求解集为{x|x<-2或x>1}.8.解关于x 的不等式2x 2+ax+2>0.解:对于方程2x 2+ax+2=0,其判别式Δ=a 2-16=(a+4)(a-4).①当a>4或a<-4时,Δ>0,方程2x 2+ax+2=0的两根为:x 1= (-a- - ),x 2= (-a+ - ).∴原不等式的解集为- - - 或 - - . ②当a=4时,Δ=0,方程有两个相等实根,x 1=x 2=-1;当a=-4时,Δ=0,方程有两个相等实根,x 1=x 2=1.∴原不等式的解集为{x|x ≠±1}.四、不等式恒成立问题9.若一元二次不等式x 2-ax+1>0恒成立,则a 的取值范围是 .答案:-2<a<2解析:由Δ=a 2-4<0,解得-2<a<2.10.已知关于x 的不等式(m 2+4m-5)x 2-4(m-1)x+3>0对一切实数x 恒成立,求实数m 的取值范围. 解:(1)当m 2+4m-5=0,即m=1或m=-5时,显然m=1符合条件,m=-5不符合条件;(2)当m 2+4m-5≠0时,由二次函数对一切实数x 恒为正数,得 - - - -解得1<m<19.综合(1)(2)得,实数m的取值范围为[1,19).(建议用时:30分钟)1.不等式-6x2-x+2≤0的解集是()A.-B.-或C.D.-答案:B解析:原不等式等价于6x2+x-2≥0.方程6x2+x-2=0的两根为-,可得原不等式的解集为-,或x≥.2.函数y=--+log2(x+2)的定义域为()A.(-∞,-1)∪(3,+∞)B.(-∞,-1]∪[3,+∞)C.(-2,-1]D.(-2,-1]∪[3,+∞)答案:D解析:要使函数有意义,x的取值需满足解得-2<x≤-1或x≥3.3.已知0<a<1,关于x的不等式(x-a)->0的解集为()A.或B.{x|x>a}C.或D.答案:A解析:∵0<a<1,∴>1,即a<,∴不等式的解集为或.4.在R上定义运算=ad-bc,若-成立,则x的取值范围是()A.{x|x<-4或x>1}B.{x|-4<x<1}C.{x|x<-1或x>4}D.{x|-1<x<4}答案:B解析:由已知-=x2+3x,=4,∴x2+3x<4,即x2+3x-4<0,解得-4<x<1.5.若关于x的不等式ax-b>0的解集为(1,+∞),则关于x的不等式->0的解集为()A.(-1,2)B.(-∞,-1)∪(2,+∞)C.(1,2)D.(-∞,-2)∪(1,+∞)答案:B解析:因为关于x的不等式ax-b>0的解集为(1,+∞),所以a>0,且=1,即a=b,所以关于x的不等式->0可化为->0,其解集是(-∞,-1)∪(2,+∞).6.已知二次方程ax2+bx+c=0的两个根是-2,3,若a>0,那么ax2-bx+c>0的解集是. 答案:{x|x<-3或x>2}解析:由题意知---∴b=-a,c=-6a.∴不等式ax2-bx+c>0,化为ax2+ax-6a>0,又∵a>0,∴x2+x-6>0,而方程x2+x-6=0的根为-3和2,∴不等式的解集是{x|x<-3或x>2}.7.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是. 答案:(0,8)解析:由题意得,Δ=(-a)2-4×2a<0.即a2-8a<0,∴0<a<8.8.设0≤α≤π,不等式8x2-(8sin α)x+sin α≥0的解集为R,则α的取值范围是. 答案:πππ解析:由已知不等式的解集为R,∴Δ=64sin2α-32sin α≤0,解得0≤sin α≤.∴由y=sin x的图象知,当0≤α≤π时,解得0≤α≤π或π≤α≤π.9.已知不等式x2-2x-3<0的解集为A,不等式x2+4x-5<0的解集为B,(1)求A∪B;(2)若不等式x2+ax+b<0的解集是A∪B,求ax2+x+b<0的解集.解:(1)解不等式x2-2x-3<0,得A={x|-1<x<3}.解不等式x2+4x-5<0,得B={x|-5<x<1}.∴A∪B={x|-5<x<3}.(2)由x2+ax+b<0的解集为{x|-5<x<3},∴-解得-∴2x2+x-15<0.∴不等式解集为-.。
高中数学必修5复习题及答案(A组)免费范文

篇一:高中数学必修5课后习题答案人教版高中数学必修5课后习题解答第一章解三角形1.1两角和与差的正弦、余弦和正切公式练习(P4) 1、(1)a?14,b?19,B?105?;(2)a?18cm,b?15cm,C?75?. 2、(1)A?65?,C?85?,c?22;或A?115?,C?35?,c?13;(2)B?41?,A?24?,a?24. 练习(P8) 1、(1)A?39.6?,B?58.2?,c?4.2 cm;(2)B?55.8?,C?81.9?,a?10.5 cm. 2、(1)A?43.5?,B?100.3?,C?36.2?;(2)A?24.7?,B?44.9?,C?110.4?. 习题1.1 A组(P10) 1、(1)a?38cm,b?39cm,B?80?;(2)a?38cm,b?56cm,C?90? 2、(1)A?114?,B?43?,a?35cm;A?20?,B?137?,a?13cm(2)B?35?,C?85?,c?17cm;(3)A?97?,B?58?,a?47cm;A?33?,B?122?,a?26cm; 3、(1)A?49?,B?24?,c?62cm;(2)A?59?,C?55?,b?62cm;(3)B?36?,C?38?,a?62cm;4、(1)A?36?,B?40?,C?104?;(2)A?48?,B?93?,C?39?;习题1.1 A组(P10)1、证明:如图1,设?ABC的外接圆的半径是R,①当?ABC时直角三角形时,?C?90?时,?ABC的外接圆的圆心O在Rt?ABC的斜边AB上.BCAC在Rt?ABC中,?sinA,?sinBABABab即?sinA,?sinB 2R2R所以a?2RsinA,b?2RsinB 又c?2R?2R?sin902RsinC (第1题图1)所以a?2RsinA, b?2RsinB, c?2RsinC②当?ABC时锐角三角形时,它的外接圆的圆心O在三角形内(图2),作过O、B的直径A1B,连接AC, 1?90?,?BACBAC则?A1BC直角三角形,?ACB. 11在Rt?A1BC中,即BC?sin?BAC1, A1Ba?sin?BAC?sinA, 12R所以a?2RsinA,同理:b?2RsinB,c?2RsinC③当?ABC时钝角三角形时,不妨假设?A为钝角,它的外接圆的圆心O 在?ABC外(图3)(第1题图2)作过O、B的直径A1B,连接AC.1则?A1BC直角三角形,且?ACB?90?,?BAC?180?11在Rt?A1BC中,BC?2Rsin?BAC, 1即a?2Rsin(180?BAC)即a?2RsinA同理:b?2RsinB,c?2RsinC综上,对任意三角形?ABC,如果它的外接圆半径等于则a?2RsinA,b?2RsinB, c?2RsinC2、因为acosA?bcosB,所以sinAcosA?sinBcosB,即sin2A?sin2B 因为0?2A,2B?2?,(第1题图3)所以2A?2B,或2A?2B,或2A?22B. 