第二章信号描述及其分析解读
现代测试技术习题解答--第二章--信号的描述与分析---副本

第二章 信号的描述与分析补充题2-1-1 求正弦信号0()sin()x t x ωt φ=+的均值x μ、均方值2x ψ和概率密度函数p (x )。
解答: (1)00011lim ()d sin()d 0TT x T μx t t x ωt φt TT →∞==+=⎰⎰,式中02πT ω=—正弦信号周期(2)2222220000111cos 2()lim()d sin ()d d 22TT T xT x x ωt φψx t t x ωt φt t TT T →∞-+==+==⎰⎰⎰(3)在一个周期内012ΔΔ2Δx T t t t =+=0002Δ[()Δ]limx x T T T tP x x t x x T T T →∞<≤+===Δ0Δ000[()Δ]2Δ2d ()limlim ΔΔd x x P x x t x x t t p x x T x T x →→<≤+====正弦信号x2-8 求余弦信号0()sin x t x ωt 的绝对均值x μ和均方根值rms x 。
2-1 求图示2.36所示锯齿波信号的傅里叶级数展开。
2-4周期性三角波信号如图2.37所示,求信号的直流分量、基波有效值、信号有效值及信号的平均功率。
2-1 求图示2.36所示锯齿波信号的傅里叶级数展开。
补充题2-1-2 求周期方波(见图1-4)的傅里叶级数(复指数函数形式),划出|c n|–ω和φn–ω图,并与表1-1对比。
解答:在一个周期的表达式为00 (0)2() (0)2T A t x t T A t ⎧--≤<⎪⎪=⎨⎪≤<⎪⎩积分区间取(-T/2,T/2)00000002202002111()d =d +d =(cos -1) (=0, 1, 2, 3, )L T T jn tjn tjn t T T n c x t et Aet Ae tT T T Ajn n n ωωωππ-----=-±±±⎰⎰⎰所以复指数函数形式的傅里叶级数为001()(1cos )jn tjn t n n n Ax t c ejn e n∞∞=-∞=-∞==--∑∑ωωππ,=0, 1, 2, 3, n ±±±L 。
第二章 信号的描述及其分析

有周期信号和非周期信号。
1. 周期信号:
按一定时间间隔周而复始重复出
现,无始无终的信号。
其表达式的形式为 x(t ) x(nT t ) 如
x (t ) x0 sin 0 t 0
周期、频率、角频率关系为 T 2 0
f 1 T
简单周期信号 复杂周期信号
2. 非周期信号
注意: 在这里的信号的功率和能量,不一定具有真 实功率和能量的量纲。
第二节 周期信号与离散频谱
以时间为自变量表达的函数,称为信号的 时域描述。
求取信号幅值的特征参数以及信号波形在不同时刻
的相似性和关联性,称为信号的时域分析。
时域描述只能反映信号的幅值随时间的变化的特征,
而不能明显表示出信号的频率构成,即信号中蕴含的频
4A 2 2 n 0
正弦分量的幅值:
n 1,3,5 n 2,4,6
2 bn T0
T0 2 T 0 2
x(t ) sin n0tdt 0
因此,周期三角波的傅里叶级数三角函数展开式为:
A 4A 1 1 x(t ) 2 (cos 0t 2 cos 30t 2 cos 50t ) 2 3 5
x 2 (t ) dt
一般持续时间有限的瞬态信号是能量信号。
2. 功率信号: 若能量无限,即
x 2 (t ) dt
但它在有限区间 ( t1 , t2 )内的平均功率是有限的, 即
1 t 2 t1
t2
t1
x 2 (t ) dt 简称功率信号。
一般持续时间无限的信号都属于功率信号:
(1)离散性 频谱是离散的。
(3)第2章 信号分析基础

2.3 非周期信号与连续频谱
•
图2-5 非周期信号
2.3 非周期信号与连续频谱
• 2.3.1傅立叶变换
• 当周期T趋于无穷大时,相邻谱线的间隔 趋 近于无穷小,从而信号的频谱密集成为连续频谱 。同时,各频率分量的幅度也都趋近于无穷小, 不过,这些无穷小量之间仍保持一定的比例关系 。为了描述非周期信号的频谱特性,引入频谱密 度的概念。令
