螺栓组受力分析报告与计算

合集下载

螺栓组结构设计与受力

螺栓组结构设计与受力
螺栓组结构设计与受力分析
§5-4 螺栓组结构设计与——求出受力最大的螺栓,以进行单个螺栓强度计算。 假设:各螺栓直径、长度、材料和预紧力F0相同; 受载后结合面仍为平面; 螺栓的变形在弹性范围内。
1.螺栓组受横向载荷FR ①采用普通螺栓 ——靠结合面的摩擦平衡外载荷FR,而螺栓仅受预紧力和
F ax = F + F 2 + 2F ⋅ F 2 ⋅ cos α m S T S T
2 2
KS ⋅ F ax m f ⋅i
②受FQ+M FQ
§5-4 螺栓组受复合载荷
M FQ
FQ M
F=
F ax m
F Q Z
工作拉力 F ax m
M⋅ Lmax = 2 ∑Li
M⋅ Lmax = + 2 Z ∑Li F Q
F F F 变形协调条件: T1 = T2 = ⋅⋅ ⋅ = TZ r1 r2 rZ F F = Tmax ri Ti rmax
最大工作载荷: F max = T 哪个螺栓受 力最大?
FT1
1
r1
FT2
FT3
O
T 1 2
T⋅ rmax 2 ∑ri
3.螺栓组受轴向载荷FQ
§5-4 螺栓组受轴向载荷
总载荷FQ: F = ∑p Q p 单个螺栓工作载荷:F =
1
2
FR
2
2
α
F ax = F + F 2 + 2F ⋅ F 2 ⋅ cos α m S T S T
哪个螺栓受 力最大?
2)普通螺栓 ①受FR+T
§5-4 螺栓组受复合载荷
FR FT FS FR T
4
3 T
F F = R S Z T⋅ rmax F max = T 2 ∑ri F≥ 0

螺栓组受力分析报告与计算

螺栓组受力分析报告与计算

螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否适宜确定螺栓的公称直径后,螺栓的类型,长度,精度以与相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法与防松装置等全面考虑后定出。

1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。

为此,设计时应综合考虑以下几方面的问题:1〕联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。

这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比拟均匀。

2〕螺栓的布置应使各螺栓的受力合理。

对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。

当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力〔如下图〕。

如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力与其结构尺寸。

接合面受弯矩或转矩时螺栓的布置3〕螺栓排列应有合理的间距,边距。

布置螺栓时,各螺栓轴线间以与螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。

扳手空间的尺寸〔如下图〕可查阅有关标准。

对于压力容器等严密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。

扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。

4〕分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。

同一螺栓组中螺栓的材料,直径和长度均应一样。

5〕防止螺栓承受附加的弯曲载荷。

除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。

螺栓组受力分析与计算

螺栓组受力分析与计算

螺栓组受力分析与计算一.螺栓组联接得设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面得工作能力5.校核螺栓所需得预紧力就是否合适确定螺栓得公称直径后,螺栓得类型,长度,精度以及相应得螺母,垫圈等结构尺寸,可根据底板得厚度,螺栓在立柱上得固定方法及防松装置等全面考虑后定出。

1、螺栓组联接得结构设计螺栓组联接结构设计得主要目得,在于合理地确定联接接合面得几何形状与螺栓得布置形式,力求各螺栓与联接接合面间受力均匀,便于加工与装配。

为此,设计时应综合考虑以下几方面得问题:1)联接接合面得几何形状通常都设计成轴对称得简单几何形状,如圆形,环形,矩形,框形,三角形等。

这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组得对称中心与联接接合面得形心重合,从而保证接合面受力比较均匀。

2)螺栓得布置应使各螺栓得受力合理。

对于铰制孔用螺栓联接,不要在平行于工作载荷得方向上成排地布置八个以上得螺栓,以免载荷分布过于不均。

当螺栓联接承受弯矩或转矩时,应使螺栓得位置适当靠近联接接合面得边缘,以减小螺栓得受力(下图)。

如果同时承受轴向载荷与较大得横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓得预紧力及其结构尺寸。

接合面受弯矩或转矩时螺栓得布置3)螺栓排列应有合理得间距,边距。

布置螺栓时,各螺栓轴线间以及螺栓轴线与机体壁间得最小距离,应根据扳手所需活动空间得大小来决定。

扳手空间得尺寸(下图)可查阅有关标准。

对于压力容器等紧密性要求较高得重要联接,螺栓得间距t0不得大于下表所推荐得数值。

扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。

4)分布在同一圆周上得螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时得分度与画线。

同一螺栓组中螺栓得材料,直径与长度均应相同。

5)避免螺栓承受附加得弯曲载荷。

除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母与螺栓头部得支承面平整,并与螺栓轴线相垂直。

螺栓组受力分析与计算..

