风功率预测系统
风功率预测系统

风功率预测
由于风能的随机性、间歇性特点,对电网的运行调度的带来困难,影 响了电网的安全稳定运行,并成为了制约风电大规模接入的关键技术问 题。
风电功率预测是指以风电场的历史功率、历史风速、地形地貌、数值 天气预报、风电机组运行状态等数据建立风电场输出功率的预测模型, 以风速、功率或数值天气预报数据作为模型的输入,结合风电场机组的 设备状态及运行工况,得到风电场未来的输出功率,预测时间尺度包括 短期预测和超短期预测。
风功率系统
? 国外风电场发电功率预测系统介绍
在风电功率预测技术研究方面,经过近 20 年的发展,风电功率预测已获得了广泛的 应用,风电发达国家,如丹麦、德国、西班牙等均有运行中的风电功率预测系统。
德国太阳能技术研究所开发的风电管理系统( WPMS )是目前商业化运行较为 成熟的系统,目前该系统对于单个风电场的日前预报精度约为 85%左右。丹麦 Ris? 国家可 再生能源实验室与丹麦技术大学联合开发了 Zephyr ,目前丹麦所有电网公司均采用了该预 测系统。此外,美国、西班牙、英国、法国、爱尔兰等风电发展较快的欧美国家纷纷开始 开发和应用风电功率预测系统,其中较为成熟的产品还有国 True Wind Solutions 公司开 发的E-Wind ,法国 Ecole des Minesde Paris 公司开发的 AWPPS ,西班牙马德里卡尔洛斯 第三大学开发的 SIPREóLco以及爱尔兰国立科克大学与丹麦 DMI 联合开发的 HIRPOM 。
根据中国可再生能源学会风能专业委员会(中国风能协会)统计,截至 2010年12 月,中国市场(不包括台湾地区)风电机组装机容量已经达到 18927.99MW,年同比增长37.1%,累计安装风电机组34485 台,年同比增 长73.3%。
风功率预测系统

上海交通大学风力发电研究中心
风功率预测系统功能设计标准
《风电场接入电网技术规定》 《风电功率预测系统功能规范》 《风电场风能资源测量方法》 《风电场风能资源评估方法》 《风电调度运行管理规范》 《风电场并网验收规范》 《风电场风能资源测量和评估技术规定》 《电工名词术语》 《继电保护和安全自动装置技术规程》 《电力工程电缆设计规范》 《继电保护设备信息接口配套标准》 《国家电网公司十八项电网重大反事故措施》
引自:风电功率预测功能规范
风功率预测系统功能规范
预测建模数据准备
➢ 风电场历史功率数据 ➢ 历史测风塔数据 ➢ 风电机组信息 ➢ 风电机组/风电场运行状态记录 ➢ 地形和粗糙度数据
风功率预测系统功能规范
数据采集与处理
➢ 数据采集范围
➢ 数据采集要求
➢ 数据的处理 • 所有数据存入数据库前应进行完整性及合理性检验,并对缺测和 异常数据进行补充和修正。 • 数据完整性检验应 • 缺测和异常数据处理
➢ 日预报要求并网风电场每日在规定时间前按规定要求向电网调度机构提交 次日0 时到24 时每1 5 分钟共96 个时间节点风电有功功率预测数据和开机容 量。
➢ 实时预报要求并网风电场按规定要求每15 分钟滚动上报未来1 5 分钟至4 小时风咆功率预测数据和实时的风速等气象数据。
➢ 风电场功率预测系统提供的日预测曲线最大误差不超过25% ;实时预测误 差不超过15 % 。全天预测结果的均方根误差应小子20% 。
风功率预测系统功能规范
性能要求
➢ 电网调度机构的风电功率预测系统应至少可扩容至200个风电场。 ➢ 风电功率预测单次计算时间应小于5min。 ➢ 单个风电场短期预测月均方根误差应小于20%,超短期预测第4h预测
风功率预测系统相关知识讲解