即A?B或A?B?所以,三角形是等腰三角形,或是直角三角形.在得到sin2A?sin2B后,也可以化为sin2A?sin2B?0 所以cos(A?B)sin(A?B)?0 A?B??2.?2,或A?B?0即A?B??2,或A?B,得到问题的结论.1.2应用举例练习(P13)1、在?ABS中,AB?32.2?0.5?16.1 n mile,?ABS?115?,根据正弦定理,得AS?ASAB?sin?ABSsin(6520?)?AB?sin?ABS16.1?sin115sin(6520?)∴S到直线AB的距离是d?AS?sin2016.1?sin115sin207.06(cm). ∴这艘船可以继续沿正北方向航行. 2、顶杆约长1.89 m. 练习(P15)1、在?ABP中,?ABP?180?,?BPA?180(?)ABP?180(?)?(180?)在?ABP中,根据正弦定理,APAB?sin?ABPsin?APBAPa?sin(180?)sin(?)a?sin(?)AP?sin(?)asin?sin(?)所以,山高为h?APsinsin(?)2、在?ABC中,AC?65.3m,?BAC?25?2517?387?47??ABC?909025?2564?35?ACBC?sin?ABCsin?BAC?747AC?sin?BAC65.?3?sinBC?m 9.8?sin?ABCsin?6435井架的高约9.8m.200?sin38?sin29?3、山的高度为?382msin9?练习(P16) 1、约63.77?. 练习(P18) 1、(1)约168.52 cm2;(2)约121.75 cm2;(3)约425.39 cm2. 2、约4476.40 m2a2?b2?c2a2?c2?b2?c?3、右边?bcosC?ccosB?b?2ab2aca2?b2?c2a2?c2?b22a2?a左边? 【类似可以证明另外两个等式】 ?2a2a2a习题1.2 A组(P19)1、在?ABC中,BC?35?0.5?17.5 n mile,?ABC?14812622?根据正弦定理,14?8)?,1BAC?1801102248ACB?78(180ACBC?sin?ABCsin?BACBC?sin?ABC17.?5s?in22AC?8.8 2n milesin?BACsin?48货轮到达C点时与灯塔的距离是约8.82 n mile. 2、70 n mile.3、在?BCD中,?BCD?301040?,?BDC?180?ADB?1804510125?1CD?3010 n mile3CDBD根据正弦定理, ?sin?CBDsin?BCD10BD?sin?(18040125?)sin40?根据正弦定理,10?sin?40sin1?5在?ABD中,?ADB?451055?,?BAD?1806010110??ABD?1801105515?ADBDABADBDAB根据正弦定理,,即sin?ABDsin?BADsin?ADBsin15?sin110?sin55?10?sin?40?sin1?5BD?sin1?5?10s?in40?6.8 4n mile AD?sin1?10si?n110?sin70BD?sin5?5?10sin40?sin55n mile 21.6 5sin1?10sin15?sin70如果一切正常,此船从C开始到B所需要的时间为:AD?AB6.8?421.6520?min ?6?01?0?60 86.983030即约1小时26分59秒. 所以此船约在11时27分到达B岛. 4、约5821.71 m5、在?ABD中,AB?700 km,?ACB?1802135124?700ACBC根据正弦定理,sin124?sin35?sin21?700?sin?35700?sin21?AC?,BC?sin1?24sin124?700?sin?357?00s?in21AC?BC7?86.89 kmsin1?24si?n124所以路程比原来远了约86.89 km.6、飞机离A处探照灯的距离是4801.53 m,飞机离B处探照灯的距离是4704.21 m,飞机的高度是约4574.23 m.1507、飞机在150秒内飞行的距离是d?1000?1000? m3600dx? 根据正弦定理,sin(8118.5?)sin18.5?这里x是飞机看到山顶的俯角为81?时飞机与山顶的距离.d?sin18.5??tan8114721.64 m 飞机与山顶的海拔的差是:x?tan81sin(8118.5?)山顶的海拔是20250?14721.64?5528 m8、在?ABT中,?ATB?21.418.62.8?,?ABT?9018.6?,AB?15 mABAT15?cos18.6?根据正弦定理,,即AT? ?sin2.8?cos18.6?sin2.8?15?cos18.6?塔的高度为AT?sin21.4?sin21.4106.19 msin2.8?326?189、AE97.8 km 60在?ACD中,根据余弦定理:AB?AC??101.235 根据正弦定理,(第9题)?sin?ACDsin?ADCAD?sin?ADC5?7si?n66sin 44?ACD?0.51AC101.2356?ACD?30.9??ACB?13330.9?6?10 2?在?ABC中,根据余弦定理:AB?245.93222AB?AC?B2C245.9?3101?.22352204sBAC?0.58co? 472?AB?AC2?245.?93101.235?BAC?54.21?在?ACE中,根据余弦定理:CE?90.75222AE2?EC?A2C97.8?90.?751012.235sAEC?0.42co? 542?AE?EC2?97?.890.75?AEC?64.82?0AEC?(1?8?0?7?5?)