螺栓组受力分析与计算..
①拉伸强度条件为:
式中:Q—螺栓总拉力,N 。
其余符号意义同前。
螺栓总拉力的计算:
Q=Qp+[Cb/(Cb+Cm)]·F
式中:Cb/(Cb+Cm)称为螺栓的相对刚度,一般设计时,可按下表推荐
的数据选取。
螺栓的相对刚度Cb/(Cb+Cm)
被联接钢板间所用垫片类别
Cb/(Cb+Cm)
金属垫片(或无垫片)
r1=r2=…=rz的关系以及螺栓联接的类型,分别代人式(5-25)或
(5-28)即可求得。
3).受轴向载荷的螺栓组联接
下图为一受轴向总载荷FΣ的汽缸盖螺栓组联接。FΣ的作用线与螺 栓轴线平行,并通过螺栓组的对称中心O。计算时,认为各螺栓平均受 载,则每个螺栓所受的轴向工作载荷为
图:受轴向载荷的螺栓组联接
螺栓组受力分析与计算
1. 螺栓组联接的设计
设计步骤: 1. 螺栓组结构设计 2. 螺栓受力分析 3. 确定螺栓直径 4. 校核螺栓组联接接合面的工作能力 5. 校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫 圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装 置等全面考虑后定出。
1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形 状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工 和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆 形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于 对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保 证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要 在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布 过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联 接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷 和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载 荷,以减小螺栓的预紧力及其结构尺寸。

螺栓组受力分析与计算

螺栓组受力分析与计算

螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否合适确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。

1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。

为此,设计时应综合考虑以下几方面的问题:1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。

这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。

2)螺栓的布置应使各螺栓的受力合理。

对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。

当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。

如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。

接合面受弯矩或转矩时螺栓的布置3)螺栓排列应有合理的间距,边距。

布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。

扳手空间的尺寸(下图)可查阅有关标准。

对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。

扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。

4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。

同一螺栓组中螺栓的材料,直径和长度均应相同。

5)避免螺栓承受附加的弯曲载荷。

除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。

螺栓组的受力分析

螺栓组的受力分析

5)导程S——同一条螺旋线相邻两牙的轴向距离;
单线:S=t
d2
双线:S=2t
多线:S=nt
n——头数;
右旋

6)升角:螺旋线与水平线夹角;
S t

tg S d2
7)牙型角 牙型斜角
8)牙的工作高度h
S
d2
二、各种螺纹的特点、应用
自锁条件:升角<v(摩擦角); 牙型斜角越小越不容易加工。
b只受预紧力214dqp???31116dt???紧螺栓联接装配时螺母需要拧紧在拧紧力矩作用下螺栓除受预紧力qp的拉伸而产生拉伸应力外还受螺纹摩擦力矩t1的扭转而产生扭转剪应力使螺栓处于拉伸与扭转的复合应力状态下
第四章 螺纹零件
一、概述
1、作用
联接:起联接作用的螺纹; 传动:起传动作用的螺纹;
2、螺纹的形成 刀具——做直线运动; 工件——做旋转运动; 螺纹线:转动与直线运动;
rz
ks T
z
f ri
i 1
式中:f——结合面的摩擦系数;
ri——第i个螺栓的轴线到螺栓组 对称中心O的距离;
z——螺栓数目;
ks——防滑系数,同前。
机架 地基
T
r4 r1
rr32
Qpf
Qpf
松配
T
r4 r1
rr23
Qpf
Qpf
紧配
b)紧配 当采用紧配螺栓时,在转矩T的作用下,各螺栓受到剪切和挤压
习题: 一、选择题
第四章 螺纹零件
1、在常用的螺旋传动中,传动效率最高的螺纹是 4 。
(1)三角形螺纹;(2)梯形螺纹;(3)锯齿形螺纹;(4)矩 形螺纹;
2、在常用的螺纹联接中,自锁性最好的螺纹是 1 。

