离网型风力发电系统及其应用
离网型风光互补发电系统实验平台设计

( S c h o o l o f A u t o ma t i o n,U n i v e r s i t y o f E l e c t r o n i c S c i e n c e a n d T e c h n o l o g y o f C h i n a ,Ch e n g d u 6 1 1 7 3 1,C h i n a )
p o we r a n d s o l a r p o we r ,t he c ha r g e c o n t r o l ,c a n be i mp l e me n t e d b y t h i s p l a t f o r m. I t s b a t t e r y i s 2 4 V DC i n v e r t e r e d b y 2 20 V/ 5 0 Hz AC. Th e s y sቤተ መጻሕፍቲ ባይዱt e m po s s e s s a l l ki nd s o f e r r o r p r o t e c t i o n c i r c u i t .T hi s e x p e r i me n t a l p l a t f o r m s ho ws ma n y a dv a n t a g e s i n v i s u a l i z a t i o n,pe r t i n e n c e,a n d i s v e y r s ui t a b l e f o r s o me d e s i g n a b l e e x p e r i me n t s .
( 电子科技 大 学 自动 化工程 学 院 ,四川 成 都 6 1 1 7 3 1 )
离网型风力发电机系统的MPPT控制策略研究

关 键 词 : 力发 电 ; 大 风 能 捕 获 ; P 风 最 MP T
中图分类号 : TM3 5 1
文献标 识码 : A
Th t d fM P eS u y o PT n r l ta e y f rS a d Aln id Ge e ain S s e Co to r tg o tn — o eW n n r t y t m S _ o
Hale Waihona Puke 0 引 言 随着 可持续 发展 理 念 的深人 , 力发 电作 为 可再 风 生 能源得 到 了快 速 的发展 。风力 发 电的原 理是 利用 风 轮将 风能转 化为 机械 能 , 轮 带 动 发 电机 再 将 机 械 能 风 转变 为 电能[ 。对 于离 网型 风力 发 电机 系 统 , 1 J 由于风
能 和负载 的随机性 及 不确定 性 , 得其 控制 较为 复杂 。 使 研究 简单 、 高效 、 可靠 、 价 和 使 用 方便 的风 电系 统对 低 其进 一步 推 广 应 用 具 有 重 要 意 义 。现代 电 力 电子 技
术 、 算机 技术 和智 能控 制 理 论 为 深入 研 究 离 网型风 计
通 馋 电淙 技 术 .
21 0 0年 9 2 月 5日第 2 7卷第 5期
Te e o Po rTe h o o y lc m we c n l g Sp e .2 5,2 1 0 0,Vo .2 .5 1 7 No
文章编 号 :0 93 6 (0 0 0 —0 40 10 —6 4 2 1 ) 50 3 —4
探究风力发电并网技术的应用及电能质量控制策略

探究风力发电并网技术的应用及电能质量控制策略摘要:在电力事业快速发展中,重视风力发电并网技术的应用,可实现对风力资源的有效开发与运用,践行环境保护理念的同时提升电能质量。
另外,明确不同风力发电并网技术的优劣势,并通过电压波动以及闪变抑制、增强电能消纳水平、实现电网智能化发展、机组设计改进等策略实现电能质量的控制,推进风力电网并网发展。
关键词:风力发电并网技术;应用;电能质量;控制策略引言当前,我国的风力发电技术已经有较为成熟的应用,并且已经为社会用电发挥了重要作用。
但是,风电并网会在一定程度上对电网产生影响,而且随着风电容量的不断增加,这种影响也越来越明显和严重,所以,要采取有效的方法控制这种不利影响,从而为社会提供更高质量的电能。
1风力发电技术的特点及发展状态风电主要就是将风的动能转变为电力,风能作为一种可再生的清洁能源,受到了全世界的关注。
风能本身就富有丰富的能量,比地球上可开发的水能总量高出十倍左右。
我国的风能资源十分丰富,可开发并利用的风能高达10亿千瓦。
风本身就是一种无公害的能源,且在使用过程中是取之不尽用之不竭的一种能源。
在全球范围内还存在缺水、缺燃料以及交通不便的城市,选择风力发电能规避出现的诸多能源消耗问题。
海上风电也是可再生能源发展的关键领域,同时也是推动风电技术进步及产业升级与发展的必备力量,在当前能源结构调整等诸多前提下,采用风电能够更好地促进调整的体系推进。
当前风力发电技术发展状态可以以下四点进行分析。
单机容量稳步提升。
从20世纪80年代开始,我国单机功率55kW为主要发电功率,从90年代初期开始提升为100~300kW为主要发电功率,从90年代中期开始提升为450~600kW为主要发电功率。
在持续不断地单机容量发展中能够看出,我国风力发电技术也在不断扩大;变桨调节方式替代传统失速功率调节模式。
失速功率调节模式主要存在的问题是由于风力发电组性能受到叶片失速性的影响,整体额定风速持续变高,在风速超过额定数值后发电的功率就会不断下降。
离网型风力发电系统试验指导书