?7564.8?2 18?所以,飞机应该以南偏西10.18?的方向飞行,飞行距离约90.75 km.10、如图,在?ABCAC??37515.44 km222AB?AC?B2C6400?37515?2.44422200?0.692 ?BAC? 42?AB?AC2?640?037515.448,2 ?BAC?9043.?8 ?BAC?133.? 2所以,仰角为43.82?1111、(1)S?acsinB28?33?sin45326.68 cm222aca36(2)根据正弦定理:,c?sinCsin66.5?sinAsinCsinAsin32.8?11sin66.5?S?acsinB362sin(32.866.5?)?1082.58 cm222sin32.8?2(3)约为1597.94 cm122?12、nRsin.2na2?c2?b213、根据余弦定理:cosB?2acaa2所以ma?()2?c2?2c?cosB22a2a2?c2?b22?()?c?a?c? B22ac12212?()2[a2?4c2?2(a?c?2b)]?()[2(b?c2)?a2]222(第13题)篇二:人教版高中数学必修5期末测试题及其详细答案数学必修5试题一.选择题(本大题共10小题,每小题5分,共50分)1.由a1?1,d?3确定的等差数列?an?,当an?298时,序号n等于()A.99B.100C.96D.1012.?ABC中,若a?1,c?2,B?60?,则?ABC的面积为() A.12B.2 C.1 D.3.在数列{an}中,a1=1,an?1?an?2,则a51的值为()A.99 B.49 C.102 D. 101 4.已知x?0,函数y?4x?x的最小值是() A.5 B.4C.8 D.6 5.在等比数列中,a11?2,q?12,a1n?32,则项数n为() A. 3B. 4C. 5D. 66.不等式ax2?bx?c?0(a?0)的解集为R,那么()A. a?0,0B. a?0,0C. a?0,0D. a?0,0?x?y?17.设x,y满足约束条件??y?x,则z?3x?y的最大值为()y2A. 5B. 3C. 7 D. -88.在?ABC中,a?80,b?100,A?45?,则此三角形解的情况是()A.一解 B.两解 C.一解或两解 D.无解9.在△ABC中,如果sinA:sinB:sinC?2:3:4,那么cosC等于()A.23 B.-2113 C.-3D.-410.一个等比数列{an}的前n项和为48,前2n项和为60,则前3n项和为( A、63B、108 C、75 D、83)二、填空题(本题共4小题,每小题5分,共20分) 11.在?ABC中,B?450,c?b?A=_____________; 12.已知等差数列?an?的前三项为a?1,a?1,2a?3,则此数列的通项公式为______三、解答题 (本大题共6个小题,共80分;解答应写出文字说明、证明过程或演算步骤) 15(12分) 已知等比数列?an?中,a1?a3?10,a4?a6?16(14分)(1) 求不等式的解集:?x(2)求函数的定义域:y?17 (14分)在△ABC中,BC=a,AC=b,a,b是方程x2?0的两个根,且2cos(A?B)?1。
高二数学必修5(人教B版)第三章同步检测3-4

3.4 不等式的实际应用基础巩固一、选择题1.将进货单价为80元的商品按90元一个售出时,能卖出400个,每涨价1元,其销售量就减少20个,为获得最大利润,售价应定在( )A .每个95元B .每个100元C .每个105元D .每个110元[答案] A[解析] 设每个涨价x 元,则利润y =(x +10)(400-20x )=-20x 2+200x +4000,∴当x =20040=5时,y 取得最大值.故每个售价为95元时利润最大.2.在面积为S (S 为定值)的扇形中,当扇形中心角为θ,半径为r 时,扇形周长最小,这时θ、r 的值分别是( )A .θ=1,r =SB .θ=2,r =4S C .θ=2,r =3S D .θ=2,r =S[答案] D[解析] S =12θr 2⇒θ=2Sr2,又扇形周长P =2r +θr =2⎝ ⎛⎭⎪⎫r +S r ≥4S , 当P 最小时,r =Sr ⇒r =S ,此时θ=2.3.设计用32m 2的材料制造某种长方体车厢(无盖),按交通规定车厢宽为2m,则车厢的最大容积是()A.(38-373)m3B.16m3C.42m3D.14m3[答案] B[解析]设长方体长为a m,高为h m,则有2a+2(2h)+2(ah)=32,即a+2h+ah=16,∴16≥22ah+ah,即(ah)2+22·ah-16≤0,解得0<ah≤22,∴ah≤8,∴V=2ah≤16.4.做一个面积为1m2,形状为直角三角形的铁架框,在下面四种长度的铁管中,最合理(够用,又浪费最少)的是() A.4.6m B.4.8mC.5m D.5.2m[答案] C[解析]设直角三角形两直角边长分别为x,y,则12xy=1,即xy=2.周长l=x+y+x2+y2≥2xy+2xy=(1+2)×2≈4.83,当且仅当x=y时取等号.考虑到实际问题,故选C.二、填空题5.光线透过一块玻璃,其强度要减弱110.要使光线的强度减弱到原来的13以下,至少需这样的玻璃板________块.(参考数据:lg2=0.3010,lg3=0.4771)[答案]11[解析]设至少需要经过这样的n块玻璃板,则,(1-110)n<13,即n·lg910<lg13∴n>lg 1 3lg 910=-lg32lg3-1=-0.47712×0.4771-1≈10.45.又∵n∈N+,∴n=11.6.建造一个容积为8m3,深为2m的长方形无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低造价为__________元.[答案]1760[解析]设水池的底面长、宽分别为x m,y m,则2xy=8,xy=4.水池造价为z元.则z=120xy+2(2x+2y)×80=480+320(x+y)≥480+320×4=1760.三、解答题7.某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧用砖墙,每米长造价45元,顶部每平方米造价20元.计算:(1)仓库底面积S的最大允许值是多少?(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?