• 对于周期信号,在时域中求得的信号功率与在频域中求得 的信号功率相等。
2.3 非周期信号与连续频谱
• 2.3 非周期信号与连续频谱 • 非周期信号包括准周期信号和瞬态信号两种,其频谱
各有独自的特点:周期信号的频谱具有离散性,各谐波分 量的频率具有一个公约数——基频。但几个简谐具有离散 频谱的信号不一定是周期信号。只有各简谐成分的频率比 是有理数,它们才能在某个时间间隔后周而复始,合成的 信号才是周期信号。若各简谐信号的频率比不是有理数, 合成信号就不是周期信号,而是准周期信号。因此准周期 信号具有离散频谱,例如多个独立激振源激励起某对象的 振动往往是这类信号对于瞬态信号,不能直接用傅立叶级 数展开,而必须应用傅立叶变换的数学方法进行分解。
第2章 信号分析基础
2.1 信号的分类与描述
• 2.1 信号的分类与描述
• 2.1.1 信号的分类
• 信号是反映被测对象状态或特性的某种物理量。以信 号所具有的时间函数特性分类,信号主要分为确定性信号 与随机信号、连续信号与离散信号等。
• 1. 确定性信号与随机信号
• 确定性信号是指可以用精确的数学关系式来表达的信 号。确定性信号根据它的波形是否有规律地重复又可进一 步分为周期信号和非周期信号两种。
•
(2-21) F( j) lim Fn T 1 / T
传感器与测试技术第2章 信号及其描述

1
a0 T0
T0 2 x t dt
T0 2
an
2 T0
T0 2 x t
T0 2
cosn0tdt
周期
T0
信号的 角频率
正弦分量幅值
bn
2 T0
T0 2 x t
T0 2
sinn0tdt
0
2.2.2 周期信号的频域分析
傅里叶级数的三角函数展开式
x满t足狄 里a 赫0利 条件的周a期nc 信o 号s,n 可看0tbnsinn0t 作是由多个乃至n 无 1 穷多个不同频率的 简谐信号线性叠加而成
2.连续信号和离散信号
信号的幅值也可以分为连续和离散的两种,若信号的幅 值和独立变量均连续,称为模拟信号;若信号的幅值和独立 变量均离散,称为数字信号,计算机所使用的信号都是数字 信号。
综上,按照信号幅值与独立变量的连续性可分类如下所 示:
信号离 连散 续信 信号 号一 数 一 模般 字 般 拟离 信 连 信散 号 续 号信 (信 (信 信 号 号 号 号 ((独 的 独 的立 幅 立 幅变 值 变 值量 与 量 与离 独 连 独散 立 续 立)变 )变量 量均 均离 连散 续))
2.2.2 周期信号的频域分析
实例分析
双边幅频谱和相频谱分别为
cnnar2cA n tan-2nA0n1,3, 52,
实频谱和虚频谱分别为
2
n1,3,5,
n1,3,5,
R e cn 0
Im
cn
2A n
2.2.2 周期信号的频域分析
实例分析
周期方波的实、虚频谱和复频谱图
2.2.2 周期信号的频域分析
周期信号的强度描述常以峰值、峰-峰值、均 值、绝对均值、均方值和有效值来表示,它 确定测量系统的动态范围。 周期信号强度描述的几何含义如图2-7所示
第二章信号的分类及频谱分析

第二章信号的分类及频谱分析信号是指携带有其中一种信息或者表达其中一种含义的波形或者序列。
信号可以被广泛应用于通信、控制、图像处理、声音处理等领域。
信号的分类主要有连续时间信号和离散时间信号、模拟信号和数字信号、周期信号和非周期信号等几种。
连续时间信号是在连续时间轴上定义的信号,它的值在任意时刻都可以取得,通常用x(t)表示。
连续时间信号可以按照时间域特性分为有限长信号和无限长信号。
有限长信号在其中一时间区间内取非零值,而在其他区间内始终为零;无限长信号在无穷远处也存在非零值。
离散时间信号是仅在离散的时间点上定义的信号,它的值仅在离散的时间点上有定义。
离散时间信号通常用x[n]表示,其中n为整数。
离散时间信号可以按照时间域特性分为有限长信号和无限长信号。
有限长离散时间信号仅在有限个点上取非零值,而在其他点上始终为零;无限长离散时间信号在正负无穷远处也存在非零值。
模拟信号是连续时间信号的一种特例,它的取值可以无限细致地变化。
模拟信号通常用x(t)表示。
