芬顿工艺在工业废水处理中的应用
芬顿氧化法在废水处理中的应用

芬顿氧化法在废水处理中的应用Fenton氧化法是近年来发展起来的专门处理高浓度、高色度、难降解工业有机废水的高级氧化技术,常用于废水的高级处理,以去除COD、色度等。
文章介绍了Fenton氧化法处理难降解有机废水的机理及应用情况,并对其在废水处理中的发展趋势作了展望。
标签:Fenton氧化法;废水处理;难降解1894年,科学家Fenton HJ发现,过氧化氢(H2O2)与二价铁离子(Fe2+)混合后,可以将当时很多已知的有机化合物如醇、羧酸、酯类等氧化为无机态,氧化性极强。
但这种氧化性试剂却因为氧化性极强没有被太多重视。
直至上世纪70 年代,水环境的污染成为世界性难题,而具有去除难降解有机污染物的高能力的Fenton试剂,在多种工业废水处理中逐渐得到了广泛的应用,并日益受到国内外的关注。
1 Feton试剂反应机理Fenton氧化法是在酸性条件下利用Fe2+催化分解H2O2产生的·OH降解污染物,且生成的Fe3+发生混凝沉淀去除有机物,因此Fenton试剂在水处理中具有氧化和混凝两种作用。
一方面,对有机物的氧化作用是指Fe2+与H2O2作用,生成具有氧化能力极强的羟基自由基·OH 而进行的自由基反应[1];另一方面,反应生成的Fe(OH)3胶体具有絮凝、吸附功能,也可以去除水中部分有机物[2]。
羟基自由基(·OH)具有很强的氧化性,仅次于氟并且是一种非选择性的氧化剂,易氧化各种有机物和无机物,反应速度快,氧化效率高。
2 Fenton氧化法在废水处理中的应用Fenton氧化法在废水处理中的应用具有其它方法无可比拟的优点,但由于过氧化氢价格昂贵,如果单独使用Fenton试剂,则成本太高,所以在实践应用中通常与其他方法联用,如与混凝沉降法、生物法、活性炭法等联用,用于废水的预处理或最终深度处理,以取得良好的效果。
2.1 废水的预处理加入Fenton试剂对废水进行预处理,是通过羟基自由基(·OH)与有机物的反应,使废水中难降解的有机物发生偶合或氧化,形成分子量较小的中间产物,从而改变它们的可生化性、混凝沉淀性和溶解性,然后通过后续的混凝沉淀法或生化法加以去除,可达到净化的目的。
芬顿流化床工艺-概述说明以及解释

芬顿流化床工艺-概述说明以及解释1.引言1.1 概述芬顿流化床工艺是一种广泛应用于环境治理领域的高效处理废水和废气的技术。
该技术利用芬顿反应原理,在流化床反应器中将废水或废气与芬顿试剂进行反应,以高效地降解有机污染物和有毒物质。
该工艺具有反应速度快、降解效率高、操作稳定等优势,已被广泛应用于工业废水处理、废气处理、土壤修复等领域。
芬顿流化床工艺的基本原理是通过芬顿反应将废水或废气中的有机污染物和有毒物质转化为无害的物质。
芬顿反应是一种利用过氧化氢或氧化态铁离子将有机物氧化降解的反应。
在流化床反应器中,芬顿试剂被喷入床层中与废水或废气接触,通过高效混合和氧化反应,有机污染物和有毒物质得以有效降解。
芬顿流化床工艺的应用领域非常广泛。
在工业废水处理方面,该工艺已成功应用于食品加工、制药、化工、电子等行业的废水处理,能够高效去除废水中的有机物、重金属离子等有害物质。
在废气处理方面,芬顿流化床工艺可用于二恶英、挥发性有机物等有毒气体的净化,能够显著降低废气中有害物质的浓度。
此外,该工艺还可应用于土壤修复领域,能够有效降解土壤中的有机污染物,恢复土壤的健康状况。
综上所述,芬顿流化床工艺是一种高效处理废水和废气的技术,具有广泛的应用前景。
通过利用芬顿反应原理,该工艺能够高效降解有机污染物和有毒物质,并在工业废水处理、废气处理和土壤修复等领域发挥重要作用。
