基于BP神经网络识别字符
BP神经网络算法

BP神经网络算法一、算法原理在BP神经网络中,每个神经元都与上一层的所有神经元以及下一层的所有神经元相连。
每个连接都有一个权重,表示信息传递的强度或权重。
算法流程:1.初始化权重和阈值:通过随机初始化权重和阈值,为网络赋予初值。
2.前向传播:从输入层开始,通过激活函数计算每个神经元的输出值,并将输出传递到下一层。
重复该过程,直到达到输出层。
3.计算误差:将输出层的输出值与期望输出进行比较,计算输出误差。
4.反向传播:根据误差反向传播,调整网络参数。
通过链式求导法则,计算每层的误差并更新对应的权重和阈值。
5.重复训练:不断重复前向传播和反向传播的过程,直到达到预设的训练次数或误差限度。
优缺点:1.优点:(1)非线性建模能力强:BP神经网络能够很好地处理非线性问题,具有较强的拟合能力。
(2)自适应性:网络参数可以在训练过程中自动调整,逐渐逼近期望输出。
(3)灵活性:可以通过调整网络结构和参数来适应不同的问题和任务。
(4)并行计算:网络中的神经元之间存在并行计算的特点,能够提高训练速度。
2.缺点:(1)容易陷入局部最优点:由于BP神经网络使用梯度下降算法进行权重调整,容易陷入局部最优点,导致模型精度不高。
(2)训练耗时:BP神经网络的训练过程需要大量的计算资源和耗时,特别是对于较大规模的网络和复杂的输入数据。
(3)需要大量样本:BP神经网络对于训练样本的要求较高,需要足够多的训练样本以避免过拟合或欠拟合的情况。
三、应用领域1.模式识别:BP神经网络可以用于图像识别、手写字符识别、语音识别等方面,具有优秀的分类能力。
2.预测与回归:BP神经网络可以应用于股票预测、销量预测、房价预测等问题,进行趋势预测和数据拟合。
3.控制系统:BP神经网络可以用于自适应控制、智能控制、机器人运动控制等方面,提高系统的稳定性和精度。
4.数据挖掘:BP神经网络可以应用于聚类分析、异常检测、关联规则挖掘等方面,发现数据中的隐藏信息和规律。
BP神经网络研究综述【文献综述】

文献综述电气工程及自动化BP神经网络研究综述摘要:现代信息化技术的发展,神经网络的应用范围越来越广,尤其基于BP算法的神经网络在预测以及识别方面有很多优势。
本文对前人有关BP神经网络用于识别和预测方面的应用进行归纳和总结,并且提出几点思考方向以作为以后研究此类问题的思路。
关键词:神经网络;数字字母识别;神经网络的脑式智能信息处理特征与能力使其应用领域日益扩大,潜力日趋明显。
作为一种新型智能信息处理系统,其应用贯穿信息的获取、传输、接收与加工各个环节。
具有大家所熟悉的模式识别功能,静态识别例如有手写字的识别等,动态识别有语音识别等,现在市场上这些产品已经有很多。
本文查阅了中国期刊网几年来的相关文献包括相关英文文献,就是对前人在BP神经网络上的应用成果进行分析说明,综述如下:(一)B P神经网络的基本原理BP网络是一种按误差逆向传播算法训练的多层前馈网络它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阀值,使网络的误差平方最小。
BP网络能学习和存贮大量的输入- 输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer),如图上图。
其基本思想是通过调节网络的权值和阈值使网络输出层的误差平方和达到最小,也就是使输出值尽可能接近期望值。
(二)对BP网络算法的应用领域的优势和其它神经网络相比,BP神经网络具有模式顺向传播,误差逆向传播,记忆训练,学习收敛的特点,主要用于:(1)函数逼近:用输入向量和相应的输出向量训练一个网络以逼近一个函数;(2)模式识别:用一个待定的输出向量将它与输入向量联系起来;(3)数据压缩:减少输出向量维数以便于传输或存储;(4)分类:把输入向量所定义的合适方式进行分类;]9[BP网络实质上实现了一个从输入到输出的映射功能,,而数学理论已证明它具有实现任何复杂非线性映射的功能。