[解析](1)设正面铁栅长x m,侧面长为y m,总造价为z元,则z=40x+2×45y+20xy=40x+90y+20xy,仓库面积S=yx.由条件知z≤3 200,即4x+9y+2xy≤320.∵x>0,y>0,∴4x+9y≥24x·9y=12xy.∴6S +S ≤160,即(S )2+6S -160≤0. ∴0<S ≤10,∴0<S ≤100. 故S 的最大允许值为100m 2.(2)当S =100m 2时,4x =9y ,且xy =100. 解之得x =15(m),y =203(m).答:仓库面积S 的最大允许值是100m 2,此时正面铁栅长15m. 8.某企业生产一种机器的固定成本(即固定投入)为0.5万元,但每生产1百台时又需可变成本(即需另增加投入)0.25万元,市场对此商品的需求量为5百台,销售的收入函数为R (x )=5x -12x 2(万元),(0≤x ≤5),其中x 是产品生产并售出的数量.(单位:百台)(1)把利润表示为年产量的函数.(2)年产量为多少时,企业所得利润最大? (3)年产量多少时,企业才不亏本.(不赔钱)? [解析] (1)设利润为y .则y =⎩⎪⎨⎪⎧R (x )-0.5-0.25x (0≤x ≤5)R (5)-0.5-0.25x (x >5),∴y =⎩⎨⎧-12x 2+4.75 x -0.5(0≤x ≤5)12-0.25x (x >5).(2)y =-12(x -4.75)2+10.78125∴x =4.75时即年产量为475台时企业所得利润最大.(3)要使企业不亏本,须y >0即⎩⎨⎧0≤x <5-12x 2+4.75 x -0.5>0或⎩⎪⎨⎪⎧12-0.25x >0x ≥5. 2.65<x <5或5≤x <48,即2.65<x <48. ∴年产量在265台至4800台时,企业才会不亏本.能力提升一、选择题1.某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下:的就业情况,则根据表中数据,就业形势一定是( )A .计算机行业好于化工行业B .建筑行业好于物流行业C .机械行业最紧张D .营销行业比贸易行业紧张 [答案] B[解析] 就业情况=应聘人数招聘人数,计算机就业形式=215830124620>1,化工业就业形式=应聘人数70436<6528070436<1,则A 不合适.同理,建筑行业就业形式=应聘人数76516<6528076516<1,物流业就业形式=74570招聘人数>7457070436>1.2.某公司从2006年起每人的年工资主要由三个项目组成并按下表规定实施:基础工资的25%,到2008年底这位职工的工龄至少是() A.2年B.3年C.4年D.5年[答案] C[解析]设这位职工工龄至少为x年,400x+1600>10000·(1+10%)2×25%,即400x+1600>3025,即x>3.5625,所以至少为4年.二、填空题3.现有含盐7%的食盐水200克,生产上需要含盐5%以上、6%以下的食盐水,设需要加入含盐4%的食盐水为x克,则x的取值范围是__________.[答案]100<x<400[解析]由题意可列式5%<7%×200+4%×x 200+x <6%,即5<1400+4x 200+x <6解得100<x <400.4.周长为2的直角三角形的面积的最大值为________. [答案] 3-2 2[解析] 设直角三角形的两直角边分别为a 、b ,斜边为c ,则直角三角形的面积S =12ab .由已知,得a +b +c =2,∴a +b +a 2+b 2=2, ∴2=a +b +a 2+b 2≥2ab +2ab =(2+2)ab , ∴ab ≤22+2=2-2,∴ab ≤(2-2)2=6-42, ∴S =12ab ≤3-22,当且仅当a =b =2-2时,S 取最大值3-2 2.三、解答题5.假设国家收购某种农副产品的价格是120元/担,其中征税标准是每100元征税8元(叫做税率是8个百分点,即8%),计划收购m 万担,为了减轻农民负担,决定税率降低x 个百分点,预计收购量可增加2x 个百分点,要使此项税收在税率降低后不低于原计划的78%,试确定x 的取值范围.[解析] 税率降低后是(8-x )%,收购量为m (1+2x %)万担,税收为120m(1+2x %)(8-x )%万元,原来的税收为120m·8%万元.根据题意可得120m(1+2x %)(8-x )%≥120m·8%·78% 即x 2+42x -88≤0解之得-44≤x ≤2,又x >0,∴0<x ≤2 ∴x 的取值范围是(0,2].6.某单位用木料制作如图所示的框架,框架的下部是边长分别为x 、y (单位:m)的矩形.上部是等腰直角三角形.要求框架围成的总面积8cm 2.问x 、y 分别为多少时用料最省?(精确到0.001m)[解析] 由题意得xy +14x 2=8,∴y =8-x 24x =8x -x4(0<x <42).于是,框架用料长度为l =2x +2y +2(22x ) =(32+2)x +16x ≥46+4 2. 当(32+2)x =16x ,即x =8-42时等号成立. 此时,x ≈2.343,y =22≈2.828.故当x 为2.343m ,y 为2.828m 时,用料最省.7.某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用为12万元,以后每年增加4万元,每年捕鱼收益50万元.(1)问第几年开始获利?(2)若干年后,有两种处理方案:①年平均获利最大时,以26万元出售该渔船;②总纯收入获利最大时,以8万元出售该渔船.问哪种方案最合算?[解析] 由题设知每年的费用是以12为首项,4为公差的等差数列.设纯收入与年数的关系为f(n),则f(n)=50n-[12+16+…+(8+4n)]-98=40n-2n2-98.(1)由f(n)>0得,n2-20n+49<0,∴10-51<n<10+51,又∵n∈N,∴n=3,4, (17)即从第3年开始获利;(2)①年平均收入=f(n)n=40-2(n+49n)≤40-2×14=12,当且仅当n=7时,渔船总收益为12×7+26=110(万元).②f(n)=-2(n-10)2+102.因此当n=10时,f(n)max=102,总收益为102+8=110万元,但7<10,所以第一种方案更合算.。
高二数学人教A必修5练习及解析:3-2 一元二次不等式及其解法

∴a=2.