01-功率预测业务—术语定义
数值天气预报 功率预测建模
短期预测
超短期预测
➢ 数值天气预报(NWP):根据大气实际情况,在一定的 初值和边值条件下,通过大型计算机作数值计算,求 解描写天气演变过程的流体力学和热力学的方程组, 预算未来一定时间的大气运动状态和天气现象的方法。
➢ 功率预测:以电场的历史功率、历史风速(辐照)、 地形地貌、数值天气预报、风电机组(逆变器)运行 状态等数据建立电场输出功率的预测模型,以风速 (辐照度)、功率或数值天气预报数据作为模型的输 入,得到电场未来的输出功率,预测时间尺度包括短 期预测和超短期预测,分辨率均为15min。
TRFYF1_20190404_1030_FJ.WPD5分钟一个,当前时刻风机5分钟数 据
TRFYF1_20190404_1030_CFT.WPD5分钟一个,当前时刻测风塔5分 钟数据
16
02-功率预测日常维护—日常巡检
工作 规划
保障 措施
02-功率预测日常维护
一、功率预测系统的日常运维 1.确保场站,上传省调功率预测系统.上传数据稳定性,不得出现数据中断、跳变、超 工出作合理范围等异常情况。 规2划.加强天气预报服务器网络连接稳定性监视,不得出现因外网中断无法读取预测系统 天气预报的情况。 3.确保站内网络安全。及时加固新能源场站功率预测服务器、天气预报服务器主机,确 保天气预报服务器与公网连接的防火墙、与II区功率预测服务器连接的反向隔离装置端 口、IP地址和业务配置最小化,严禁违规外联、跨区直联。 4.强化落实站内功率预测系统异常的处理机制。加强运行人员在功率预测系统使用方 保面障的培训,系统异常时运行人员具备及,时处理的能力,必要时各场站需建立与预测 措系施统厂家异常处理支撑机制。
风功率预测系统基础知识

风功率预测系统基础知识风功率预测系统⼀、风功率预测的⽬的和意义1. 通过风电功率预测系统的预测结果,电⽹调度部门可以合理安排发电计划,减少系统的旋转备⽤容量,提⾼电⽹运⾏的经济性。
2. 提前预测风电功率的波动,合理安排运⾏⽅式和应对措施,提⾼电⽹的安全性和可靠性。
3. 对风电进⾏有效调度和科学管理,提⾼电⽹接纳风电的能⼒。
4. 指导风电场的消缺和计划检修,提⾼风电场运⾏的经济性。
5.应相关政策要求。
⼆、设备要求提供的设备应满⾜《风电功率预测系统功能规范》中所提出的各项要求。
四、设备介绍可能涉及到的设备:以下出⾃北京中科伏瑞电⽓技术有限公司的FR3000F系统数据采集服务器:运⾏数据采集软件,与风电场侧风电综合通信管理终端通信采集风机、测风塔、风电场功率、数值天⽓预报、风电场本地风电功率预测结果等数据。
数据库服务器:⽤于数据的处理、统计分析和存储,为保证数据可靠存储,配置了磁盘阵列。
应⽤⼯作站完成系统的建模、图形⽣成显⽰、报表制作打印等应⽤功能。
风电功率预测服务器:运⾏风电功率预测模块,根据建⽴的预测模型,基于采集的数值天⽓预报,采⽤物理和统计相结合的预测⽅法,并结合⽬前风电场风机的实时运⾏⼯况对单台风机及整个风电场的出⼒情况进⾏短期预测和超短期预测。
数据接⼝服务器:负责从⽓象局获得数值天⽓预报,为保证⽹络安全在⽹络边界处配置反向物理隔离设备。
同时向SCADA/EMS系统传送风电功率预测的结果。
测风塔:测风塔测量数据(实时⽓象数据)是⽤来进⾏超短期功率预测的。
测风塔有两种类型,⼀是实体测风塔,⼀是虚拟测风塔。
⼀个风塔造价占系统的的20~30%左右。
实体测风塔:变化频繁的⾃然条件和复杂的地形地貌给预测系统增加了困难,实体测风塔的安装台数应根据风场的实际地理条件等情况进⾏安装,以保障预测的准确性。