螺栓组受力分析与计算

螺栓组受力分析与计算前言螺栓组是机械结构中常用的连接元件,常见于机器零件和设备中。

在机械结构中,螺栓组的受力分析和计算是非常重要的。

其中,螺栓组受力的大小和方向,不仅决定了螺栓的抗拉强度,还决定了整个机械结构的稳定性和可靠性。

在本文中,我们将介绍螺栓组的受力分析和计算,包括螺栓组的受力特点、受力方向、计算公式和实际案例。

螺栓组受力特点螺栓组是由若干个螺栓组成的一种连接结构。

在受到外力作用时,螺栓组的受力特点主要表现为:1.拉力:螺栓组一般是在拉伸状态下进行工作的,拉力是螺栓组受力的主要形式。

2.压力:螺栓组在受到工作装置的压力时,螺栓头和垫圈会承受一定的压力。

3.剪力:螺栓组在受到横向力或剪切力时,螺栓会发生剪切变形。

4.扭矩:螺栓组在受到扭矩力时,螺栓会扭转变形。

螺栓组受力方向螺栓组的受力方向可以分为两种类型:轴向力和剪力。

轴向力轴向力是螺栓组最常见的受力形式,是指沿着螺栓中心线方向的受力。

当受到轴向拉力和压力时,螺栓组会发生轴向变形,通过计算轴向力和剪力的大小和方向,可以确定螺栓组的破坏形式。

剪力剪力是指横向力或者剪切力在螺栓组上的作用。

当受到横向力或者剪切力时,螺栓组会承受剪切变形,通过计算剪力和轴向力的大小和方向,可以确定螺栓组的破坏形式。

螺栓组的计算公式为了确定螺栓组的受力方向和大小,可以使用材料力学的基本公式进行计算。

下面是螺栓组的计算公式。

轴向力的计算公式轴向拉力的计算公式如下:F = A * σ其中,F表示轴向拉力;A表示螺栓的截面积;σ表示螺栓材料的拉伸强度。

轴向压力的计算公式如下:F = A * σ其中,F表示轴向压力;A表示螺栓的截面积;σ表示螺栓材料的压缩强度。

剪力的计算公式剪力的计算公式如下:F = A * τ其中,F表示剪切力;A表示螺栓的截面积;τ表示螺栓材料的剪切强度。

实例分析螺栓组的实际应用非常广泛,下面介绍几个实际案例。

案例1:车轮螺栓的受力分析和计算车轮螺栓是汽车结构中常见的连接元件,其受力情况如下图所示:在这个情况下,车轮螺栓的轴向拉力如下所示:F = A * σ = 3.14 * (12.52/2)^2 * 780 = 23161.3 N其中,A表示螺栓的截面积;σ表示螺栓材料的拉伸强度。

7-4螺栓组受力分析实验


试验时,砝码16加上后。支架14与机座11的联接接合面受到一个横向载荷和倾覆 力矩的联合作用。倾覆力矩为:
(7-1)
O-O左侧螺栓受到工作拉力作用 :
(7-2)
(7-3)
螺栓的受力是通过贴在螺栓中段上的电阻应变片15的变形并借助电阻应变仪而测 得,电阻应变仪的测量原理见§3-4。所以螺栓所受的工作拉力为:
式中:E—螺栓材料的弹性模量,对于钢E=2.1× d—被测螺栓直径,mm; ε—应变量; σ—被测螺栓处的拉应力,MPa。
(7-4)先将各被测螺栓上的电阻应变片两端引线与电阻应变仪的预调平衡 箱输入端相连接;
2. 检查试验台各部分与仪器是否正常,电阻应变仪各部分连线是否正常 3. 接通电源并预热后,调整电阻应变仪,将选择开关转到“静”,用小
15-电阻应变片;16-加载砝码
图7-7 LST-Ⅱ型螺栓组联接试验台结构示意图
螺栓组联接是由二行各五个螺栓分布在支架14上与机座11联接而成。加载装置由两级杠杆12、 13组成,其杆长之比均为1:10,则总杠杆比值为1:100倍,即加载砝码16通过二级杠杆作用在 螺栓组连接支架上的力就增大100倍。螺栓组的受力变形,通过应变仪检测螺栓上的电阻应边片 15的伸长量得到。
型 螺丝刀调整指针到零位,使得应变仪的电阻平衡。然后将选择开关转 到“预”,再用螺丝刀调整指针到零位,使得预调平衡箱上的电容平 衡。用这种方法对每一个螺栓测量点在“静”、“预”之间反复调整
数次 后,电桥即可达到平衡状态; 4. 逐一均匀地拧紧各螺栓,使每个螺栓具有相同的预紧初拉力和初应变 5. 对螺栓组联接进行加载,在电阻应变仪上测量出每个螺栓的相应应变 量,如此重复三次测量,计算出平均应变量和平均应力。
7-4 螺栓组受力分析实验