基于一种改进的BP神经网络的飞机目标识别

出模式映射关 系,而无需事前揭示表示这种 映射 关系 的数学方程 。它的学习规则使用 的是最速 下降法,通 过反 向传播 来不断调整 网络 的权值和 阈值 ,使网络的 误差平方和最 小。B 神经 网络模 型拓扑结构包括输入 P
层 ( n u ) 、隐 层 ( i e a e ) 输 出层 ( u p t ip t h d l y r 和 o t u
输人层 隐层 输出 层
图 1B P神 经 网 络 结 构 示 意 图
由输 入层 至 隐层 ,网络 按组 织特 征 映 射学 习规 则产 生 隐 层 的 获 胜 神 经 元 ,并 按 这 一 规 则 调 整 相 应 的 输 入 层 至 隐 层 的 连 接 权 。 由 隐层 至输 出 层 , 网 络 按 基 本 竞 争 型 网络 学 习规 则 得 到各 输 出神 经 元 的 实 际 输 出值 ,
极 小值 。
四、 P神经 网络 的训练 策略及 结果 B
以理 想样 本 作 为训 练样 本 , 网络 的训 练 函数 采用 弹 性 反 向传 播算 法 ( r i r ) 。T a n p ta np r i r 函数 依 据 弹 性 反 向 传 播 算 法 对 网络 的权 值 和 阀值 进 行 调 整 , 该 函 数 在 对 网络 权 值 和 阀值 更 新 时只 考 虑梯 度 的 符 号 ,调 整 幅 度 则 有 程 序 设 定 ,从 而 提 高 了 网络 在 性 能 曲面 平 坦 区 域 的 学 习 效 率 。然 后 设 定 网络 属 性 。 网络 的 性 能 函 数 设置 为 平 方 和 误 差 函数 ( s ,S e 数 用 来 计 算 S ) S函
种 ,有的应用角点特征和核聚类算法 ,有的基于 闭合 轮 廓特 征,有的采用模板 匹配 ,等等 。 目前 ,三维 目 标识别 主要是通过对任意角度观察 的二维数字 图像处
基于方向小波和BP网络的数字识别

r c g iet o e d gt o es o e a er p u e . e o nz s i i wh s t k s v t r d h s r h u Ke wo d : d r ci n l v lt r d n t n f r BP n u a ewo k f a u ee ta t n dg t e o n t n y rs i t a e o wa ee ; a o a so m; e r n t r ; e t r x r ci ; i i r c g i o r l o s i
基于方 向小波和 B P网络 的数字识 别
毕晓君 ,骆光 馨 ,芦 婧
( 尔滨工程 大学 信 息与通信工程学 院,黑龙江 哈 尔滨 1 0 ) 哈 5 0 1 0
摘 要 :针对 目前数 字字符识别 的研究现状 ,提 出了方 向小波变换和 B P神经 网络 相结合的数 字字符识别方法. 小波 变换具有 良好的方 向特 性,根据这个特点能很好 的提取数字字符 的特征 ,以此特征作为输入 向量 ,用 B P网络 进行数 字识别. 实验结果表 明,该方法大大 减少了运 算数 据量 ,缩短 了识别时间,具有较 高的识别率,对 一些如 笔画断裂等
数字字符识别是图象处理和模式识别领域 中的 研究课题之一. 数字尤其是手写数字在现 实生活中 处处用 到, 因而对手 写数 字识 别技术 的研 究很 有价 值. 前数字图形识别所采用的方法有: 目 基于神经网 络 的方法 、结 构特 征或模 板 匹配 的方 法 、统计 特 征 的方法 等. 小波变换在时间和空问域上具有 良好的局部特 性 ,将空 间和频域 统 一于一 体来研 究信 号 ,对 空间 和频率同时具有较好的分辨率. 图像 的方 向性 是图 像 的一种特 征 ,在 图像 分析和 图像 处理 中有 着重 要 的意义. 而一般 的二维小波变换只能描述 出图像在 水 平方 向和垂 直方 向上 的属 性 ,但 不 能反 映其他 方