实体测风塔应安装在风场5km范围内,通过GPRS或者光纤采集风塔的实时⽓象数据。
虚拟测风塔:是加装⼀些装置,直接采集风场风机上预测的风速、风向数据进⾏预测,它不需要在户外安装实体风塔,没有户外的维护⼯作。
风电场功率预测系统的实时调度与优化策略

风电场功率预测系统的实时调度与优化策略随着能源需求的增长和环保意识的提高,可再生能源的利用逐渐成为解决能源需求的重要途径。
其中,风能作为一种清洁且可再生的能源,得到了广泛的关注和应用。
然而,由于风速的不稳定性和不可预测性,风力发电场在实际运行过程中存在着一定的挑战。
为了更好地协调风电场的运行和电网的需求,实时调度与优化策略成为了风电场功率预测系统中的关键问题。
一、风电场功率预测系统的概述风电场功率预测系统是基于对风速数据的分析和模型建立,预测未来一段时间内风电场的发电功率,从而实现对风电场的实时调度与优化。
预测的准确性对于实时调度和优化决策具有重要意义。
一般来说,风电功率预测可以通过以下几方面的因素来进行分析和建模:1. 风速数据分析:通过对历史风速数据的统计和分析,可以得到风速的概率分布及其变化规律。
这对于选择适当的风速模型和算法有着重要的指导作用。
2. 外部环境因素:风速的变化除了与内部因素有关外,还受到一系列外部环境因素的影响,例如气象因素、地理位置、季节变化等。
考虑这些因素,可以提高预测模型的准确度。
3. 风电机组特性:不同风电机组有着不同的工作特性和性能指标,例如启动风速、切入风速等。
这些特性对于发电功率的预测具有一定的影响,需要在模型中予以考虑。
二、实时调度策略实时调度在风电场的运行过程中起着至关重要的作用。
通过实时收集和分析风速数据,可以及时调整风电机组的工作状态,以实现最优的发电功率输出。
下面介绍几种常用的实时调度策略:1. 基于强化学习的调度策略:强化学习是一种通过与环境的交互来学习最优行为的方法。
在风电场中,可以通过建立动态规划模型,将风电场的状态和功率输出作为状态和动作空间,通过强化学习算法,不断迭代优化发电功率输出。
2. 模糊控制调度策略:模糊控制是一种基于模糊逻辑推理的控制方法。
在风电场中,通过建立模糊规则库,将风速、风电机组状态等作为输入,发电功率作为输出,通过模糊推理来实现对发电功率的调度。
风功率预测系统局部架构

风功率预测系统局部架构风功率预测涉及的其他产品1、实时测风数据采集与传输系统风电场风资源实时采集及传输系统,是根据国家电网对风电场测风塔相关标准及国内外风电场运行状况所开发的系统。
本系统主要包括测风塔数据的实时采集、存储、转发、分析管理、以及与远动装置进行实时数据交互,实现向网调EMS系统的测风塔数据实时上传。
2、测风数据使用光纤传输方式的建设方案风电场测风塔示意图如下图所示:测风塔部分主要包括测风塔、测风塔上的测量设备、数据记录仪、串口联网设备等硬件设施。
其中测量仪器包括风速仪、风向标(在10米、30米、70米、风力发电机组的轮毂中心高层各一个),和温度传感器、湿度传感器、压力传感器(放在10米高层各一个)。
这些测量设备通过传感器屏蔽电缆连接到数据记录仪。
数据记录仪有专门的保护箱,其电源由太阳能供电系统提供,实现数据的采集及存储。
数据采集器通过光端机把串口信号转换光信号,经过最近风机的备用光纤传送到电子设备间。
拓扑图经过光纤交换机和光电转换器的处理,重新将光信号转换为电信号,然后数据通过ModBus协议(RS232/R485串口)实时传送到功率预测服务器上,并按照网调要求的格式进行上传,实现测风塔数据的本地采集、存储、显示、管理以及对网调的数据上送。