未来,随着环境问题的不断加剧,芬顿流化床工艺将会得到更广泛的应用和进一步的发展。
1.2 文章结构文章结构部分是对整篇文章的整体安排进行介绍,以便读者可以清晰地了解文章的组织结构。
在这个部分,我们可以简要描述每个章节的内容和目的,以及它们在整篇文章中的位置和关系。
【文章结构】本文主要分为引言、正文和结论三个部分。
1. 引言部分是文章的开端,它会对芬顿流化床工艺进行概述,并介绍本文的目的和结构。
2. 正文部分是整篇文章的核心,主要包括芬顿流化床工艺的原理和应用。
2.1 芬顿流化床工艺的原理部分将详细介绍芬顿流化床的基本原理,包括床层流化特性、反应机理和反应条件等内容。
印染废水处理中芬顿工艺应用

印染废水处理中芬顿工艺应用印染行业是一个重要的工业领域,拥有庞大的市场规模和人员就业数量,但同时也伴随着环境污染问题。
印染废水中含有大量的有机物和颜料,传统的污水处理方法往往不能有效处理这些污染物,因此寻找新的、高效的废水处理技术变得尤为重要。
芬顿工艺作为一种常见的废水处理技术,被广泛应用于印染废水处理中。
芬顿工艺的原理是通过氢氧化物和过氧化物对废水中的有机物进行氧化分解,达到降解有机污染物的目的。
印染废水中的大部分有机物都具有很强的还原性,利用芬顿工艺可以将它们高效地氧化分解。
芬顿工艺的特点是操作简单、成本低廉、反应速度快、废水降解效果好。
在印染废水处理中,芬顿工艺通常以一定的氧化剂比例和催化剂浓度进行操作,通过控制反应条件,可以实现高效降解有机污染物,并达到排放标准。
此外,芬顿工艺还可以通过调节反应条件和催化剂的种类,针对不同类型的印染废水进行定制化处理。
在印染废水中,染料是一种难降解的有机污染物,芬顿工艺可以有效地降解染料分子结构中的双键和杂环结构,使其断裂并转化为无毒的小分子物质。
此外,芬顿工艺还可以降解印染废水中的有机胺、酚类、醇类等有机物质,进一步提高废水处理效果。
芬顿工艺在印染废水处理中的应用还面临一些挑战。
首先,芬顿工艺对于某些颜料和添加剂的降解效果较差,需要进一步探索改进方案。
其次,芬顿工艺产生的活性氧会对生物处理系统产生抑制作用,因此在处理过程中需要注意对后续生物处理系统的影响。
最后,芬顿工艺需要消耗大量的氢氧化物和过氧化物,对化学品的存储和处理提出了一定的要求。
尽管存在一些挑战,芬顿工艺仍然是印染废水处理中一种重要且有效的技术。
随着对环境保护要求的提高和工艺的不断改进,芬顿工艺将在印染废水处理中发挥越来越重要的作用。
未来,我们还需要进一步研究芬顿工艺的优化和集成,完善印染废水处理技术,为印染行业的可持续发展贡献力量综上所述,芬顿工艺是一种高效降解有机污染物的技术,可以有效地处理印染废水。
芬顿反应的应用

芬顿反应的应用芬顿反应是一种广泛应用于环境治理领域的高效氧化技术。
它以氢氧自由基(•OH)为催化剂,通过氧化有机物质,将其转化为无害的物质。
本文将从废水处理、空气净化以及有机合成领域三个方面探讨芬顿反应的应用。
芬顿反应在废水处理中具有重要的应用价值。
在工业生产过程中,废水中常含有大量有机物质,如苯、酚、甲醛等,这些物质对环境和人体健康都有一定的危害。
芬顿反应可以高效地将这些有机物质降解为水和二氧化碳,从而达到废水治理的目的。
研究表明,芬顿反应对不同种类的有机物质都具有较好的降解效果,因此被广泛应用于废水处理厂和工业排放废水的治理中。
芬顿反应在空气净化方面也有着广泛的应用。
空气中的有机污染物,如挥发性有机物(VOCs),是导致大气污染和臭氧层破坏的主要原因之一。
芬顿反应可以将这些有机污染物高效地氧化为无害的物质,净化空气质量。