基于BP神经网络PID整定原理和算法步骤

基于BP神经网络PID整定原理和算法步骤BP神经网络是一种常用的非线性拟合和模式识别方法,可以在一定程度上应用于PID整定中,提高调节器的自适应性。
下面将详细介绍基于BP神经网络的PID整定原理和算法步骤。
一、基本原理:BP神经网络是一种具有反馈连接的前向人工神经网络,通过训练样本的输入和输出数据,通过调整神经元之间的连接权重来模拟输入和输出之间的映射关系。
在PID整定中,可以将PID控制器的参数作为网络的输入,将控制效果指标作为网络的输出,通过训练网络来获取最优的PID参数。
二、算法步骤:1.确定训练数据集:选择一组适当的PID参数和相应的控制效果指标作为训练数据集,包括输入和输出数据。
2.构建BP神经网络模型:确定输入层、隐藏层和输出层的神经元数量,并随机初始化神经元之间的连接权重。
3.设置训练参数:设置学习速率、误差收敛条件和训练迭代次数等训练参数。
4.前向传播计算输出:将训练数据集的输入作为网络的输入,通过前向传播计算得到网络的输出。
5.反向传播更新权重:根据输出与期望输出之间的误差,利用误差反向传播算法来调整网络的连接权重,使误差逐渐减小。
6.判断是否达到收敛条件:判断网络的训练误差是否满足收敛条件,如果满足则跳转到第8步,否则继续迭代。
7.更新训练参数:根据训练误差的变化情况,动态调整学习速率等训练参数。
8.输出最优PID参数:将BP神经网络训练得到的最优权重作为PID 控制器的参数。
9.测试PID控制器:将最优PID参数应用于实际控制系统中,观察控制效果并进行评估。
10.调整PID参数:根据实际控制效果,对PID参数进行微调,以进一步优化控制性能。
三、应用注意事项:1.训练数据集的选择应尽量全面、充分,覆盖各种不同工况和负载情况。
2.隐藏层神经元数量的选择应根据实际情况进行合理调整,避免过拟合或欠拟合现象。
3.学习速率和训练迭代次数的设置应根据系统复杂度和训练误差的变化情况进行调整。
基于BP神经网络的人体活动识别方法

物联网技术 2021年 / 第12期400 引 言随着微电子机械系统(MEMS )、机器学习等技术的快速发展,同时人们对健康状况的关注和对更高生活品质的追求,使得基于惯性传感器的人体活动识别成为当下热门的研究课题。
基于惯性传感器的人体活动识别技术在辅助老年人生活、医疗保健、体育运动和人机交互等方面[1]发挥着重要作用。
用于人体活动数据采集的惯性传感器主要由加速度计、陀螺仪和磁力计等构成,能够准确采集人体活动时产生的加速度信号、角速度信号和磁场[2]。
传感器器件的发展促使惯性传感器朝着小体积、低成本、低功耗、高灵敏度的方向不断进步,使其被集成在智能手环、智能手机和可穿戴设备上成为可能,相信在未来,其在人体活动识别领域的应用也将越来越广泛。
人体活动识别中常见的机器学习算法模型有决策树、朴素贝叶斯、人工神经网络、支持向量机、K 最近邻和隐马尔科夫模型等[3]。
文献[4]提出了一种基于多传感器的分布式人体定位方法,该多传感器系统采用决策树分类器(DT )、均值和方差特征,整体识别准确率达96.4%。
文献[5]提出了一种基于朴素贝叶斯分类器(NB )的早期手势识别方法,实验结果表明,所提出的新方法优于许多专门为早期手势识别而设计的更复杂的方法。
文献[6]建立了支持向量机(SVM )分类模型,用于体操动作的识别,该模型对6种体操动作的平均识别率超97%。
文献[7]采用K 最近邻分类器(KNN )进行人体活动识别,采用粒子群优化算法(PSO-KNN )搜索KNN 分类器中k 参数的最优值。