典型螺栓组的受力分析及螺栓载荷计算

典型螺栓组的受力分析及螺栓载荷计算
载荷类型螺栓组的布置工作要求单个螺栓的载荷
载荷平行于螺栓组的轴线,且合力通过被联接件结合面的形心保证受载后结合面的
紧密性
各螺栓受工作载荷均等:
式中z—螺栓的个数;
F w—作用于被联接件上的外力总和
载荷作用在被联接件的结合面上,且通过螺栓组的形心
在受横向载荷后,被联
接件不允许有相对错动
采用普通螺栓联接时,各螺栓受力(预
紧力)均等:
采用铰制孔螺栓联接时,各螺栓受力
(切向力)均等:
K f—摩擦联接可靠性因子,取K f=1.1~1.3;
m—结合面数;
μ—结合面间摩擦因数,见表
22.1-9
载荷为作用在结合面上的旋转力矩T
受旋转力矩后,被联接
件不能有相对转动
采用普通螺栓联接时,各螺栓的预紧力
均等:
采用铰制孔螺栓时,距螺栓组形心最远
的螺栓受力最大:
螺栓组受翻转力矩M
受载后,结合面不允许
开缝和压溃
距结合面对称轴最远的螺栓受工作载
荷最大:
螺栓最小预紧力:
允许螺栓最大预紧力:
—结合面材料的许用挤压应力,见
表22.1-10。

螺栓的力学实验报告

螺栓的力学实验报告一、实验目的1. 理解螺栓的力学原理和承载能力。

2. 掌握螺栓实验的操作方法和数据处理技巧。

3. 分析螺栓的载荷特性,并了解其应用领域。

二、实验原理螺栓是一种常见的紧固件,广泛应用于机械、建筑等领域。

它们具有重要的承载和连接功能。

螺栓的力学性能评估是确保其性能安全可靠的重要环节。

螺栓在受载中主要承受拉力和剪力。

拉力是由于外力的作用,使螺栓产生拉伸变形。

剪力则是由螺栓与连接件之间的相对滑动所产生的。

在实验中,我们将使用一台力学实验机对螺栓进行拉力和剪力测试。

通过加载不同的力并记录相应的变形和应力,我们能够了解螺栓在不同受力条件下的性能。

三、实验步骤1. 准备工作:根据实验要求选择合适的螺栓和连接件,并确保其表面平整清洁。

2. 设置力学实验机:根据实验需求调整实验机的参数,如拉伸速度、加载方式等。

3. 弯曲实验:将螺栓安装在实验机上,并加载适当的弯曲力,记录相应的变形和应力数据。

4. 剪切实验:将螺栓与连接件紧密连接后,加载适当的剪切力,记录相应的变形和应力数据。

5. 数据处理:根据实验数据绘制应力-变形曲线,并分析螺栓的载荷特性。

四、实验结果与分析根据实验数据,我们得到了螺栓在不同受力条件下的应力-变形曲线。

通过曲线的形状和变化趋势,我们可以得出如下结论:1. 当力逐渐增大时,螺栓的变形也随之增加,但应力增长的速度快于变形的增长速度。

2. 螺栓在拉伸、弯曲受力下的应力较高,剪切受力下的应力相对较低。

3. 在实验的线性范围内,螺栓的应力和变形呈线性关系。

基于以上结论,我们可以确定螺栓的额定载荷和可靠工作范围。

同时,我们也能够根据实验结果选择合适的螺栓参数,以满足特定工程需求。

五、实验总结本次螺栓的力学实验使我们深入了解了螺栓的力学性能和承载能力。

通过实验数据的分析,我们能够准确评估螺栓的可靠性,并为工程实践提供参考。

在实验中,我们也发现螺栓的性能与其内部结构、材料及处理工艺等因素密切相关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

