电流互感器及电压互感器选择

合集下载

简述电压和电流互感器选择量程的原则

简述电压和电流互感器选择量程的原则

电压和电流互感器是电气行业中常用的传感器,用于测量电路中的电压和电流。

在选择电压和电流互感器的量程时,有一些原则需要遵循,以确保传感器在实际工作中能够准确、稳定地工作。

本文将从电压和电流互感器的工作原理、选择量程的影响因素以及量程选择的原则等方面进行详细的阐述。

一、电压和电流互感器的工作原理电压互感器和电流互感器是一种用于测量电路中电压和电流的传感器。

它们通过电磁感应的原理,将电路中的电压和电流转换成相应的信号输出。

电压互感器主要由一对缠绕在铁芯上的绕组组成,当电路中通过电流时,产生的磁场使得铁芯中的磁通量发生变化,从而在次级绕组中感应出电压信号。

电流互感器则是通过电路中的电流产生的磁场作用在次级绕组上感应出电压信号。

二、选择量程的影响因素在选择电压和电流互感器的量程时,需要考虑以下几个因素:1. 电路中的最大电压和电流:首先需要确定待测电路中的最大电压和电流值。

量程应该能够覆盖这些最大值,以保证传感器在工作时不会因为超出量程而损坏。

2. 测量精度要求:不同的应用场景对测量精度的要求不同。

一般来说,量程越小,测量精度也会相对提高。

但如果量程过小,可能无法覆盖实际工作范围,导致测量失真。

3. 安全因素考虑:在选择量程时,也需要考虑安全因素。

如果量程设置过大,可能无法检测到电路中的小信号变化,影响测量精度。

而设置过小的量程,则可能使得传感器在工作时超出额定范围,存在安全隐患。

三、量程选择的原则在实际选择电压和电流互感器的量程时,可以遵循以下原则:1. 确定电路中的最大电压和电流值,并在此基础上选择略大于这些最大值的量程。

这样可以保证在电路中发生异常情况时,传感器不会因为超出量程而损坏。

2. 根据实际测量精度要求,选择合适的量程。

如果精度要求较高,可以考虑选择小量程的传感器,而如果精度要求一般,可以选择较大量程的传感器。

3. 安全考虑也是量程选择的重要因素,需要在满足测量要求的前提下,尽量选择合适的量程,既能保证测量精度,又能保证传感器在工作时的安全性。

电流互感器电压互感器的选择

电流互感器电压互感器的选择

(1)电流互感器一次电流选择:
测量表计回路的电流选择。

测量表计回路用的电流互感器选择应考虑以下因素:连接测量仪表用的电流互感器的额定一次电流,应使正常负荷下仪表指示在刻度标尺的三分之二,并应考虑过负荷运行时能有适当的指示。

因此,电流互感器的一次电流可选择为I 1>=1.25I e ,(其中I 1为电流互感器一次电流;I e 为发电机和变压器的额定电流,对线路应取最大负荷电流)。

对于直接启动电动机的测量仪表用电流互感器应选用I 1>1.5Ie 。

(2)电流互感器二次电流选择:一般为5A ,但为了增加电流互感器二次允许负荷,减小连接电缆的导线截面及提高准确等级,应尽可能选用二次额定电流为1A 的电流互感器。

(3)电压互感器一次电压选择:一次电压等级有0.5、3、6、10、15、18、20、35、60、110、220、330、500KV 。

上述电压等级是指电压互感器一次绕组接于电网的线电压。

若电压互感器接于电网的相电压上,其一次绕组的额定电压为U xe =U x_xe /3。

(其中U xe 为额定一次相电压,U x_xe 为额定一次线电压);所选择的电压互感器应符合下列条件,即1.1U x_xe >U e >0.9 U x_xe 或1.1U xe >U 1e >0.9 U xe ; (4)电压互感器二次电压选择:。