研究表明,芬顿反应在处理空气中的有机污染物方面具有较高的效率和选择性,因此被广泛应用于工业废气处理和室内空气净化领域。
芬顿反应在有机合成领域也发挥着重要作用。
有机合成中常需要进行氧化反应,而传统的氧化剂如过氧化氢、过氧化苯甲酰等具有危险性和高成本。
芬顿反应作为一种绿色、经济的氧化方法,可以在温和的条件下将有机物氧化为目标产物。
此外,芬顿反应还可以在不需要外部加热的情况下进行,节约能源。
因此,芬顿反应在有机合成领域被广泛应用于醇类、醛酮类、羧酸类等化合物的合成过程中。
芬顿反应在废水处理、空气净化和有机合成领域具有广泛的应用前景。
它是一种高效、选择性好且环境友好的氧化技术。
随着环境保护意识的提高和技术的不断进步,相信芬顿反应将在更多领域展现其巨大的应用潜力,为人类创造一个更加清洁、健康的生活环境。
芬顿-臭氧氧化工艺用于工业园区污水处理厂技术改造

芬顿-臭氧氧化工艺用于工业园区污水处理厂技术改造芬顿-臭氧氧化工艺用于工业园区污水处理厂技术改造随着工业园区的规模不断扩大以及工业生产的快速发展,工业污水的处理成为一个亟待解决的问题。
传统的物理化学处理工艺已经无法满足对水质要求日益提高的需求。
因此,技术改造成为工业园区污水处理厂的迫切需要之一。
近年来,芬顿-臭氧氧化工艺逐渐引起人们的关注,其在有机废水处理中显示出了巨大的潜力。
本文将探讨如何将芬顿-臭氧氧化工艺应用于工业园区污水处理厂的技术改造。
首先,我们来了解一下芬顿-臭氧氧化工艺。
芬顿-臭氧氧化工艺是将臭氧与铁离子相结合进行废水处理的一种新型工艺。
臭氧在水中的溶解度高,具有强氧化能力和快速反应速度,能够有效降解有机废水中的有机物。
而铁离子作为催化剂,能够加速氧化反应的进行。
因此,芬顿-臭氧氧化工艺在有机废水处理中具有较高的效果。
在工业园区污水处理厂的技术改造过程中,应首先进行工艺设计。
根据园区的实际情况和废水的特性,确定合适的污水处理工艺,并进行详细的工艺设计。
对于采用芬顿-臭氧氧化工艺的污水处理系统,应根据预期处理效果和出水水质要求,计算出所需的臭氧和铁离子的投加量,并确定合适的反应时间和操作条件。
其次,需要对现有设备进行改造和更新。
芬顿-臭氧氧化工艺相对于传统的物理化学处理工艺来说,需要增加臭氧发生器和臭氧接触装置,以及铁离子的投加设施。
对于这些设备,应选用高质量且性能稳定的设备,以保证工艺的正常运行和处理效果的稳定。
此外,处理过程中的操作控制也是技术改造的重要环节。
在芬顿-臭氧氧化工艺中,应定期对系统进行检查,确保各设备运行正常。
同时,要对投加剂的投加量进行调整和控制,以保证系统稳定运行并达到预期的处理效果。
此外,应配备专业的操作人员,进行监测和数据记录,及时发现问题并加以解决。
最后,技术改造完成后,还应进行系统运行的监测和评估。
定期对处理系统的出水水质进行检测,确保出水水质符合国家和地方标准,达到环保要求。
芬顿试剂处理废水的研究与应用进展

现场中试和工程实践也是本研究方向的重要内容,有助于进一步验证和完善 相关技术成果。
谢谢观看
应用实践
芬顿氧化技术在废水处理中的应用已涉及多种领域,如石油化工、制药、造 纸、印染等行业。通过案例分析,我们了解到芬顿氧化技术在处理这些废水中的 实际效果及优劣势。例如,在石油化工废水中,芬顿氧化技术可以有效降解有机 污染物,但运行成本较高;在制药废水中,芬顿氧化技术能够实现难降解有机物 的转化,但可能会出现二次污染问题;在造纸和印染废水中,
相关研究:
1、芬顿试剂处理废水的基本原理和工艺流程芬顿试剂处理废水的基本原理 是利用芬顿试剂的强氧化性,将废水中的有机污染物氧化分解为无机物和二氧化 碳等。芬顿试剂的工艺流程一般为:先将废水与芬顿试剂混合均匀,然后进行光 照或加热反应,最后通过混凝、沉淀、过滤等方法将生成的悬浮物去除。