∴不等式
+1
2+1
+2
>1 可化为
>1,移项通分得 >0,
-1
-1
-1
∴(x+2)(x-1)>0,解得 x<-2 或 x>1.
∴所求解集为{x|x<-2 或 x>1}.
8.解关于 x 的不等式 2x2+ax+2>0.
解:对于方程 2x2+ax+2=0,其判别式 Δ=a2-16=(a+4)(a-4).
【解析】
1
由题意知,一元二次不等式 f(x)>0 的解集为x-1<x<2 .
而 f(10x)>0,
1
∴-1<10x<2,
1
解得 x<lg 2,即 x<-lg 2.
【答案】
D
二、填空题
6.(2015·广东高考)不等式-x2-3x+4>0 的解集为________.(用区间表示)
①当 a>4 或 a<-4 时,Δ>0,方程 2x2+ax+2=0 的两根为:
1
4
1
4
x1= (-a-√2 -16),x2= (-a+√2 -16).
∴原不等式的解集为
1
4
1
4
{ | < (--√2 -16)或 > (- + √2 -16)}.
②当 a=4 时,Δ=0,方程有两个相等实根,x1=x2=-1;
1
1
∴不等式 bx2-ax-1>0 的解集是(- 2 ,- 3).
数学必修五高中试题及答案

数学必修五高中试题及答案一、选择题(每题3分,共30分)1. 若函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(-1) \)的值。
A. 0B. 4C. 6D. 82. 已知点A(2, 3)和点B(-1, -2),求直线AB的斜率。
A. -1B. 1C. 2D. 33. 一个圆的半径为5,求该圆的面积。
A. 25πB. 50πC. 75πD. 100π4. 已知等差数列的首项为3,公差为2,求第10项的值。
A. 23B. 21C. 19D. 175. 若\( \sin(\alpha) = \frac{3}{5} \),且\( \alpha \)在第一象限,求\( \cos(\alpha) \)的值。
A. \( \frac{4}{5} \)B. \( \frac{3}{4} \)C. \( \frac{1}{2} \)D. \( \frac{2}{3} \)6. 一个正方体的体积为27,求其边长。
A. 3B. 4C. 5D. 67. 已知函数\( g(x) = x^3 - 2x^2 + x - 2 \),求\( g(2) \)的值。
A. -1B. 0C. 1D. 28. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 89. 已知\( a = 2 \),\( b = 3 \),求\( a^2 + b^2 \)的值。
A. 13B. 14C. 15D. 1610. 求\( \sqrt{64} \)的值。
A. 8B. 16C. 32D. 64二、填空题(每题2分,共20分)11. 若\( a \)和\( b \)互为相反数,则\( a + b = _______ 。
12. 一个二次方程\( ax^2 + bx + c = 0 \)的判别式为\( b^2 - 4ac \),当\( b^2 - 4ac < 0 \)时,方程有_______解。
13. 已知\( \log_{10} 100 = 2 \),求\( \log_{10} 0.01 \)的值。
人教新课标版数学高二必修五练习人教A版必修5综合质量评估(含答案解析)

综合质量评估第一~三章 (120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.如果a<0,b>0,那么,下列不等式中正确的是( )()(()()2211A B C a b D a b a b< < >2.在△ABC 中,∠A=60°,a =b=4,那么满足条件的△ABC ( ) (A)有一个解 (B)有两个解 (C)无解 (D)不能确定3.已知数列{a n }满足a 1=0,a n+1=a n +2n ,那么a 2 012的值是( ) (A)2 0122 (B)2 011×2 010 (C)2 012×2 013 (D)2 011×2 0124.(2011·辽宁高考)△ABC 的三个内角A ,B ,C 所对的边分别为a,b,c ,2asinAsinB bcos A +=则ba=( ) ()()((A B C D 5.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( )()()()()A B 7C 6D6.设a,b, c ∈(-∞,0),则111a ,b ,c bca+++( ) (A)都不大于-2(B)都不小于-2 (C)至少有一个不大于-2 (D)至少有一个不小于-27.在△ABC 中,角A ,B ,C 的对边分别为a,b,c ,若(a 2+c 2-b 2则角B 的值为( )()()()()52A B C D 636633ππππππ 或或 8.已知x>0,y>0,2x+y=2,c=xy,那么c 的最大值为( )()()()()11A 1BCD 2249.在△ABC 中,关于x 的方程(1+x 2)sinA+2xsinB+(1-x 2)sinC=0有两个不相等的实根,则A 为( ) (A)锐角 (B)直角 (C)钝角 (D)不能确定10.已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )(A)35 (B)33 (C)31 (D)2911.已知各项均为正数的等差数列{a n }的前20项和为100,那么a 3·a 18的最大值是( )(A)50 (B)25 (C)100 (D)12.已知等差数列{a n }中,|a 3|=|a 9|,公差d<0,则使等差数列{a n }前n 项和S n 取最大值的正整数n 是( )(A)4或5 (B)5或6 (C)6或7 (D)8或9 二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在题中的横线上)13.