数字信号是离散时间信号的一种特例,它的取值仅在离散的时间点上有定义且只能取有限个值。
数字信号通常用x[n]表示。
周期信号是在时间轴上以一定的周期性重复出现的信号,它可以表示为x(t)=x(t+T),其中T为周期。
周期信号可以进一步分为连续时间周期信号和离散时间周期信号两种。
非周期信号则是无法用一个固定的周期表示的信号。
通常情况下,任意一个非周期信号都可以用周期信号的加权叠加表示。
频谱分析是研究信号在不同频率上的成分强度分布的方法。
频谱是信号的频率表示,在频谱分析中常用的方法有傅里叶变换、快速傅里叶变换等。
傅里叶变换是将一个信号从时域转换到频域的方法,可以将一个信号拆解成一系列频率成分。
傅里叶变换的结果是一个连续变化的频谱,它可以对信号的频率特性进行详细分析。
快速傅里叶变换是一种高效的傅里叶变换算法,可以在计算机中快速计算傅里叶变换。
它利用了傅里叶变换中的对称性和周期性,大大提高了计算效率。
现代测试技术习题解答第二章信号的描述与分析副本

第二章 信号的描述与分析补充题2-1-1 求正弦信号0()sin()x t x ωt φ=+的均值x μ、均方值2x ψ和概率密度函数p (x )。
解答: (1)00011lim ()d sin()d 0TT x T μx t t x ωt φt TT →∞==+=⎰⎰,式中02πT ω=—正弦信号周期(2)2222220000111cos 2()lim()d sin ()d d 22TT T xT x x ωt φψx t t x ωt φt t TT T →∞-+==+==⎰⎰⎰(3)在一个周期内012ΔΔ2Δx T t t t =+=0002Δ[()Δ]limx x T T T tP x x t x x T T T →∞<≤+===22Δ0Δ0000[()Δ]2Δ2d ()limlim ΔΔd x x P x x t x x t t p x x T x T x πx x →→<≤+====-x (t )正弦信号xx +ΔxΔtΔtt2-8 求余弦信号0()sin x t x ωt 的绝对均值x μ和均方根值rms x 。
2-1 求图示所示锯齿波信号的傅里叶级数展开。
2-4周期性三角波信号如图所示,求信号的直流分量、基波有效值、信号有效值及信号的平均功率。
2-1 求图示所示锯齿波信号的傅里叶级数展开。
补充题2-1-2 求周期方波(见图1-4)的傅里叶级数(复指数函数形式),划出|c n|–ω和φn–ω图,并与表1-1对比。
解答:在一个周期的表达式为00 (0)2() (0)2T A t x t T A t ⎧--≤<⎪⎪=⎨⎪≤<⎪⎩积分区间取(-T/2,T/2)00000002202002111()d =d +d =(cos -1) (=0, 1, 2, 3, )T T jn tjn tjn t T T n c x t et Aet Ae tT T T Ajn n n ωωωππ-----=-±±±⎰⎰⎰所以复指数函数形式的傅里叶级数为001()(1cos )jn tjn t n n n Ax t c ejn e n∞∞=-∞=-∞==--∑∑ωωππ,=0, 1, 2, 3, n ±±±。
第二章-信号分析与信息论基础

4、随机过程的数字特征 随机过程的数字特性,比如,随机过程的数学期望、
方差及相关函数等。 1)数学期望
随机过程ξ(t)的数学期望被定义为
可把t1直接写成t。随机过程的 数学期望被认为是时间t的函数。
2.1 确知信号分析
信号是通过电的某一物理量(如电压或电流)表 示出的与时间t之间的函数关系。 确知信号:能用函数表达式准确表示出来的信号。它 与时间的关系是确知的。 随机信号:与上述相反。
通信中传输的信号及噪声都是随机信号。
2.1.1 周期信号与非周期信号 周期信号:满足条件 s(t)=s(t+T0) -∞<t<∞,T0>0 非周期信号:不满足上述条件。 功率信号:信号在(0,T)内的平均功率S(式2-2)值为 一定值。 能量信号:当T→ ∞时,式(2-3)是绝对可积的。
解: Γ[COS ω0 t]= π[δ(ω- ω0)+ δ(ω+ω0)] 冲激 强度为π,根据卷积定理:
Γ[f(t)COS ω0 t] =(1/2 π)F(ω)* {π[δ(ω- ω0)+ δ(ω+ω0)] }
=(1/2) [F(ω- ω0)+ F(ω+ω0)]
2.1.3 信号通过线性系统
线性系统:输出信号与输入信号满足线性关系(允许
说,如果对于任意的n和τ,随机过程ξ(t)的n维概率
密度函数满足:
则称ξ(t)是平稳随机过程。
6、广义平稳过程 广义平稳概念:若一个随机过程的数学期望及方差 与时间无关,而其相关函数仅与τ有关,则称这个随
02《工程测试技术》第二章机械测试信号分析

Rx(τ)
O
t
O
τ
性质3,性质4:提取出回转误差等周期性的故障源。
2.2 信号的描述与分析
案例:自相关测转速
理想信号
实测信号
干扰信号
邵阳学院机械与能源工程系
自相关系数
性质3,性质4:提取周期性转速成分。
2.2 信号的描述与分析
邵阳学院机械与能源工程系
案例:地下输油管道漏损位置的探测—互相关分析
Rx1x2(τ)
2.1 信号的分类
邵阳学院机械与能源工程系
信号是载有信息的物理变量,是传输信息的载体。 信息是事物存在状态或属性的反映,信息蕴涵于信号 之中,因而它们是研究客观事物的依据;
例如,回转机械由于动不平衡产生振动,那么振 动信号就反映了该回转机械动不平衡的状态,因此它 就成为研究回转机械动不平衡的依据。
1)时域信号特征参数
2.2 信号的描述与分析
(1)峰值和峰峰值
A xp-p
邵阳学院机械与能源工程系
xP t
T
峰值хp :信号在时间间隔T内的最大值,用хp表示
峰峰值xp-p:信号在时间间隔T内的最大值与最小值之 差,用хp-p表示
2.2 信号的描述与分析
邵阳学院机械与能源工程系
(2)平均值(均值)
x 0
1 x
[
T
lim
Tx T
]
2.2 信号的描述与分析
邵阳学院机械与能源工程系
(2)概率分布函数(累积概率)
概率分布函数是信号幅值小于或等于某值 R 的概率,其定义为:
R
F (x) p(x)dx
概率分布函数又称之为累积概率,表示了落在某 一区间的概率。
2.2 信号的描述与分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、傅里叶级数(FS—Fourier Series)与周期信号的频谱 1.傅里叶级数的三角函数展开式
x(t) a0 (an cos not bn sin not) n1
a0
1 T
T /2
x(t)dt
T /2
an
2 T
bn
2 T
T /2
T /2 x(t) cos n0tdt
T /2
率处,即各次谐波频率都是基频的整数倍。 (3)收敛性 各次谐波分量随频率增加,其总的趋势是
衰减的。因此,在实际频谱分析时,可根 据精度需要决定所取谐波的次数。
信号的合成与分解——方波
x(t)
4A
(sin0t
1 sin 3
30t
1 5
sin
50t
)
手机和弦铃声的合成
2、傅里叶级数的复指数函数展开式
量无公共周期。如:x(t) = sin2t+sin√3 t
瞬变非周期信号——在一定时间区间内存在,或随着时间 的增长而衰减至零。如 x(t)= e-αt . Asin2πf t
二、随机信号(非确定性信号) 不能准确预测未来瞬时值,也无法用数学关系
式描述的信号。
噪声信号(平稳)
噪声信号(非平稳)
统计特性变异
四、能量信号和功率信号
x 2 (t )dt
2.功率信号t21 t1x2t2 t1
(t)dt x2(t)dt
一般持续时间 无限的信号都 属于功率信号:
图2-3 信号的分类
第二节 周期信号与离散频谱
★ 随时间变化的物理量可抽象为以时间为自变量表
达的函数,称为信号的时域描述。
第二章 信号描述及其分析
本章学习要求:
1.了解信号分类方法 2.掌握傅里叶级数及周期信号的频谱 3.掌握傅里叶变换及非周期信号的频谱 4.了解数字信号的处理方法
★ 信号波形——被测信号幅度随时间的变化历程称为 信号的波形。 ★ 信号波形图——以被测物理量的强度为纵坐标,以 时间为横坐标,记录被测物理量随时间的变化情况。
-A
例2-2 求图示三角波的频谱,其一个周期的表达式为
x(t)
A 2
4
A
2
(cos
0t