2、芬顿试剂的种类、制备方法与应用技术芬顿试剂主要分为酸性芬顿试剂 和碱性芬顿试剂两种。酸性芬顿试剂由硫酸和过氧化氢按一定比例混合而成,碱 性芬顿试剂则由氢氧化钠和过氧化氢按一定比例混合而成。在制备过程中,需要 严格控制各成分的比例和反应温度,以保证芬顿试剂的氧化效果。
芬顿试剂处理废水的研究与应用进 展
基本内容
摘要:芬顿试剂作为一种强氧化剂,在废水处理领域具有显著的优势。本次 演示综述了芬顿试剂处理废水的研究与应用进展,涉及芬顿试剂的基本原理、种 类、制备方法、应用技术、效果评估方法以及应用案例。通过对文献资料的分析 比较,总结了前人研究的主要成果和不足,并指出了未来需要进一步探讨的问题。
在实际应用中,需要根据不同的废水类型和处理要求选择合适的芬顿试剂和 处理技术。例如,对于含有难降解有机物的废水,可采用酸性芬顿试剂进行氧化 分解;对于含有重金属离子的废水,可采用碱性芬顿试剂进行去除。同时,还可 以通过优化反应条件,如光照时间、反应温度、芬顿试剂投加量等,提高芬顿试 剂的处理效果和利用率。
芬顿 处理工艺

芬顿处理工艺芬顿处理工艺是一种常用的水处理技术,用于处理含有有机物的废水。
本文将介绍芬顿处理工艺的原理、适用范围、操作步骤以及优缺点。
一、原理芬顿处理工艺是一种基于氢过氧化物和铁离子的化学氧化还原反应。
在该工艺中,将废水与氢过氧化物和铁离子混合,通过催化作用将有机物氧化为CO2和H2O。
氢过氧化物在反应中起到氧化剂的作用,而铁离子则起到催化剂的作用。
该工艺适用于处理含有苯、酚、醛类、酮类等有机物的废水。
二、适用范围芬顿处理工艺广泛应用于工业废水处理、生活污水处理以及地下水修复等领域。
特别适用于处理难降解有机物以及含有重金属离子的废水。
由于芬顿处理工艺操作简单、成本低廉,且对废水中的有机物去除率高,因此受到了广泛的关注和应用。
三、操作步骤1. 准备工作:将废水与适量的氢过氧化物和铁离子混合。
铁离子可以通过硫酸亚铁、硫酸铁等化学物质提供。
2. 反应过程:将混合物加入反应器中,并控制反应温度和pH值。
通常情况下,反应温度为20-40摄氏度,pH值为2-4。
3. 反应时间:根据废水的特性和处理要求,确定适当的反应时间。
一般情况下,反应时间为30-60分钟。
4. 沉淀处理:反应结束后,将沉淀物与废水分离。
沉淀物中含有氧化后的有机物和铁离子。
可以通过过滤、离心等方法将废水与沉淀物分离。
5. 脱水处理:对分离后的废水进行脱水处理,将废水中的水分减少,以便于后续的处理或回收利用。
四、优缺点芬顿处理工艺具有以下优点:1. 处理效果好:能有效去除废水中的有机物,特别是难降解有机物。
2. 操作简单:操作过程相对简单,不需要复杂的设备和技术。
3. 成本低廉:相比其他废水处理工艺,芬顿处理工艺的成本相对较低。
4. 适用范围广:适用于处理各种类型的废水,特别是含有重金属离子的废水。
然而,芬顿处理工艺也存在一些缺点:1. pH值控制难度大:反应过程中需要严格控制pH值,否则会影响反应效果。
2. 产生二次污染:废水中的铁离子会生成沉淀物,处理后的废水中可能会含有一定量的铁离子,需要进一步处理。
芬顿工艺在污水处理中应用和研究

氧化性强
反应速度快
温度和pH适用范围广
芬顿工艺在污水处理中的优势
芬顿工艺在污水处理中的实际应用案例
有机染料废水处理
芬顿工艺能够有效地去除有机染料废水中的有害物质,实现废水的净化。
运行成本高
芬顿工艺需要使用化学试剂,运行成本相对较高。
产生大量废渣
芬顿反应会产生大量的废渣,处理难度较大且可能造成二次污染。