电压互感器和电流互感器 配置规则

电压互感器和电流互感器 配置规则

电压互感器和电流互感器配置规则电压互感器和电流互感器是电力系统中常见的测量设备,它们在电能计量和保护装置中起着重要的作用。

在电力系统中,我们通常需要对电压和电流进行测量和监测,以确保系统的稳定性和安全性。

因此,正确配置电压互感器和电流互感器是至关重要的。

让我们来了解一下电压互感器。

电压互感器通常安装在电力系统的高压侧,用于将高电压变换为低电压,以便进行测量和监测。

它们的主要作用是保护和控制装置的正常运行。

在配置电压互感器时,我们需要考虑以下几个因素。

首先是变比。

变比是电压互感器的一个重要参数,它决定了输入和输出电压之间的关系。

在选择变比时,我们需要根据系统的电压等级和测量需求来确定。

通常情况下,变比选择合理的范围是非常重要的,以确保测量的准确性和可靠性。

其次是额定电流。

额定电流是指在额定变比下,电压互感器能够承受的最大电流值。

在配置电压互感器时,我们需要根据系统的负荷情况和保护需求来选择适当的额定电流。

选择过小的额定电流可能导致电压互感器过载,而选择过大的额定电流可能导致测量误差。

还需要考虑电压互感器的精度和负载特性。

精度是指电压互感器输出信号与输入信号之间的误差。

在选择电压互感器时,我们需要根据测量要求来确定所需的精度等级。

负载特性是指电压互感器在不同负载条件下的输出特性。

在配置电压互感器时,我们需要确保其负载特性与所连接的设备相匹配。

接下来,让我们来了解一下电流互感器。

电流互感器通常安装在电力系统的低压侧,用于将高电流变换为低电流,以便进行测量和监测。

它们的主要作用是测量和保护装置的正常运行。

在配置电流互感器时,我们需要考虑以下几个因素。

首先是额定电流。

额定电流是指在额定变比下,电流互感器能够承受的最大电流值。

在选择电流互感器时,我们需要根据系统的负荷情况和保护需求来确定适当的额定电流。

选择过小的额定电流可能导致电流互感器过载,而选择过大的额定电流可能导致测量误差。

其次是精度和负载特性。

精度是指电流互感器输出信号与输入信号之间的误差。

电流电压互感器的正确选择和使用

电流电压互感器的正确选择和使用

电流电压互感器的正确选择和使用电流电压互感器是一种用于测量电流和电压的设备,广泛应用于电力系统中。

正确选择和使用电流电压互感器对于电力系统的正常运行和安全性至关重要。

下面将从选择互感器类型、额定参数、安装位置和使用注意事项等方面进行详细介绍。

一、选择互感器类型1.电流互感器类型选择:根据测量电流的大小,选择合适的电流互感器类型。

一般分为小电流互感器和大电流互感器两种类型。

小电流互感器适用于测量小电流,具有较高的精度和灵敏度。

大电流互感器适用于测量大电流,具有较高的额定电流和耐受能力。

2.电压互感器类型选择:根据测量电压的大小和电力系统的要求,选择合适的电压互感器类型。

一般分为带绝缘套管和不带绝缘套管两种类型。

带绝缘套管的电压互感器适用于高电压系统,能够提供良好的绝缘性能。

不带绝缘套管的电压互感器适用于低电压系统,具有较高的测量精度。

二、额定参数选择1.电流互感器额定电流选择:根据电力系统的负荷特点和测量需求,选择合适的电流互感器额定电流。

额定电流应略大于系统最大负荷电流,以确保测量精度和设备的安全性。

2.电压互感器额定电压选择:根据电力系统的电压等级和测量需求,选择合适的电压互感器额定电压。

额定电压应略大于系统最高电压,以确保测量精度和设备的安全性。

三、安装位置选择1.电流互感器安装位置选择:电流互感器应安装在电力系统中的主要电流回路上,以保证对整个电流的准确测量。

