上拉电阻和下拉电阻的作用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈上、下拉电阻的作用

•油菜no1

•14位粉丝

1楼浅谈上、下拉电阻的作用

上下拉电阻:

1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于CMOS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

2、OC门电路必须加上拉电阻,以提高输出的高电平值。

3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。

6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。

7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

上拉电阻阻值的选择原则包括:

1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

2、从确保足够的驱动电流考虑应当足够小;电阻小,电

流大。

3、对于高速电路,过大的上拉电阻可能边沿变平缓。综合考虑

以上三点,通常在1k到10k之间选取。对下拉电阻也有类似道理

电阻的具体取值怎么计算的?

上拉电阻是不是应该是接Vcc再接电阻,然后接到管脚上的?

一般上下拉的电阻取值都有个特定的范围,不能太大,也不能太小.都在几K到几十K之间吧,具体的还要看电路要求.

至于接法,上拉电阻简单来说就是把电平拉高,通常用4.7-10K的电阻接到Vcc电源,下拉电阻则是把电平拉低,电阻接到GND地线上。所以是接电源或者接地,再接到需要拉高或者拉地电平的节点上的.

一般说来,不光是重要的信号线,只要信号在一段时间内可能出于无驱动状态,就需要处理。

比如说,一个CMOS门的输入端阻抗很高,没有处理,在悬空状况下很容易捡拾到干扰,如果能量足够甚至会导致击穿或者闩锁,导致器件失效。祈祷输入的保护二极管安全工作吧。如果电平一直处于中间态,那输出就可能是不确定的情况,也可能是上下MOS都导通,对器件寿命造成影响。

总线上当所有的器件都处于高阻态时也容易有干扰出现。因为这时读写控制线处于无效状态,所以不一定会引起问题。你如果觉得自己能够接受的话也就将就了。但是这时你就要注意到,控制线不能悬空,不然……

TTL电路的输入端是一个发射极开路引出的结构,拉高或者不接都是高电平,但是强烈建议不要悬空不接。

上拉还是下拉?要看需要。一方面器件可能又要求,另一

方面,比如总线上两个器件,使能控制都是高有效,那么

最好下拉,否则当控制信号没有建立的时候就会出现两个

冲突,可能烧片。如果计算机总线上面挂了一个D/A,上

电复位信号要对它清零或者预置,那么总线可以上下拉到

你需要的数字。

至于上下拉电阻的大小,这个情况就比较多了。CMOS输

入的阻抗很高,上下拉电阻阻值可以大一些,一般低功耗

电路的阻值取得都比较大,但是抗干扰能力相应比较弱一

些。

很多场合下拉电阻取值比上拉电阻要小,这个是历史遗留

问题。如上面所说,TTL电路上拉时输入3集管基射反偏,

没有什么电流,但是下拉时要能够使得输入晶体管工作,

这个在TTL的手册中可以查到。

也是为了这个历史遗留问题,有些CMOS器件内部采用了

上拉,这时它会告诉你可以不处理这些管脚,但是这时你

就要注意了,因为下拉再用10K可能不好使,因为也许内

置的20K电阻和外置的10K把电平固定在了1V左右。

有时候你会看到150欧姆或者50欧姆左右的上下拉电阻,

尤其是在高速电路中会看到。

150欧姆电阻下拉一般在PECL逻辑中出现。PECL逻辑输

出级是设计开路的电压跟随器,需要你用电阻来建立电

压。

50欧姆的电阻在TTL电路中用的不多,因为静态功耗实

在是比较大。在CML电路和PECL电路中兼起到了端接

和偏置的作用。

•2009-3-24 08:54

•回复

•油菜no1

•14位粉丝

2楼

CML电路输出级是一对集电极开路的三极管,需要一个上拉电阻来建立电平。这个电阻可以放在发送端,那么接受端还需要端接处理,也可以放到接受端,这时候端接电阻和偏置电阻就是一个。PECL电路结构上就好像CML 后面跟了一个射极跟随器。

OC 门也使用上拉电阻,这个和CML有一点相像,但是还不太一样。CML和PECL电路中三极管工作在线形区,而普通门电路和OC/OD门工作在饱和区。 OC/OD门电路常用作电平转换或者驱动,但是其工作速度不会太快。为什么?在OC/OD门中,上拉电阻不能太小,否则功耗会很大。而一般门的负载呈现出一个电容,负载越多,电容越大。当由高到低跳变时,电容的放电通过输出端下拉的M OS或者Bipolar管驱动,速度一般还是比较快的,但是由低到高跳变的时候,就需要通过上拉电阻来完成,R大了几十甚至上百倍,假设C不变,时间常数相应增加同样的倍数。这个在示波器上也可以明显的看出:上升时间比下降时间慢了很多。其实一般门电路上拉比下拉的驱动能力都会差一些,这个现象都存在,只不过不太明显罢了?

在总线的上下拉电阻设计中,就要考虑同样的问题了:总线上往往负载很重,如果你要电阻来提供一些值,你就必须保证电容能通过电阻在一定时间内放电到可接受的范围。如果电阻太大,那么就可能出错。

PLD可编程上下拉,还有总线保持也相当于上下拉,可以省去外接电阻。但是有一些麻烦。

一般输入端才需要上下拉,假设器件10K是一个可行的值,那么10个元件并联会等效有多大的输入上拉电阻?1 K。

也就是说,如果你想给信号线预置一个低电平,可能需要200欧姆的外置下拉电阻。这种情况下,如果还有一个3门驱动这个信号,高电平的时候需要扇出15mA左右的静

相关文档
最新文档