农村污水治理
农村污水治理一直是环境保护领域的难点,芬顿工艺在农村污水治理中将发挥重要作用。研究芬顿工艺在农村污水治理中的适用性和优化方案,为农村环境改善提供技术支持。
移动式污水处理设备
随着城市化进程的加快,移动式污水处理设备的需求不断增加。芬顿工艺可以应用于移动式污水处理设备的设计和优化,提高设备的处理效率和适应性。
02
03
参考文献1
标题:芬顿工艺在污水处理中的历史沿革和应用现状
作者:XXX
参考文献
THANKS
感谢观看
芬顿工艺在污水处理中的反应动力学研究
04
芬顿工艺的研究展望与发展趋势
芬顿工艺与其他污水处理技术的结合
01
研究芬顿工艺与其他污水处理技术的结合,如微藻生物技术、光催化氧化等,以提高污水处理效果和降低处理成本。
芬顿工艺的未来研究方向
芬顿工艺反应条件的优化
02
进一步研究芬顿工艺的反应条件,如pH值、氧化还原电位、反应时间等,以实现更高效、更环保的污水处理。
芬顿试剂的绿色合成
03
探索芬顿试剂的绿色合成方法,减少合成过程中的环境污染和资源浪费,同时提高芬顿试剂的稳定性和活性。
工业废水处理
随着工业废水处理需求的增加,芬顿工艺在工业废水处理领域的应用将得到进一步发展。研究芬顿工艺在处理难降解有机物、重金属离子等工业废水方面的应用和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
芬顿工艺在工业废水处理中的应用- 污水处理
【摘要】一般情况下水处理需要经过厌氧、好氧以及絮凝三个环节。
多年来,我国的污水处理都是使用传统的工艺进行。
近年来,随着国家污水排放标准的提高,对废水处理的要求和力度逐渐提高,于是很多企业就会采用深度处理的工艺对废水进行处理,如臭氧处理、膜处理等,目前市场上最为认可的是利用芬顿工艺进行废水处理。
本文就芬顿工艺在工业废水处理中的应用进行分析和研究。
【关键词】芬顿工艺;工业废水处理;应用
利用芬顿工艺对工业废水进行处理,能够在极短的时间内将工业废水中的有机物进行氧化分解,氧化率比较高,不会出现二次污染。
并且这种工艺的基建投资比较少,运用过程中不需要花费大量的费用,操作工艺比较简单。
芬顿工艺在近年来的工业废水处理中被广泛的应用,取得了良好的效果。
一、影响芬顿反应的因素
1、温度因素
在芬顿反应中,温度是影响其效果的重要因素,温度不断升高,芬顿反应的速度会逐渐加快,随着温度的提高,・OH的生成速度会提高,能够促进・OH与有机物发生反应,使氧化效果得到提升,提高CODCr的去除率。
温度的升高也会使H2O2的分解速度加快,分解成O2与H2O,这对于・OH的生成是不利的[1]。
不同类型的工业废水中,芬顿反应的最合适温度也是不同的,
2、pH值
通常情况下,在酸性环境下,芬顿试剂才会发生反应,pH的提高会使・OH得出现受到限制,并且会出现氢氧化铁沉淀,催化能力丧失。
如果溶液中有浓度较高的H+,Fe3+不能被还原为Fe2+,催化反应就会受到阻碍[2]。
有研究结果表明在酸性环境下,尤其是pH在3-5之间时,芬顿试剂有很强的氧化能力,这时有机物的降解速度比较快,能够在几分钟内降解。
同时有机物的反应速率与Fe2+以及过氧化氢的初始浓度成正比例关系。
在工业处理中使用芬顿工艺,需要将废水的pH调到3.5左右为最佳。
3、有机物
对于不同类型的工业废水,芬顿试剂的使用量以及氧化效果是存在差异的,主要是由于不同类型的工业废水中,存在着不同类型的有机物。
对于糖类等碳水化合物,由于受到羟基自由基的作用,分子会出现脱氢反应,C-C键断链;对于具有水溶性的高分子和乙烯化合物,羟基自由基会使C=C键断裂。