实验结果表明,优化后的算法提高了对人体动作的识别精度。
本文提出了基于BP 神经网络的人体活动识别方法,并在公开的DaLiAc (DailyLife Activities, DaLiAc )数据集上验证了我们所提分类模型用于人体活动识别的有效性。
1 人体活动识别模型1.1 BP 神经网络模型多层网络的学习能力较单层感知器增强很多,但要训练多层网络,则需要更强大的学习算法。
基于BP神经网络的手写数字识别实验报告

基于BP神经网络的手写数字识别实验报告基于BP神经网络的手写体数字图像识别PT1700105 宁崇宇PT1700106 陈玉磊PT1700104 安传旭摘要在信息化飞速发展的时代,光学字符识别是一个重要的信息录入与信息转化的手段,其中手写体数字的识别有着广泛地应用,如:邮政编码、统计报表、银行票据等等,因其广泛地应用范围,能带来巨大的经济与社会效益。
本文结合深度学习理论,利用BP神经网络对手写体数字数据集MNIST进行分析,作为机器学习课程的一次实践,熟悉了目前广泛使用的Matlab工具,深入理解了神经网络的训练过程,作为非计算机专业的学生,结合该课题掌握了用神经网络处理实际问题的方法,为今后将深度学习与自身领域相结合打下了基础。
1 引言从计算机发明之初,人们就希望它能够帮助甚至代替人类完成重复性劳作。
利用巨大的存储空间和超高的运算速度,计算机已经可以非常轻易地完成一些对于人类非常困难的工作,然而,一些人类通过直觉可以很快解决的问题,却很难通过计算机解决,这些问题包括自然语言处理、图像识别、语音识别等等,它们就是人工智能需要解决的问题。
计算机要想人类一样完成更多的智能工作,就需要掌握关于这个世界的海量知识,很多早期的人工智能系统只能成功应用于相对特定的环境,在这些特定环境下,计算机需要了解的知识很容易被严格完整地定义。
为了使计算机更多地掌握开放环境下的知识,研究人员进行了很多的尝试。
其中影响力很大的一个领域就是知识图库(Ontology),WordNet是在开放环境中建立的一个较大且有影响力的知识图库,也有不少研究人员尝试将Wikipedia中的知识整理成知识图库,但是建立知识图库一方面需要花费大量的人力和物力,另一方面知识图库方式明确定义的知识有限,不是所有的知识都可以明确地定义成计算机可以理解的固定格式。
很大一部分无法明确定义的知识,就是人类的经验,如何让计算机跟人类一样从历史的经验中获取新的知识,这就是机器学习需要解决的问题。
基于BP神经网络的图像识别方法

1 引言
人 工神 经 网络 ( Ar t i i f c i a l Ne u r a l Ne t w o r k s ) ( 简 称A N N)系 统 诞 生于2 O 世 纪4 0 年 代末 ,已有 半个 多世 纪 的发 展 ,从一 开始 的简 单 逻 辑运 算 、推 理 ,到现 阶段 发展 成 具有 复杂 模式 和记 忆 、联 想 、推 理 、 的功能 ,己成 为解 决某 些传 统 方法 所无 法解 决 的 问题 的 有力 工 具 。神 经 网络 所表 现 出的这 些特 点 使它 日益 受到 学者 的 重视 , 1 9 8 6 年 ,R o me l h a r t 和 Mc c l e l l a n d 在 传统 神经 网络 的基础 上 ,提 出了误 差 反 向传 播算 法( E r r o r B a c k P r o p a g a t i o n Al g o r i t h m) ,简称 B P 算 法 ,与 神 经 网 络结 合 ,发展 成 为 机 器 学 习 的热 门 方 向 。B P 神 经 网络 包 含 了前 向和反 向两个 过程 ,线 性变 换 和非 线性 激活 函 数两 个运 算 ,运 用 激活 函数 的 连续 、可 导特 性 , 以逐 次 逼近 的方 式 ,迭代 寻 找最 优 解 ,并 确定 线 性参 数 的范 围 ,最后达 到 识别 、分 类 的功 能 。而 图像 的 识别 正是 分 辨 图像边 缘 ,通 常 以梯 度 方 向作为 逼近 方 向 ,不 断调 整 速 率 ,达 到 分 类 目的 ,因 此B P 神 经 网 络在 图像 分 类 ,模 式 识 别 方 面有 极大 的应 用价 值 。