一般选择在电源侧或负载侧的主要电缆上安装。

2.电压互感器安装位置选择:电压互感器应安装在电力系统中的主要电压回路上,以保证对整个电压的准确测量。

一般选择在电源侧或负载侧的主要开关设备上安装。

四、使用注意事项1.定期检查和校验:定期检查和校验互感器的工作状态和准确度,以确保测量结果的可靠性和准确性。

2.防止过载:互感器在使用过程中应避免超过其额定电流或电压,以防止设备的损坏和测量结果的失真。

3.防止温度过高:互感器在使用过程中应避免长时间高温工作,以保证设备的安全性和寿命。

电流互感器和电压互感器选择和计算导则正文

电流互感器和电压互感器选择和计算导则正文

电流互感器和电压互感器选择和计算导则正文电流互感器和电压互感器是电力系统中常用的传感器设备,用于测量和监测电流和电压。

在选择和计算互感器时,需要考虑多个因素,包括电流或电压的范围、精度要求、负载容量、安装方式等。

本文将详细介绍电流互感器和电压互感器的选择和计算导则。

一、电流互感器选择和计算导则1.电流范围选择:根据被测电流的最大值和最小值,选择合适的电流互感器。

通常,电流互感器的额定电流应为被测电流的1.2倍,以确保互感器在额定电流下的正常工作。

2.精度要求:根据应用的需求确定电流互感器的精度等级,常见的精度等级有0.1、0.2、0.5等。

精度等级越高,互感器的测量误差越小,但价格也相应增加。

3.负载容量:互感器的负载容量是指互感器能够承受的额定负载电流。

在选择互感器时,需要根据负载电流的最大值确定互感器的负载容量,以确保互感器在额定负载下的正常工作。

4.安装方式:根据具体的应用场景选择合适的电流互感器安装方式,常见的安装方式有固定式、可分离式和插拔式。

固定式适用于固定装置,可分离式适用于需要经常换位的场合,插拔式适用于需要频繁更换互感器的场合。

5.计算导则:电流互感器的计算一般通过测量电流和互感器的变比计算得出。

设被测电流为I,互感器的变比为N,则互感器的二次电流为I2=I*N。

根据互感器的额定电流和变比,可以计算出互感器的额定二次电流。

二、电压互感器选择和计算导则1.电压范围选择:根据被测电压的最大值和最小值,选择合适的电压互感器。

通常,电压互感器的额定电压应为被测电压的1.2倍,以确保互感器在额定电压下的正常工作。

2.精度要求:根据应用的需求确定电压互感器的精度等级,常见的精度等级有0.1、0.2、0.5等。

精度等级越高,互感器的测量误差越小,但价格也相应增加。

3.负载容量:互感器的负载容量是指互感器能够承受的额定负载电压。

在选择互感器时,需要根据负载电压的最大值确定互感器的负载容量,以确保互感器在额定负载下的正常工作。

浅谈如何选择35、10kV电力系统中电压互感器、电流互感器

浅谈如何选择35、10kV电力系统中电压互感器、电流互感器

浅谈如何选择35、10kV电力系统中电压互感器、电流互感器摘要:针对日益扩大的电力系统,研究选择电流互感器、电压互感器时各种相互矛盾的因素以及合理地选用电流互感器、电压互感器的原则,具有十分重要的意义。

关键词:电流互感器电压互感器选择随着电力系统网络的日益扩大,系统短路容量随之增大,电网上谐波普遍存在。

在35、10kV中压电网中电压互感器(PT)、电流互感器(CT)是电力系统中一次与二次的连接环节,他们的各项性能指标直接影响整个电力系统安全运行和二次自动化保护的正确动作。

由于电网中谐振现象的普遍存在,所以PT是电网运行中很容易出现故障的元件,选择时一定要谨慎;而某些35、10kV线路正常供电负荷又相对较小,造成选择CT时既要确保动热稳定要求以及线路短路时保护CT满足10%误差曲线要求,又要保证正常情况下表计测量的准确性,还要考虑结构紧凑、经济合理。