螺栓组受力分析与计算一.螺栓组联接的设计设计步骤:1.螺栓组结构设计2.螺栓受力分析3.确定螺栓直径4.校核螺栓组联接接合面的工作能力5.校核螺栓所需的预紧力是否适宜确定螺栓的公称直径后,螺栓的类型,长度,精度以与相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法与防松装置等全面考虑后定出。

1. 螺栓组联接的结构设计螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。

为此,设计时应综合考虑以下几方面的问题:1〕联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。

这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比拟均匀。

2〕螺栓的布置应使各螺栓的受力合理。

对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。

当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力〔如下图〕。

如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力与其结构尺寸。

接合面受弯矩或转矩时螺栓的布置3〕螺栓排列应有合理的间距,边距。

布置螺栓时,各螺栓轴线间以与螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。

扳手空间的尺寸〔如下图〕可查阅有关标准。

对于压力容器等严密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。

扳手空间尺寸螺栓间距t0注:表中d为螺纹公称直径。

4〕分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。

同一螺栓组中螺栓的材料,直径和长度均应一样。

5〕防止螺栓承受附加的弯曲载荷。

除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。

对于在铸,锻件等的粗糙外表上应安装螺栓时,应制成凸台或沉头座〔如下图1〕。

当支承面为倾斜外表时,应采用斜面垫圈〔如下图2〕等。

图1 凸台与沉头座的应用图2 斜面垫圈的应用2. 螺栓组联接的受力分析1).受横向载荷的螺栓组联接2).受转矩的螺栓组联接3).受轴向载荷的螺栓组联接4).受倾覆力矩的螺栓组联接进展螺栓组联承受力分析的目的是,根据联接的结构和受载情况,求出受力最大的螺栓与其所受的力,以便进展螺栓联接的强度计算。

为了简化计算,在分析螺栓组联接的受力时,假设所有螺栓的材料,直径,长度和预紧力均一样;螺栓组的对称中心与联接接合面的形心重合;受载后联接接合面仍保持为平面。

下面针对几种典型的受载情况,分别加以讨论。

1).受横向载荷的螺栓组联接图所示为一由四个螺栓组成的受横向载荷的螺栓组联接。

横向载荷的作用线与螺栓轴线垂直,并通过螺栓组的对称中心。

当采用螺栓杆与孔壁间留有间隙的普通螺栓联接时〔图a〕。

靠联接预紧后在接合面间产生的摩擦力来抵抗横向载荷;当采用铰制孔用螺栓联接时〔图b〕,靠螺栓杆受剪切和挤压来抵抗横向载荷。

虽然两者的传力方式不同,但计算时可近似地认为,在横向总载荷F∑的作用下,各螺栓所承当的工作载荷是均等的。

因此,对于铰制孔用螺栓联接,每个螺栓所受的横向工作剪力为〔5-23〕式中z为螺栓联接数目。

对于普通螺栓联接,应保证联接预紧后,接合面间所产生的最大摩擦力必须大于或等于横向载荷。

假设各螺栓所需要的预紧力均为Q p,螺栓数目为z,如此其平衡条件为或〔5-24〕图:受横向载荷的螺栓组联接式中:f——接合面间的摩擦系数,见下表;i——接合面数〔图中,i=2〕;K s——防滑系数,K。

由式〔5-24〕求得预紧力Q p,然后按式〔5-14〕校核螺栓的强度。

联接接合面间的摩擦系数被联接件接合面的外表状态摩擦系数f钢或铸铁零件枯燥的加工外表0.有油的加工外表0.06-0.10钢结构轧制外表,钢丝刷清理浮锈0.30-0.35 涂富锌漆0.35-0.40喷砂处理0.45-0.55钢铁对砖料,混凝土或木材枯燥外表0.40-0.452).受转矩的螺栓组联接如如下图所示,转矩T作用在联接接合面内,在转拒T的作用下,底板将绕通过螺栓组对称中心O并与接合面相垂直的轴线转动。