n e t . p e r f 0 r mF c n = > s s e ) ; %平 方 和 误 差 性 能 函 数 n e t . t r a i n P a r a m. g o a l = O . 1 : %平 方 和 误 差 目标 n e t . t r a i n P a r a m. s h o w= 2 0 ; %进 程 显 示 频 率 n e t . t r a i n Pa r a m. e p o c h s = 5 0 0 0 ; %最 大 训 练 步 数 n e t . t r a i n P a r a m. me = O . 9 5 : %动 量 常 数 网 络 训 练 n e t - = i n i t ( n e t ) ; %初 始 化 网 络
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、基于BP神经网络识别字符
Matlab在图像处理与目标识别方面的应用实验
三、基于BP神经网络识别字符的简单实验
汽车牌照定位与字符识别是目标自动识别的一个典型问题。
车牌由有限的字母和数字组成,采用固定的印刷字体和排列顺序。
在车牌自动识别系统中,因自然因素或采样因素使得原本规则的印刷体字符产生畸变,给字符识别来了很大困难。
BP神经网络算法是把一组样本输入输出问题转化为一个非线性优化问题,并通过梯度算法利用迭代运算求解权值的一种学习方法。
采用BP网络进行分类,并附加线性感知器来实现单字符的有效识别,算法简便,识别率高,可适用于多种高噪声环境中的印刷体字符识别。
下面的实验引自《神经网络模型及其MATLAB仿真程序设计》一书P94~98,简单起见,只对含有单独数字的图片样本进行识别,不涉及从照片中定位车牌,分割字符等前期处理。
我在保持基本算法思想不变的前提下,对原书程序及其叙述做了一定的修改。
Matlab源程序略。
一、BP神经网络结构分析:
按照BP神经网络设计方法选用两层BP网络。
其输入节点数为16×16=256,隐层传输函数为Sigmoid函数。
假设用一个输出节点表示10个数字,则输出层传输函数为pureline,隐层节点数为
,取25。
二、神经网络仿真程序设计:
1、构造训练样本集,并构成训练所需的输入矢量和目标矢量:准备10组,每组10个(0~9)数字bmp图片作为训练样本。
其中1组为清晰的,这里使用Microsoft Visual C#编程生成。
另9组是在清晰样本的基础上,用Matlab添加'salt & pepper'、'gaussian'等噪音制作成的(下图示以“5”为例)。
这些图片经过一定的预处理,取出其最大有效区域,归一为16×16的二值图像,作为输入矢量。
2、构造BP神经网络,并根据训练样本集形成的输入矢量和目标矢量,对BP网络进行训练。
训练的误差性能曲线如图:
3、对BP神经网络进行仿真。
用不同的方法生成测试样本图像,存于另外的bmp文件中,测试结果如下:
测试样本识别情况
与训练样本完全相同测试20个样本(2组0~9,皆是训练样本的复本),100%正确
与训练样本用相同的噪音算法生成测试20个样本(2组0~9,分别加'salt &
pepper'、'gaussian'噪音),60%正确
在清晰的训练样本基础上用Microsoft Windows 画图工具手工加入杂点测试20个样本(2组0~9,分别用“喷枪”加黑色与白色随机杂点),35%正确
为提高识别率,可以增加训练样本,或通过增加字体的特征向量等途径来解决。