实际运行中曾出现过线路短路时CT饱和,保护拒动,因而影响系统安全;也出现过变比选择过大造成计量不准,影响企业效益和信誉。

因此在设计和选择PT、CT时必须综合考虑以上各因素。

首先谈谈变电站的实际应用情况。

35kV胡蚁变电站主变容量8000kVAR,电压等级35/10kV。

由于该变电站靠近西郊110kV变电站,10kV母线短路容量较大,因10kV出线负荷要为农村负荷,在一年内不同季节变化较大,正常时负荷比较小,农忙季节负荷又很大。

10kV出线负荷情况见表1。

建站时10kV开关站采用的是河南思达公司生产的预装式开关站,其CT变比为两条线路100/5,两条线路150/5;PT为普通型JDZJ-10一组,采用RN1-10/0.5熔断器保护。

在一年的实际运行中,出现了如下问题:1.计量上出现35kV侧与10kV侧有误差现象;2.PT及保护熔断器各烧坏一只。

经过分析认为原因如下:10kV侧负荷长时间小于CT负荷的50%,造成计量出现偏差;当地电网中谐振比较大,而PT又没有采取抗谐振措施,熔断器的反应时间过长造成的。

电流互感器和电压互感器选择及计算导则

电流互感器和电压互感器选择及计算导则

电流互感器和电压互感器选择及计算导则电流互感器和电压互感器是电力系统中常用的测量装置,用于测量和保护电流和电压。

在选择和计算互感器时,需要考虑许多因素,如额定电流、额定电压、准确度等。

本文将详细介绍电流互感器和电压互感器的选择及计算导则。

1.选择电流互感器的额定电流:电流互感器的额定电流应根据所需测量的电流范围来确定。

一般来说,额定电流应略大于实际测量电流的最大值,以保证互感器在额定工作范围内的准确度和稳定性。

2.选择电流互感器的准确度等级:电流互感器的准确度等级决定了测量的准确程度,常见的准确度等级有0.1、0.2、0.5等。

一般来说,对于需要高精度测量的场合,应选择较高的准确度等级。

3.计算电流互感器的一次侧额定电流:一次侧额定电流指的是电流互感器的一次绕组所能承受的最大电流。

根据电流互感器的额定变比和一次侧额定电流可以得到二次侧的额定电流。

4.考虑电流互感器的负载能力:电流互感器的负载能力是指在额定负载时,互感器的二次绕组电压降不超过一定范围。

在选择电流互感器时,需要考虑系统的负载情况,以确保互感器的正常工作。

5.选择电流互感器的阻抗:电流互感器的阻抗决定了互感器的性能和工作条件。

一般来说,电流互感器的阻抗应在一定范围内,以保证互感器的稳定性和准确度。

1.选择电压互感器的额定电压:电压互感器的额定电压应根据实际测量的电压范围来确定。

一般来说,额定电压应略大于实际测量电压的最大值,以保证互感器在额定工作范围内的准确度和稳定性。

2.选择电压互感器的准确度等级:电压互感器的准确度等级决定了测量的准确程度,常见的准确度等级有0.1、0.2、0.5等。

一般来说,对于需要高精度测量的场合,应选择较高的准确度等级。

3.计算电压互感器的一次侧额定电压:一次侧额定电压指的是电压互感器的一次绕组所能承受的最大电压。

根据电压互感器的额定变比和一次侧额定电压可以得到二次侧的额定电压。

4.考虑电压互感器的负载能力:电压互感器的负载能力是指在额定负载时,互感器的二次绕组电流不超过一定范围。