风电场主控室,测风设备网络示意图如下所示:升压站监控房网络图说明:国能日新的实时测风数据采集及上传系统除了通过光纤方式传输外,还可实现GPRS无线方式、无线电台方式等多种传输方式。
测风塔3、虚拟测风塔建设方案虚拟测风塔是一套软件模块,无需建设测风塔,即可完全满足测风数据及其他气象数据的采集和主站上传要求,且无论是数据精度还是测量范围完全满足电网对风电场测风塔实时数据上传的技术要求。
国能日新的虚拟测风塔可以位于场内及附近的任意位置,不受风电场区域限制;时间采集精度可以任意选取;同时没有任何工况限制,即使出现了极限天气,依然能够正常工作。
这样不仅为业主节约了实体测风塔的硬件投资,而且还为用户节约了大量的维护费用。
风电场功率预测系统的设计原理与性能评估

风电场功率预测系统的设计原理与性能评估近年来,随着可再生能源行业的蓬勃发展,风能作为一种清洁、可持续的能源形式逐渐受到广泛关注。
然而,风能的不稳定性成为了风电场运营和管理的主要挑战之一。
在风能变化无常的情况下,电网需求不断变化,因此如何准确预测风电场的出力功率,成为了风电场运维管理的关键。
本文将介绍风电场功率预测系统的设计原理和性能评估。
风电场功率预测系统主要包括数据采集、特征提取、模型训练和预测四个关键步骤。
通过对这些步骤的设计和优化,能够提高风电场功率预测的准确性和稳定性。
首先,数据采集是风电场功率预测系统的基础。
系统需要采集风电场内各个风机的工作状态数据、天气数据、风速数据等相关信息。
这些数据将被用于分析和建立预测模型,并对风电场未来的出力功率进行预测。
对数据采集系统进行设计时,应考虑数据的实时性和准确性,确保采集到的数据能够真实地反映风能的变化情况。
其次,特征提取是风电场功率预测的关键步骤之一。
通过对采集到的数据进行分析和处理,提取出能够反映风能变化的关键特征。
这些特征可以包括风速、风向、气象条件等。
在特征提取过程中,应综合考虑多个变量之间的相互关系,并通过合适的算法和方法进行特征选择和降维,以减少数据维度和提高预测准确性。
模型训练是风电场功率预测系统的核心环节。
在模型训练过程中,可以采用各种机器学习方法,如回归分析、神经网络、支持向量机等。
这些方法能够利用历史数据和特征信息,建立出有效的预测模型。
在模型训练过程中,应使用合适的算法和技术,优化模型的参数和结构,以提高模型的预测精度和鲁棒性。
最后,预测是风电场功率预测系统的最终目标。
通过利用建立好的预测模型和实时采集到的数据,可以对未来一段时间内风电场的出力功率进行预测。
预测结果可以用于电网调度、风电场管理、风机功率优化等方面,提高风电场的利用效率和经济性。
除了设计原理,对于风电场功率预测系统的性能评估也是必不可少的。
性能评估可以通过比较预测结果与实际测量结果的差异来进行。
风电功率预测系统

9风功率预测系统:9.1概况:本风场采用的是北京博雅智恒新能源科技有限公司产品。
1)系统架构如下图所示:风电功率预测系统需要配置两台服务器,数据服务器与应用服务器,数据服务器用于接收实时测风塔数据、数值天气预报数据;应用服务器用于安装预测系统主程序,接收实时功率数据,并向调度上传预测结果。
同时,为保障系统的安全性,同时满足电网对风电安全性要求,对从外网接受的数值天气预报数据需加装方向网络隔离装置,以保证系统的安全性。
风电功率预测综合管理系统拓扑图2)预测系统采用B/S模式,用户登录系统不需要安装其它软件,在系统所在网段任何一台电脑的浏览器上输入以下链接:http://ipAddress:port/WindPower系统初始登陆账号:f初始登陆密码:f注意:如果两人同时使用同一用户名登录,系统将自动注销先登录的用户。