羟基自由基能够使芳香族化合物出现开环进而形成脂肪类的化合物,使这种类型废水中的生物毒性降低,使其可生化性得到改善。
4、H2O2与催化剂投入数量
利用芬顿工艺对工业废水进行处理时,需要明确药剂投入的数量及其经济性,如果其中投入的H2O2量比较大,就会提高废水中CODCr的去除率。
但是到达一定数量后,CODCr的去除率会呈现出逐渐下降的趋势。
催化剂的投入数量与H2O2的投入量存在着相同的情况,Fe2+的数量增加,CODCr的去除率会提高,达到一定程度后,
CODCr的去除率就会下降[3]。
在实际的工作中需要通过实验明确H2O2与催化剂的投入数量。
二、芬顿工艺在工业废水处理中的应用
1、芬顿工艺在印染废水中的应用
印染废水中色度比较高,化学需氧量的浓度比较高,含盐量也比较高,可生化性不强。
芬顿试剂具有较高的氧化性,能够使一些难以通过生物降解的有机物转换成可生化性比较好的物质,对染料中发色的基团进行破坏,使色度降低,因而被广泛的应用到印染废水处理中。
利用芬顿衍生的工艺手段,例如利用微电解-Fenton氧化工艺对蒽醌染整废水进行处理,这种废水难以降解,化学需氧量的去除率在93.5%左右,BOD5的去除率为93%左右,出水色度能够除掉95.5%左右。
在pH为2-4之间时,过氧化氢的投入量为30g/L,催化剂的投入量是过氧化氢的1/150时,使用芬顿工艺对中间体H酸生产的废水进行处理,能够达到50%的化学需氧量去除率。
2、芬顿工艺在焦化废水中的应用
焦化废水中有难以生化降解的多稠环芳烃和含氮杂环化合物,废水中含有很多生物毒性,抑制性的物质也比较多,即使进行生化处理,废水也很难达到标准。
厌氧好氧工艺法无法使焦化废水达到合理的排放标准,虽然使用活性炭工艺进行处理能够达到一定的效果,但是这种工艺方法的成本消耗比较高,并且会出现二次污染。
芬顿工艺在难降解有机物废水处理中有着广阔的发展前景,并且能够实现良好的效果。
3、芬顿工艺垃圾渗滤液中的应用
垃圾渗滤液中含有很高浓度的有机物,其中的大部分是难以通过生物降解的有机物,还有很多有毒有害的物质,氨氮的浓度比较高,微生物营养元素的比例严重失调,使用一般的生化处理工艺,过程比较复杂,效果一般。
而使用芬顿工艺对生化处理后的垃圾渗滤液进行处理,出水水质能够达到二级污水排放标准,能够提高垃圾渗滤液的可生化性,能够为接下来的生化处理提供重要的保障。
4、芬顿工艺在含酚物质废水中的应用
酚类物质的毒性比较高,对人体有致癌的作用,是比较难降解的工业废水。
芬顿工艺可以处理苯酚、甲酚等多种酚类,并且有很好的效果。
如果室温合理,pH在3-6之间,并且有氧化铁催化剂,过氧化氢能够对酚结构快速的破坏,在氧化的过程中能够先将苯环分裂为二元酸,然后生成二氧化碳和水。
芬顿工艺在含酚废水中的应用比较多,能够使废水中的生物毒害性减小,使废水中的生物降解性能得到改善。
结束语
芬顿反应能够很好地降解有毒有机污染物,并且有着比较广泛的应用氛围,在实验室以及实际应用中都取得了良好的效果。
当前工业废水处理中都提倡循环经济的发展模式,使用单一的污水处理厂对有毒的废水进行处理,不能得到理想的效果,而芬顿工艺是一种十分有效地废水处理手段,能够对废水进行可生化性以及深度处理,加之其他技术实现中水回用,达到循环利用的目的。
参考文献
[1]张一鸣.芬顿工艺的影响因素及其在难降解工业废水处理中的应用[J].资源节约与环保,2015,11:39-40.
[2]周丹,曾祥专,樊利华.超声波电芬顿技术在化妆品生产废水处理中的应用[J].给水排水,2015,11:58-60.
[3]覃伍丽,陆斌.混凝沉淀+芬顿工艺在废水脱色处理中的应用[J].科技风,2012,06:69.。