电气设备的原理与选择

电气设备的原理与选择

I 0 N1 fi bc sin( ) 100% I1 N1 I 0 N1 i sin i cos( ) 3440(') I1 N1
相位差:
电流互感器的准确级和额定容量
CT的准确级
CT根据测量时误差的大小而划分为不同的准确级。准确级是 指在规定的二次负荷范围内,一次电流为额定值时的最大电 流误差。
五、限流电抗器的选择
厂、站装设限流电抗器的主要目的是限制短路电流,以便选择 轻型断路器及较小截面的电缆,有的还用来在短路故障时维持母线 的残压水平,以提高厂用电动机及其它用户的工作可靠性。但电抗 器在运行中有少量的功率损失及显著的电压损失,从而使另一侧的 电压水平有所降低,故应加以校验。
10kV出线2
•一次回路电压的选择 0.8UN1<UNs<1.2UN1
•二次回路电压的选择
•种类和型式选择
PT的种类和型式应根据装设地点和使用条件进行选择。 在6~35KV屋内配电装臵中,一般采用油浸式或浇注式;110~ 220KV,常采用串级式电磁PT;110-500KV 的配电装臵,当容量 和准确级满足要求时,可采用电容式电压互感器。
变比:
额定电流比 ,一次、二次额定电流之比
Ki I N1 / I N 2 N2 / N1
电流互感器的误差:
I1 N1 I 2 N 2 I 0 N1
N2 I1 I 2 I0 I2 I0 N1 '





I1

I2 I0
z0 z2l
由于CT本身存在励磁损耗和磁饱和等影响,一次电流和二次 电流测量值得数值和相位都有差异,即测量结果有误差。 电流误差:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

稳态特性验算方法(1)
1 误差曲线 -按误差曲线由 实际负荷Rb求实际可用的Kalf ´
Kalf ´ Kalf
• 保护装置采取措施减缓CT饱和影响 -当前母线保护一般采取了抗饱和措施,可以适 当降低对CT的要求。微机母线保护技术条件 (DL/T 670-1999)要求保护装置不受CT暂态饱 和影响。各种保护的性能差别很大,应由研制部 门提出具体的选择CT的方法 -其它微机保护宜采取抗CT饱和措施,但在制造 部门提出具体选择CT方法前,暂考虑由适当选择 CT性能参数来防止饱和或减缓其影响
0
5
20
-0.2
-0.35
100
120%
-0.75
• 小变比单匝式互感器不易满足较高准确级(如 0.2、0.5)要求
保护用电流互感器
• 类型 -主要考虑稳态特性:包括5P、10P、5PR、10PR、
PX,其中PR和PX为IEC颁布的新标准 -考虑暂态特性:TPS、TPX、TPY、TPZ • 准确性能 -稳态饱和:影响因素主要是短路电流、二次负荷
适用于电流基本为正弦波,可用相量表示

i
K
n
Is Ip
Ip
Ie
100%Is2-4
Ip
Δφ
Ie
•复合误差
Ф
适用于电流畸变较严重情况
Ip
c
100 Ip
1 T
T
0
Knis ip
2 dt Is Ie 2-5
•过去保护用互感器常用10%误差实际指 比误差,对相角差另有规定
电流互感器重点问题
• 系统发展和引入市场机制,潮流负荷变 化多,如何选择互感器以保证电能测量 准确性