数列{a n }的通项公式为a n =2n-49,S n 达到最小时,n 等于__________.14.在△ABC 中,A ,B ,C 分别为a,b,c 三条边的对角,如果b=2a,B=A+60°,那么A=________.15.若负数a,b,c 满足a+b+c=-1,则111a b c++的最大值是__________. 16.不等式ax 2+4x+a>1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是_______.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)在△ABC 中,角A ,B ,C 成等差数列,并且sinA ·sinC=cos 2B ,三角形的面积ABC S =求三边a,b,c.18.(12分)(2011·福建高考)已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项的和S k =-35,求k 的值.19.(12分)(2011·山东高考)在△ABC 中,内角A ,B ,C 的对边分别为a,b,c,已知cosA 2cosC 2c a.cosB b--=(1)求sinCsinA的值; (2)若1cosB ,4=b=2,求△ABC 的面积S.20.(12分)已知f(x)=ax 2+(b-8)x-a-ab,当x ∈(-3,2)时,f(x)>0;x ∈(-∞,-3)∪(2,+∞)时,f(x)<0. (1)求y=f(x)的解析式;(2)c为何值时,ax2+bx+c≤0的解集为R.21.(12分)某公司计划在2012年内同时出售空调机和洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如表:试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?22.(12分)已知等差数列{a n}满足:a3=7,a5+a7=26.{a n}的前n项和为S n.(1)求a n及S n;(2)令n2n1ba1=-(n∈N*),求数列{b n}的前n项和T n.答案解析1.【解析】选A.如果a<0,b>0,那么110,0,ab<>11,a b∴<故选A. 2.【解析】选C.根据正弦定理得bsinA sinB 1,a ===>故无解.故选C.3.【解析】选D.由已知a n+1-a n =2n,∴a 2-a 1=2×1,a 3-a 2=2×2,a 4-a 3=2×3,…,a n -a n-1=2(n-1),以上各式两端分别相加得:()()()n 1n 2 012a a 2123n 1n n 1.a n n 1.a 2 011 2 012.-=++⋯+-=-=-∴=⨯[]即故选D.4.【解析】选D.2asinAsinB bcos A +=2sinAsinAsinB sinBcos A b sinBsinB a sinA∴+=∴=∴==故选D. 5.【解析】选A.18789123a a a q 2.a a a== ()99456123q a a a a a a q ∴===故选A.6.【解题提示】解答本题关键是分析111a b c bca+++++的最大值.【解析】选C.111a b c 6,b c a+++++≤- 三者不能都大于-2.故选C.7.【解析】选D.在△ABC 中,根据b 2=c 2+a 2-2cacosB 得a 2+c 2-b 2=2cacosB ,代入已知得sinB 2∴=2B B ,33ππ∴==或故选D.8.【解析】选B.由已知,22x y =+≥=1c ,2∴≤故选B.9.【解析】选A.4sin 2B-4(sin 2A-sin 2C)>0, 即sin 2B+sin 2C>sin 2A,由正弦定理得b 2+c 2>a 2, 再由余弦定理得cosA>0,所以A 为锐角,故选A. 10.【解析】选C.设公比为q,由题意知2323113647113133311a a a q 2a .5a 2a a q 2a q 2a q 25a q 2a q q 2⎧==⎪⎨+=+=⎪⎩⎧=⎪⎨+=⎪⎩即 解得11q .2a 16⎧=⎪⎨⎪=⎩故55116(1)2S 31 .112⨯-==-故选C.11.【解析】选B.由题可知()3181202031820a a 20a a )S 100,a a 10,22++===∴+=(2318318a a a a ()25.2+∴≤=故选B.12.【解题提示】解答本题的关键是分析出数列{a n }第几项开始有符号发生变化.【解析】选B.由|a 3|=|a 9|得()()()22111n 1a 2d a 8d .a 5d.a a n 1d n 6d,d 0,+=+∴=-=+-=-<()∴当n ≤6时,a n ≥0,当n>6时,a n <0, ∴前5项或前6项的和最大,故选B. 13.【解析】∵a n =2n-49,∴{a n }是等差数列,且首项为-47,公差为2,由()n n 1a 2n 490,a 2n 1490-=->⎧⎪⎨=--≤⎪⎩,解得n=25. ∴从第25项开始为正,前24项都为负数,即前24项之和最小. 答案:24【方法技巧】求等差数列前n 项和最值的方法:对于等差数列,当公差不等于零时,则其为单调数列,所以其前n 项和往往存在最大值或最小值,常用的方法有:(1)通项公式法:先求出通项公式,通过通项公式确定等差数列的单调性,再求其正项或负项为哪些项,从而确定前n 项和的最值. (2)二次函数法:根据等差数列的前n 项和S n 是关于项数n 的一元二次函数,从而可直接配方,求其最值,但应注意项数n 为正整数,由此,本题还可有以下解法:方法二,a n =2n-49,a 1=-47<0,公差d=2>0,∴数列{a n }为递增等差数列. 令a n =0,得1n 24.2=∴该数列中,a 1,a 2,…,a 24<0,a 25>0,…… ∴数列{a n }的前24项和最小,故n=24. 方法三,可知数列{a n }为等差数列,a 1=-47.