系统用户目前分为二个等级:(1).超级管理员超级管理员具有所有模块的操作使用功能。
(2).普通用户普通用户具备浏览功能,相比较超级管理员用户,普通用户没有系统管理模块的操作权限。
系统中只保留一个超级管理员账户(admin),普通用户由超级管理员统一创建和管理,以免发生混乱和越权操作。
9.2 系统软件主要计算功能(1)可以对单独风电场或特定区域的集群预测。
(2)系统目前能够预测风电场次日0 时至24 时的96 点出力曲线,时间分辨率为15 分钟。
当数值天气预报的时间长度超过24 小时的时候,可以预测超过48 小时的出力曲线。
(3)系统能够设置每日预测的时间及次数,具备手动启动预测和自动定时预测两种预测方式。
(4)考虑到出力受限和风机故障对风电场发电能力的影响,可进行限电和风机故障等特殊情况下的功率预测, 同样支持不断扩建中的风电场的功率预测。
(5)系统可对预测结果进行误差统计,可统计任意时间段内的系统预测指标。
(6)系统可生成一段时间内的风速玫瑰图及风廓线。
9.3风功率预测系统基本应用操作预测系统分为实时状态监测、气象信息展示、报表统计、系统管理共四个应用模块,每个应用模块又根据应用包含了若干个具体操作的子模块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风功率系统
国外风电场发电功率预测系统介绍
在风电功率预测技术研究方面,经过近20 年的发展,风电功率预测已获得了广泛的 应用,风电发达国家,如丹麦、德国、西班牙等均有运行中的风电功率预测系统。
德国太阳能技术研究所开发的风电管理系统(WPMS)是目前商业化运行较为 成熟的系统,目前该系统对于单个风电场的日前预报精度约为85%左右。丹麦RisØ 国家可 再生能源实验室与丹麦技术大学联合开发了Zephyr,目前丹麦所有电网公司均采用了该预 测系统。此外,美国、西班牙、英国、法国、爱尔兰等风电发展较快的欧美国家纷纷开始 开发和应用风电功率预测系统,其中较为成熟的产品还有美国True Wind Solutions 公司开 发的E-Wind,法国Ecole des Minesde Paris 公司开发的AWPPS,西班牙马德里卡尔洛斯 第三大学开发的SIPREóLco以及爱尔兰国立科克大学与丹麦DMI 联合开发的HIRPOM。
辽宁力迅风电控制系统有限公司风功率预测系统 兆方美迪风电功率预报系统 黑龙江大唐晨光依兰风电场
上海交通大学风力发电研究中心
风功率预测系统功能设计标准
《风电场接入电网技术规定》 《风电功率预测系统功能规范》 《风电场风能资源测量方法》 《风电场风能资源评估方法》 《风电调度运行管理规范》 《风电场并网验收规范》 《风电场风能资源测量和评估技术规定》 《电工名词术语》 《继电保护和安全自动装置技术规程》 《电力工程电缆设计规范》 《继电保护设备信息接口配套标准》 《国家电网公司十八项电网重大反事故措施》
日预报要求并网风电场每日在规定时间前按规定要求向电网调度机构提交 次日0 时到24 时每1 5 分钟共96 个时间节点风电有功功率预测数据和开机容 量。
实时预报要求并网风电场按规定要求每15 分钟滚动上报未来1 5 分钟至4 小时风咆功率预测数据和实时的风速等气象数据。
风电场功率预测系统提供的日预测曲线最大误差不超过25% ;实时预测误 差不超过15 % 。全天预测结果的均方根误差应小子20% 。