-暂态饱和:影响因素主要是短路电流非周期分量 和剩磁等。严重时可能需要互感器铁心增大几倍 至几十倍
保护用电流互感器性能指标
• 以复合误差为指标 -5P、5PR:要求稳态复合误差小于5% -10P、10PR:要求稳态复合误差小于10% -TPX、TPY、TPZ:要求暂态复合误差小 于10% • 以励磁特性为指标 -PX、TPS:要求励磁电压拐点不低于规 定值
电流互感器励磁特性 -拐点电压
• IEC标准-PX
E Ek
E/Ek=1.1
Ie/ Iek =1.5
• 美国标准IEEE Std C37.110-1996
E
Ek
45°
0
Iek
Ie
• IEC标准
E/Ek=1.1
Ie
-TPS
Ie/ Iek =2.0
克服电流互感器饱和影响的措施
• 恰当选择电流互感器性能和参数,使在工程的实 际短路情况下CT不致饱和或影响不大
• 目的:
-全面合理解决电力工程中CT、PT选择和计算中的问题。 包括类型和参数选择,性能要求和相关计算方法等
-对某些长期未能妥善解决的问题 ,提出合理的规范的解 决办法,例如大型发电机是否需要使用TPY问题
导则适用范围
• 导则内容主要是电力工程用电流/电压 互感器性能和参数选择及计算等二次 有关内容,不包括绝缘结构等一次有 关内容
• 各级电压系统如何合理考虑保护用电流 互感器的饱和问题,特别是暂态饱和问 题,例如超高压系统及大机组的电流互 感器暂态饱和严重,如何合理选用互感 器及进行必要的正确的验算
• 实现电流互感器信息共享,避免一组互 感器二次线圈过多
测量用电流互感器(1)
• 测量用电流互感器的准确特性
+0.35
+0.2
0
5
20
-0.2
-0.35
-0.75
0.2S级 02级 0.5级
100
120%
-1.5
• 负荷电流变化范围大时应采用S级电流互感器
测量用电流互感器(2)
• 突出问题是保证电能计量的位置和准确性 • 0.1级与0.2S级的比较
+0.75
0.2S级 02级 0.1级
+0.35
+0.2
电流互感器稳态特性验算
• CT准确限值电压-确定CT保持准确性条件 Esl= Kalf × Esn =Kalf × Isn (Rct +Rbn )
CT参数举例:5P20,30VA, Isn =5A , Rct未提供 可选择条件Esl 、Kalf (ALF)、Rb 、 Rct由制造厂确定 • 一般要求 -准确限值系数Kalf (ALF)大于稳态短路电流倍数 -实际二次负荷小于CT额定负荷 • 存在问题及处理办法 -由于系统容量大, Kalf 值往往不够 -由于微机保护的应用,二次负荷有较大裕度 -为合理利用CT,对其性能进行较精确计算, 求取实际二次负荷下允许的Kalf
电流互感器类型及性能
• 分为两大类:1)测量用;2)保护用 • 测量用电流互感器
-重点考核正常运行时的准确性能 • 保护用电流互感器
-重点考核系统短路时的准确性能 a) 对称短路电流下的稳态性能 b) 短路电流偏移(有直流分量)和/或
有剩磁时的暂态性能
电流互感器的准确性能
•电流误差(比值差),相位差
编制导则的背景和目的
• 背景和依据:
-系统发展扩大和大容量机组的应用,继电保护和电能计 费对CT、PT提出许多新的严格要求。例如,保护用CT如 何考虑暂态饱和问题,计量用CT如何保证准确性
-IEC颁布一系列新标准,提出许多新型CT,如TP类、PR 类、PX类等在工程中如何执行
-电子式互感器已开始在电力系统应用,但不够成熟,因 此导则只作简要介绍,未提出规定
• 导则主要适用常规电流/电压互感器及 其辅助互感器,暂不包括电子式互感 器、保护内部专用变换器及实验室互 感器等
相关的国际标准、国标及行标
• GB 1208-1997 电流互感器(eqv IEC 185: 1987 ) • GB 16847-1997 保护用电流互感器暂态特性技术要求
(idt IEC 60044-6: 1992) • IEC 60044-1 :2000 电流互感器 第一号修改单 • GB 1207-1997 电压互感器(eqv 186: 1987) • GB 4703-84电容式电压互感器 • GB/T 17443-1998 500kV电流互感器技术参数和要求 • DL/T 725-2000 电流互感器订货技术条件 • DL/T 726-2000 电压互感器订货技术条件 • 英国标准 BS 3938:1973 电流互感器规范 • IEEE Std C57.13-1993: 互感器要求 • IEEE Std C37.110-1996: 保护用电流互感器应用导则
相关文档
最新文档