()()1n n 222n a a n 472n 49S 22n 48n n 2424,+-+-∴===-=--()∴当n=24时,S n 取最小值,故n=24. 14.【解析】∵b=2a,B=A+60°,∴sinB=2sinA, sinB=sin(A+60°),∴2sinA=sin(A+60°).12sinA sinA tanA 223=+∴=又∵0°<A<180°,∴A=30°. 答案:30°15.【解题提示】解答本题一方面要注意常值代换的应用,另一方面要注意利用不等式的性质化“负”为“正”. 【解析】∵a+b+c=-1,∴1=-a-b-c.111a b c a b c a b ca b c a b cb ac a c b3()()()a b a c b c32229.---------∴++=++=--+-+-+≤----=-当且仅当a=b=c=13-时取等号. 答案:-916.【解析】不等式ax 2+4x+a>1-2x 2对一切x ∈R 恒成立,即(a+2)x 2+4x+a-1>0对一切x ∈R 恒成立,若a+2=0,则4x-3>0,显然不恒成立;若a+2≠0,则a 200+>⎧⎨∆<⎩,即()()2a 2044a 2a 10+>⎧⎪⎨-+-<⎪⎩,解得a>2. 答案:(2,+∞)17.【解析】∵角A ,B ,C 成等差数列, ∴A+C=2B ,A+B+C=180°,∴B=60°, 所以21sinAsinC cos 60.4=︒= ①又ABC 1S acsinB,2==得ac=16. ② 由①②及a csinA sinC=得:22ac a c ()()64,sinAsinC sinA sinCa c 8.sinA sinC asinBb 8sinB 8sin60sinA ========︒=所以又222a c b 1cosB ,2ac 2+-== ()()222222a cb ac,ac b 3ac,a c 484896,a c ∴+-=+-=∴+=+=∴+=③联立③与②得a 2,c 2,a 2,c 2.====或18.【解析】(1)设等差数列{a n }的公差为d,则a n =a 1+(n-1)d,由a 1=1,a 3=-3可得1+2d=-3.解得d=-2. 从而a n =1+(n-1)×(-2)=3-2n ,n ∈N *. (2)由(1)可知a n =3-2n.()2n n 132n S 2n n .2+-∴==-[]由S k =-35可得2k-k 2=-35. 即k 2-2k-35=0,解得k=7或k=-5. 又k ∈N *,故k=7.19.【解析】(1)由正弦定理设a b ck,sinA sinB sinC=== 则2c a 2ksinC ksinA 2sinC sinA ,b ksinB sinB ---==cosA 2cosC 2sinC sinAcosB sinB--∴=即(cosA-2cosC )sinB=(2sinC-sinA)cosB, 化简可得sin(A+B)=2sin(B+C), 又A+B+C=π,∴sinC=2sinA.因此sinC2.sinA= (2)由sinC2sinA=得c=2a.由余弦定理b 2=a 2+c 2-2accosB 及1cosB ,b 2.4==22214a 4a 4a .a 1.c 2.4=+-⨯==得解得从而又∵cosB=14且0<B<π,sinB 4∴=因此11S acsinB 122244==⨯⨯⨯= 20.【解析】(1)由x ∈(-3,2)时,f(x)>0;x ∈(-∞,-3)∪(2,+∞)时,f(x)<0知:-3,2是方程ax 2+(b-8)x-a-ab=0的两根且a <0,()2b 832a 3,a a ab b 5.32a f x 3x 3x 18.-⎧-+=-⎪=-⎧⎪∴⎨⎨--=⎩⎪-⨯=⎪⎩∴=--+得(2)由a<0,知二次函数y=ax 2+bx+c 的图象开口向下.要使-3x 2+5x+c ≤0的解集为R ,只需Δ≤0,即25+12c ≤0,得25c .12≤-∴当25c 12≤-时,ax 2+bx+c ≤0的解集为R. 21.【解析】设空调机、洗衣机的月供应量分别是x 台,y 台,总利润是z ,则z=6x+8y由题意有30x 20y 3005x 10y 110x 0y 0+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩且x, y 均为整数. 作出可行域如图.由图知直线31y x z 48=-+过M (4,9)时,纵截距最大.这时z 也取最大值z max =6×4+8×9=96(百元).故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9 600元.22.【解题提示】第(1)题可以列方程组求出首项和公差,从而易求a n ,S n .第(2)题要注意对b n 的化简变形和裂项求和法的应用.【解析】(1)设等差数列{a n }的首项为a 1,公差为d,由于a 3=7,a 5+a 7=26,∴a 1+2d=7,2a 1+10d=26.解得a 1=3,d=2.由于a n =a 1+(n-1)d,()1n n n a a S .2+=∴a n =2n+1,S n =n(n+2),n ∈N *.(2)∵a n =2n+1,()2n a 14n n 1.∴-=+()n 1111b ().4n n 14n n 1∴==-++ 故T n =b 1+b 2+…+b n()111111(1)4223n n 111n (1).4n 14n 1=-+-+⋯+-+=-=++ ∴数列{b n }的前n 项和()*n n T n N .4n 1=∈+,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学必修5测试题
考试时间:120分钟 试卷满分:100分
一、选择题:本大题共14小题,每小题4分,共56分、
1.在等差数列3,7,11,…中,第5项为( ).
A.15
B.18
C.19
D.23
2.数列{a n }中,如果n a =3n (n =1,2,3,…) ,那么这个数列就是( ).