1 9
cos 30t
1 25
cos 50t
)
A 2
4A
2
n1
1 n2
cos n0t
n 1,3,5,
周期信号的频谱具有以下特点: (1)离散性 频谱是离散的。 (2)谐波性 频谱中的谱线只出现在基频的整数倍频
三、连续信号和离散信号 根据确定性信号的数学表达式中独立变量(一般
是时间变量t )的取值分连续和离散信号两类。
连续信号:独立变量的取值是连续的。
离散信号:独立变量的取值是离散的。
采样信号
采样 信号
特别注意: ★ 连续信号的幅值可以是连续的,也可以是离散的。 ★ 模拟信号、采样信号、数字信号
若独立变量和幅值均取连续值,则称为模拟信号。 若离散信号的幅值是连续的,则称为采样信号。 若离散信号的幅值也是离散的,则称为数字信号。
复数:
向量表示法: z. x jy
x r cos y r sin
三角函数表示法: z r(cos j sin)
指数表示法: z re j
欧拉公式:
e j cos j sin
t
根据欧拉公式,可得:
scinost tj121((eejjt teejjtt))
2
x(t)
a0
n1
A
0
t
★信号分析——是研究信号的构成和特征。
★信号处理——对信号进行必要的变换以获得所需信息 的过程。 ★信号分析和处理的基本方法——是将信号抽象为变量 之间的函数关系,特别是时间函数或空间函数,从数学上 加以分析研究。
信号的频谱分析,是最重要的信号分析技术之一。
第一节 信号及分类
信号有各种形式,可以从不同的角度对其分类。 从不同角度观察信号,可分为:
确定性信号与非确定性信号
一、确定性信号(分为周期信号和非周期信号) 1.周期信号
例如:
余弦信号与正弦信号只是相位相差π/2,也可称为正 弦信号。
简单周期信号 复杂周期信号
2.非周期信号 不具有周期重复性的信号。 非周期信号中包含准周期信号和瞬变非周期信号。
准周期信号——由两种以上的周期信号合成,但各周期分
幅值
信号频谱x(f)代表了信号在
不同频率分量成分的大小, 能够提供比时域信号波形更 直观,丰富的信息。
时域分析
频域分析
时域分析只能反映信号的幅值随时间的变化情况,除 单频率分量的简谐波外,很难明确揭示信号的频率组 成和各频率分量大小。
图例:受噪声干扰的多频率成分信号
大型空气压缩机传动装置故障诊断
T /2 x(t)sin n0tdt
n 1, 2, 3,
x(t) a0 (an cos not bn sin not)
n1
a0 An sin(n0t n)
n1
n 1, 2, 3,
An
an2 bn2
n arg tg an bn
周期信号的频谱:
例2-1 求周期方波x(t)的频谱
T2
T 2 x(t)(cosn0t j sin n0t)dt
因此:
式中:
Cn
1 2
(an
jbn )
1 [ 2 2T
T2 T 2
x(t) cosn0tdt
j
2 T
T2
T 2 x(t) sin n0tdt]
案例:在齿轮箱故障诊断 通过齿轮箱振动信号频谱分析,确 定最大频率分量,然后根据机床转 速和传动链,找出故障齿轮。
案例:螺旋浆设计 可以通过频谱分析确定螺旋浆 的固有频率和临界转速,确定 螺旋浆转速工作范围。
时域和频域的对应关系
131Hz 147Hz 165Hz 175Hz
频域参数对 应于设备转 速、固有频 率等参数, 物理意义更 明确。
[
1 2
(a
n
jbn )e jn0t
1 2
(a
n
jbn )e jn0t ]
令
C0 a0
Cn
1 2 (an
jbn )
Cn
1 2
(an
jbn )
则
式中:
Cn
1 2
(an
jbn )
1 [ 2 2T
T2 T 2
x(t) cosn0tdt
j
2 T
T2
T 2 x(t) sin n0tdt]
1 T
★ 描述信号的自变量若是频率,则称为信号的频域
描述。
★ 以频率作为自变量建立信号与频率的函数关系,
称为频域分析或频谱分析。
频谱分析主要方法之一是傅里叶变换。
x(t)= sin2πnf t
傅里叶 变换
0
t
0
f
8563A
SPECTRUM ANALYZER 9 kHz - 26.5 GHz
时域分析与频域分析的关系