为了防止底板转动,可以采用普通螺栓联接,也可以采用铰制孔用螺栓联接。

其传力方式和受横向载荷的螺栓组联接一样。

图:受转矩的螺栓组联接采用普通螺栓时,靠联接领紧后在接合面间产生的摩擦力矩来抵抗转矩T。

假设各螺栓的预紧程度一样,即各螺栓的预紧力均为Qp,如此各螺栓联接处产生的摩擦力均相等,并假设此摩擦力集中作用在螺栓中心处。

为阻止接合面发生相对转动,各摩擦力应与各该螺栓的轴线到由上式可得各螺栓所需的预紧力为【5-25】式中:f——接合面的摩擦系数,见表;ri——第i个螺栓的轴线到螺栓组对称中心O的距离;z——螺栓数目;Ks ——防滑系数,同前。

由上式求得预紧力Q p,然后按式〔5-14〕校核螺栓的强度。

采用铰制孔用螺栓时,在转矩T的作用下,各螺栓受到剪切和挤压作用,各螺栓所受的横向工作剪力和各该螺栓轴线到螺栓组对称中心O的连线〔即力臂r。

〕相垂直〔图b〕。

为了求得各螺栓的工作剪力的大小,计算时假定底板为刚体,受载后接合面仍保持为平面。

如此各螺栓的剪切变形量与各该螺栓轴线到螺栓组对称中心O的距离成正比。

即距螺栓组对称中心O越远,螺栓的剪切变形量越大。

如果各螺栓的剪切刚度一样,如此螺栓的剪切变形量越大时,其所受的工作剪力也越大。

如图b所示,用r i、r max分别表示第i个螺栓和受力最大螺栓的轴线到螺栓组对称中心O的距离;F i、F max。

分别表示第i个螺栓和受力最大螺栓的工作剪力,如此得【5-26】根据作用在底板上的力矩平衡的条件得即. 【5-27】联解式〔5-26〕与〔5-27〕,可求得受力最大的螺栓的工作剪力为【5-28】图所示的凸缘联轴器,是承受转矩的螺栓组联接的典型部件。

各螺栓的受力根据r1=r2=…=r z的关系以与螺栓联接的类型,分别代人式〔5-25〕或〔5-28〕即可求得。

3).受轴向载荷的螺栓组联接如下图为一受轴向总载荷F∑的汽缸盖螺栓组联接。

F∑的作用线与螺栓轴线平行,并通过螺栓组的对称中心O。

计算时,认为各螺栓平均受载,如此每个螺栓所受的轴向工作载荷为图:受轴向载荷的螺栓组联接4).受倾覆力矩的螺栓组联接如下图a为一受倾覆力矩的底板螺栓组联接。

倾覆力矩M作用在通过x-x轴并垂直于联接接合面的对称平面内。

底板承受倾覆力矩前,由于螺栓已拧紧,螺栓受预紧力Qp,有均匀的伸长;地基在各螺栓的Qp作用下.有均匀的压缩,如图b所示。

当底板受到倾覆力矩作用后,它绕轴线O—O倾转一个角度,假定仍保持为平面。

此时,在轴线O-O左侧,地基被放松,螺栓被进一步拉伸,在右侧,螺栓被放松,地基被进一步压缩。

底板的受力情况如图c所示。

图:受倾覆力矩的螺栓组联接联接接合面材料的许用挤压应力[σ]p,可查下表。

表:联接接合面材料的许用挤压应力[σ]p注:l〕σs为材料屈服权限,MPa; σB为材料强度极限,MPa。

2〕当联接接合面的材料不同时,应按强度较弱者选取。

3〕联接承受载荷时,[σ]p应取表中较大值;承受变载荷时,如此应取较小值计算受倾覆力矩的螺栓组的强度时,首先由预紧力Qp、最大工作载荷Fmax确定受力最大的螺栓的总拉力Q,由式〔5-18〕得【5-38】然后接式〔5-19〕进展强度计算。