A.公差为2得等差数列
B.公差为3得等差数列
C.首项为3得等比数列
D.首项为1得等比数列
3.等差数列{a n }中,a 2+a 6=8,a 3+a 4=3,那么它得公差就是( ).
A.4
B.5
C.6
D.7
4.△ABC 中,∠A ,∠B ,∠C 所对得边分别为a ,b ,c .若a =3,b =4,∠C =60°,则c 得值等于( ).
A.5
B.13
C.13
D.37
5.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4得值为( ).
A.4
B.8
C.15
D.31
6.△ABC 中,如果A a tan =B b tan =C
c tan ,那么△ABC 就是( ). A.直角三角形
B.等边三角形
C.等腰直角三角形
D.钝角三角形 7.如果a >b >0,t >0,设M =b a ,N =t
b t a ++,那么( ). A.M >N
B.M <N
C.M =N
D.M 与N 得大小关系随t 得变化而变化
8.已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们得图象有一个横坐标为π3得交点,则φ得值就是( ). A. B. C.π3 D.
π6 9.如果a <b <0,那么( ).
A.a -b >0
B.ac <bc
C.a 1>b
1 D.a 2<b
2 10.我们用以下程序框图来描述求解一元二次不等式ax 2+bx +c >0(a >0)得过程.令a
=2,b =4,若c ∈(0,1),则输出得为( ).
A.M
B.N
C.P
D.∅
开始 输入a ,b ,c 计算Δ=b 2-4ac
判断Δ≥0? 计算
a b x a b x 2221∆+-=∆--=
判断x 1≠x 2? 输出区间 N =(-∞,x 1)∪(x 2,+∞) 输出区间 M =(-∞,-a b 2)∪(-a b 2,+∞) 输出区间 P (-∞,+∞)
就否 就否
11.等差数列{a n }中,已知a 1=31,a 2+a 5=4,a n =33,则n 得值为( ). A.50 B.49 C.48
D.47 (第10题)
12.设集合A ={(x ,y )|x ,y ,1―x ―y 就是三角形得三边长},则A 所表示得平面区域(不含
边界得阴影部分)就是( ). O x 0.5
0.5
y x 0.50.5y x 0.50.5y x 0.50.5y
O O O A B C
D 13.若{a n }就是等差数列,首项a 1>0,a 4+a 5>0,a 4·a 5<0,则使前n 项与S n >0成立得最大自然数n 得值为( ).
A.4
B.5
C.7
D.8 14.已知数列{a n }得前n 项与S n =n 2-9n ,第k 项满足5<a k <8,则k =( ).
A.9
B.8
C.7
D.6
二、填空题:本大题共4小题,每小题4分,共16分.将答案填在题中横线上.
15.已知x 就是4与16得等比中项,则x = .
16.一元二次不等式x 2
<x +6得解集为 .
17.函数f (x )=x (1-x ),x ∈(0,1)得最大值为 .
18.在数列{a n }中,其前n 项与S n =3·2n +k ,若数列{a n }就是等比数列,则常数k 得值
为 .
三、解答题:本大题共3小题,共28分、 解答应写出文字说明、证明过程或演算步骤、 19.(12分)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x -y +2≥02x +3y -6≥03x +2y -9≤0
(1) 求目标函数z =2x +5y 得最大值; (2)求目标函数t =得取值范围;
(3)求目标函数z=10得最小值、
20.(7分)某工厂修建一个长方体无盖蓄水池,其容积为4 800立方米,深度为3米.池底
每平方米得造价为200元,池壁每平方米得造价为100元.设池底长方形得长为x米.
(1)求底面积,并用含x得表达式表示池壁面积;
(2)怎样设计水池能使总造价最低?最低造价就是多少?
21.(9分)已知等差数列{a n}得前n项得与记为S n.如果a4=-12,a8=-4.
(1)求数列{a n}得通项公式;
(2)求S n得最小值及其相应得n得值;
a,…,构成一个新得数列{b n},求{b n}得前(3)从数列{a n}中依次取出a1,a2,a4,a8,…,
1
2n-
n项与.
参考答案
一、选择题
1.C
2.B
3.B
4.C
5.C
6.B
7.A
8.D 9.C 10.B 11.A 12.A 13.D 14.B
二、填空题 15..
16.(-2,3). 17.4
1. 18.-3.
三、解答题
19.略
20.解:(1)设水池得底面积为S 1,池壁面积为S 2,则有S 1=38004 =1 600(平方米). 池底长方形宽为x
6001米,则 S 2=6x +6×x 6001=6(x +x
6001). (2)设总造价为y ,则
y =150×1 600+120×6⎪⎭
⎫ ⎝⎛x x 600 1+≥240 000+57 600=297 600. 当且仅当x =x
6001,即x =40时取等号. 所以x =40时,总造价最低为297 600元.
答:当池底设计为边长40米得正方形时,总造价最低,其值为297 600元.
21.解:(1)设公差为d ,由题意,
⎩⎨⎧ ⇔ ⎩
⎨⎧
解得⎩⎨⎧ 所以a n =2n -20.
(2)由数列{a n }得通项公式可知,
当n ≤9时,a n <0,
当n =10时,a n =0,
当n ≥11时,a n >0.
所以当n =9或n =10时,由S n =-18n +n (n -1)=n 2-19n 得S n 取得最小值为S 9=S 10=-90.
(3)记数列{b n }得前n 项与为T n ,由题意可知 b n =12-n a =2×2n -1-20=2n -20.
所以T n =b 1+b 2+b 3+…+b n
=(21-20)+(22-20)+(23-20)+...+(2n -20) =(21+22+23+ (2)
)-20n =2
1221
--+n -20n =2n +1-20n -2. a 4=-12, a =-4
a 1+3d =-12, a +7d =-4.
d =2, a =-18.。