离网型风力发电系统实验指导书目录第一章概述-------------------------------------------------------- 3第二章安全须知---------------------------------------------------- 42.1警示说明---------------------------------------------------- 42.2禁止操作项-------------------------------------------------- 42.3系统运行须知------------------------------------------------ 5第三章系统组成---------------------------------------------------- 63.1系统组成---------------------------------------------------- 63.2系统主要部件参数-------------------------------------------- 73.3系统原理图-------------------------------------------------- 9第四章操作过程---------------------------------------------------- 114.1系统启动和停止--------------------------------------------- 114.2风力发电控制器--------------------------------------------- 124.3离网逆变器------------------------------------------------- 124.4触摸显示屏------------------------------------------------- 13第五章设备维护和常见故障处理------------------------------------ 155.1设备维护--------------------------------------------------- 155.2常见故障和处理方法----------------------------------------- 15第一章概述随着地球上矿石燃料的枯竭,以及在其使用过程中造成的污染,人类越来越迫切的需要找到一种干净的可代替的而且在相当长的一段时间内取之不尽用之不竭的能源。
离网风力发电机系统构成介绍

离网风力发电机系统构成介绍把风的动能转变成机械能,再把机械能转化为电能,这就是风力发电。
风力发电技术是一项多学科的、可持续发展的、绿色环保的综合技术。
风力发电所需要的装置称作风力发电机组。
风力发电机组主要由两大部分组成:风力机部分将风能转换为机械能;发电机部分将机械能转换为电能。
根据风力发电机这两大部分采用的不同结构类型,以及它们分别采用技术的不同特征,再加上它们的不同组合,风力发电机组可以有多种多样的分类。
风力发电机组主要由风轮、传动与变速机构、发电机、塔架、迎风及限速机构组成。
离网风力发电系统是利用风力发电机(将交流电转化为直流电)将发出的电能存储到蓄电池组中,当用户需要用电时,逆变器将蓄电池组中储存的直流电转变为交流电,通过输电线路送到用户负载处。
离网风力发电供电系统一般包括风力发电机、智能控制器、逆变器、交流/直流负载、蓄电池组等部分,该系统是集风力发电技术及智能控制技术为一体的复合可再生能源发电系统,发电系统各部分容量的合理配置对保证发电系统的可靠性非常重要。
1、发电部分(1)风轮风轮是把风的动能转变为机械能的重要部件,风轮是集风装置,它的作用是把流动空气具有的动能转变为风轮旋转的机械能。
一般风力发电机的风轮由两个或三个叶片构成,桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其他复合材料(如碳纤维)来制造。
在风的吹动下,风轮转动起来,使空气动力能转变成机械能(转速+扭矩)。
风轮的轮毂固定在发电机轴上,风轮的转动驱动了发电机轴旋转,带动三相发电机发出三相交流电。
(2)调向机构调向机构是用来调整风力机的风轮叶片与空气流动方向相对位置的机构,其功能是使风力发电机的风轮随时都迎着风向,从而能最大限度地获取风能。
因为当风轮叶片旋转平面与气流方向垂直时,即迎着风向时,风力机从流动的空气中获取的能量最大,因而风力机的输出功率最大,所以调向机构又称为迎风机构(国外通称偏航系统)。
小型水平轴风力机常用的调向机构有尾舵和尾车。
第二章 风力发电机组并网方式分析

2风力发电机组并网运行方式分析2.1风力发电系统的基本结构和工作原理风力发电系统从形式上有离网型、并网型。
离网型的单机容量小(约为0.1~5 kW,一般不超过10 kW),主要采用直流发电系统并配合蓄电池储能装置独立运行;并网型的单机容量大(可达MW级),且由多台风电机组构成风力发电机群(风电场)集中向电网输送电能。
另外,中型风力发电机组(几十kW到几百kW)可并网运行,也可与其它能源发电方式相结合(如风电一水电互补、风电一柴油机组发电联合)形成微电网。
并网型风力发电的频率应保持恒等于电网频率,按其发电机运行方式可分为恒速恒频风力发电系统和变速恒频风力发电系统两大类。
2.1.1恒速恒频风力发电系统恒速恒频风力发电系统中主要采用三相同步发电机(运行于由电机极对数和频率所决定的同步转速)、鼠笼式异步发电机(SCIG)。
且在定桨距并网型风电机组中,一般采用SCIG,通过定桨距失速控制的风轮使其在略高于同步转速的转速(一般在(1~1.05)n)之间稳定发电运行。
如图2.1所示采用SCIG的恒速恒频风力发电系统结构示意图,由于SCIG在向电网输出有功功率的同时,需从电网吸收滞后的无功功率以建立转速为n的旋转磁场,这加重了电网无功功率的负担、导致电网功率因数下降,为此在SCIG机组与电网之间设置合适容量的并联电容器组以补偿无功。
在整个运行风速范围内(3 m/s < <25 m/s),气流的速度是不断变化的,为了提高中低风速运行时的效率,定桨距风力1发电机普遍采用三相(笼型)异步双速发电机,分别设计成4极和6极,其典型代表是NEGMICON 750 kW机组。
风图2.1采用SCIG的恒速恒频风力发电系统恒速恒频风力发电系统具有电机结构简单、成本低、可靠性高等优点,其主要缺点为:运行范围窄;不能充分利用风能(其风能利用系数不可能保持在最大值);风速跃升时会导致主轴、齿轮箱和发电机等部件承受很大的机械应力。
离网型微风发电机组的引进与试验