确定螺栓直径首先选择螺栓材料,确定其性能等级,查出其材料的屈服极限,并查出安全系数,计算出螺栓材料的许用应力[σ]= σs/S。

根据以下公式计算螺纹小径d1:最后按螺纹标准,选用螺纹公称直径。

螺纹联接件的材料适合制造螺纹联接件的材料品种很多,常用材料有低碳钢Q215、10号钢和中碳钢Q235、35、45号钢。

对于承受冲击、振动或变载荷的螺纹联接件,可采用低合金钢、合金钢,如15Cr、40Cr、30CrMnsi等。

对于特殊用途〔如防锈蚀、防磁、导电或耐高温等〕的螺纹联接件,可采用特种钢或铜合金、铝合金等。

表:螺栓的性能等级〔摘自 GB 3098.1-82〕注:规定性能等级的螺栓、螺母在图纸中只标出性能等级,不应标出材料牌号。

表:螺母的性能等级〔摘自GB 3098.2-82〕,是根据实际情况,对螺栓进展强度校核。

采用公式为:碳素钢螺栓合金钢螺栓式中:s——螺栓材料的屈服极限;A1——螺栓危险截面的面积。

式(5-14)松螺纹联接强度计算拉伸强度条件为:【5-14】式中:F--螺栓工作载荷,N;d1--螺栓危险截面的直径,mm;[σ]--螺栓材料的许用拉应力,MPa.紧螺栓联接强度计算1.仅承受预紧力的紧螺栓联接拉伸强度条件为:式中:Q p—螺栓所受预紧力,N。

其余符号意义同前。

2. 承受预紧力和工作拉力的紧螺栓联接①拉伸强度条件为:式中:Q—螺栓总拉力,N。

其余符号意义同前。

螺栓总拉力的计算:Q=Qp+[Cb/(Cb+Cm)]·F式中:Cb/(Cb+Cm)称为螺栓的相对刚度,一般设计时,可按下表推荐的数据选取。

螺栓的相对刚度Cb/(Cb+Cm)被联接钢板间所用垫片类别Cb/(Cb+Cm)金属垫片〔或无垫片〕0.2~0.3皮革垫片0.7铜皮石棉垫片0.8橡胶垫片0.9②疲劳强度计算对于受轴向变载荷的重要联接,应对螺栓的疲劳强度作准确校核,计算其最大应力计算安全系数:式中:σ-1tc——螺栓材料的对称循环拉压疲劳极限,MPa ,σ-1tc值见表——试件的材料特性,即循环应力中平均应力的折算系数,对于碳素钢,=0.1—0.2,对于合金钢,=0.2—0.3;——拉压疲劳强度综合影响系数,如忽略加工方法的影响,如此K σ=kσ/εσ,Kσ此处为有效应力集中系数,见表εσ为尺寸系数,见附表;S ——安全系数。

螺纹联接件常用材料的疲劳极限〔摘自GB38-76〕材料疲劳极限〔MPa〕σ-1σ-1tc10 Q215 35 45 40C r 160~220170~220220~300250~340320~440120~150120~160170~220190~250240~340螺纹联接的安全系数 S13 / 17受载类型静载荷变载荷松螺栓联接~1.7紧螺栓联接受轴向与横向载荷的普通螺栓联接不考虑预紧力的简化计算M6~M16 M16~M30 M30~M60 M6~M16 M16~M30 M30~M60 碳钢5~4 4~~2 碳钢~~合金钢~5 5~~3 合金钢10~~10考虑预紧力的计算~~1.5(S a~4)铰制孔用螺栓联接钢:S r=2.5,Sp=1.25铸铁:S~钢:S r~5,S p=1.5铸铁:S~3.承受工作剪力的紧螺栓联接螺栓杆与孔壁的挤压强度条件为螺栓杆的剪切强度条件为14 / 17式中:F ——螺栓所受的工作剪力,N;d0——螺栓剪切面的直径〔可取为螺栓孔的直径〕,mm;L min ——螺栓杆与孔壁挤压面的最小高度,mm,设计时应使L min d0;[σ]p——螺栓或孔壁材料的许用挤压应力,MPa ;[τ] ——螺栓材料的许用切应力,MPa 。

相关文档
最新文档