根据中国可再生能源学会风能专业委员会(中国风能协会)统计,截至 2010年12 月,中国市场(不包括台湾地区)风电机组装机容量已经达到 18927.99MW,年同比增长37.1%,累计安装风电机组34485 台,年同比增 长73.3%。
风功率
风功率密度是指,与风向垂直的单位面积中风所具有的功率,IS单位为:W/㎡ (瓦特/平方米) 风功率密度的计算方法如下,设定时段的平均风功率密度表达式为:
风电功率预测系统
目录
风电概述 风电使用现状 风功率预测系统功能规范 风功率预测系统功能介绍 风功率预测系统硬件建设 风功率预测系统指标 总结
风电
概念 风电是风能发电或者风力发电的简称。
优点 风能是一种清洁的可再生能源,其资
源丰富、转化效率高、产业化基础好、 经济优势明显、环境影响小
弱点
具有间歇性强、随机性大、可调度性弱等特点,大规模接入后对电网运行 会产生较为明显的影响。
风电使用现状
目前,我国正在发展的大容量风电场通常表现出显著的区域集中性,大 型风电场对电网产生的影响必然显著区别于国外分布式风电发展模式。同 时,我国风资源丰富、适宜建设大型风电场的地区存在局部电网建设相对 薄弱的情况,为保障电网运行的安全稳定,有时需采取限制风电场发电功 率的措施。
siperólico
物理模型 统计模型
2001 2002
美国 AWS Truewind
E-Wind
包括一组高精度的三维大气物理数学模型、适应性统 计模型、风电场输出模型和预测分发系统
1998
引自:华北电大风功率预测系统
风功率预测系统
国内风电场发电功率预测系统介绍 国电南瑞NSF3100风电功率预测系统 华北电大风功率预测系统 北京中科伏瑞电气技术有限公司FR3000F风电功率预测系统 东润环能(北京)科技有限公司风电功率预测软件 大唐突泉老爷岭风电场一期49.5MW工程 中国电力科学研究院新能源研究所 风电功率短期预测系统 陆丰宝丽华新能源电力有限公司 风 Zephy
使用物理模型,考虑了尾流等的影响
利用自适应最小平方根法和指数遗忘算法相结合给出 0.5-36h的预测
集合了上边两个模型,可以提供0-9h和36-48h的预测
1994 1994 2003
西班 牙
西班牙可再生能源中 心开发
西班牙卡洛斯Ⅲ大学
LocalPredRegioPred
式中:n —— 在设定时段内的记录数; ρ —— 空气密度(kg/m^3); vi —— 第i记录的风速(m/s)。
风功率预测
由于风能的随机性、间歇性特点,对电网的运行调度的带来困难,影 响了电网的安全稳定运行,并成为了制约风电大规模接入的关键技术问 题。
风电功率预测是指以风电场的历史功率、历史风速、地形地貌、数值 天气预报、风电机组运行状态等数据建立风电场输出功率的预测模型, 以风速、功率或数值天气预报数据作为模型的输入,结合风电场机组的 设备状态及运行工况,得到风电场未来的输出功率,预测时间尺度包括 短期预测和超短期预测。
引自:国电南瑞NSF3100
风功率预测系统
国外风电场发电功率预测系统介绍
开发商
模型名称 特点
投运时间
ISET 德国
德国奥尔登堡大学
AWPT Previento
提供1-8h的预测,根据数值天气预报,使用神经网络 计算输出功率
2001
使用物理模型,在较大的区域内给出2天的预测结果 2002
Risø 丹麦 丹麦科技大学
风功率预测系统功能规范
风功率预测系统功能规范
国家能源局关于印发风电场功率预测预报 管理暂行办法的通知 国能新能(201 1) 177 号
预测预报要求
风电功率预报分日预报和实时预报两种方式。 日预报是指对次日0时至24 时的预测预报,实时预报是指自上报时刻起未来15 分钟至4 小时的预测预报, 时间分辨率均为15 分钟。