1 引 言
风 能源 于太 阳辐射使 地球 表面受 热不 均 、 大 导致 气层 中压力 分布不 均 而 使 空气 沿 水 平方 向运 动所 获
( eerhist efm cie n u m n , nagaa e yo gi l rl R s c tu ah r ade i et j n cdm a nito ny qp i fa r u ua ct a c m t nsecsS ie i ag 820 , h a d ea o cn n r l ai i e,hhzX n n 30 0 C i ) i f i n
得 的动 能 。据估计 , 地球 上可 开 发利 用 的风 能 约为 2 × 0 Mw , 1 是水 能 的 1 O倍 , 只要 利 用 1 的 风 能 即可 %
5 / 的 3级微 风下持 续发 电 。 ms
2 离 网型微 风 发 电机 组 构 成
微 风 发 电机 组很 少 并 网 , 一般 为单 机 使 用 , 与 或 太 阳能或 柴油机 发 电互 补 J 。离 网型 微 风ห้องสมุดไป่ตู้ 电机 组
ma l ep ud di i ppr h s cn ioso eF Q — / r z o e eeao yt sitd cd o e i y xon e t s ae.T et t o d i fh D 3 19be epw rgnrtnss m i nr ue ,sm n n h e tn t e i e o
况 。 出实 际应 用和 发 展 中存 在 的 问题 , 提 出相 关 对 策及 建议 。 指 并
离网型风力发电机组风轮叶片标准介绍

2)固有特性试验 针对新研制的叶片,都要进行叶片固有特性试验,其目的是测量叶片的固有频率,为 叶片动力分析、振动控制提供原始依据,并验证动力分析方法的正确性。 3)静力试验 针对新研制叶片,其目的是为了验证叶片的静强度储备,并为校验强度、刚度计算方 法以及结构合理性提供必要的数据。试验测定的有关数据还可供强度设计、振动分析 使用。 4)疲劳试验 针对对于新研制的叶片以及于批量生产叶片工艺做重大技术改进后,必须做疲劳试验。 其目的是为了暴露叶片的疲劳薄弱部位,验证设计的可靠性、工艺的符合性,为改进 设计、工艺、编制使用维护说明书、确定叶片使用寿命提供依据。
5)解剖试验 解剖试验仅适用于复合材料叶片。 解剖试验属于预生产试验范畴,应在工艺试模取得全面检查合格以后进行,目的是 确定复合材料叶片各验证位置的材料性能,检查工艺与设计的符合性等,以便为设 计调整、工艺参数修正提供依据。
6)雷击试验及其他 考核叶片防雷击保护系统的性能,确定叶片抗雷击的能力。 风机采用避雷导电装置
2、试验项目
1)气动性能试验 1)气动性能试验 风洞试验:针对于非定型、新研制叶片的型式试验 (1)风洞直径 D和风轮模型直径 d的关系; ——对于开口风洞: D≥1.5d: ——对于闭口风洞: D≥2d。 (2)测试项目包括: a)风能利用系数 Cp与叶尖速度比 λ的关系曲线; b)风轮扭矩系数 CQ与叶尖速度比 λ的关系曲线。
4、叶片原材料选择 a)叶片的原材料及生产制造过程尽量少对周围居民生活与环境 造 成 影响。 b)对 叶片生产用原材料诸如复合材料(树脂、芯材、预浸料、胶粘剂 )、金属材料等的要求;
第四章节——叶片工艺要求 叶片工艺要求 第四章节
1)手糊湿法成型环境要求: a)层压车间应为全封闭空间,并 能加热、通风,一般要求环境温度为 16~25℃,最大 湿度 70%; b)叶片铺层及胶合工作时,车间内不允许进行产生粉尘的机械加工、油漆或喷涂等作业 ; c)原材料应存放在 10~18℃室内,储存间应干燥、通风、避免强光,并应配置自动记录 式温度计、湿度计。 2)手糊湿法制造要求: a)胶衣控制在0.4~0.6mm; b)增强材料树脂含量应介于40%~50%之间;增强材料比重高于300g/m^2时不得高于 70%; c)对于冷固化系统( 16~25℃),固化时间至少需要 12h(不再做时效处理); d加温强制固化叶片出厂前必须在室温下至少存放 7天,或 40℃/16h,或 50℃/9h。