相控阵天线原理图
相控阵雷达ppt课件(2024版)

第五章 相控阵雷达
§5.1概述
相控阵: 相位可控的阵列。相控阵天线是由许多辐射单元排
列组成的,每个单元的馈电相位均可灵活控制,改变波 阵面。
相控阵的概念很明确、很简单,但它与其他许多技术 有关,研究较早,发展较慢。目前处于迅速发展、激烈 变化的时期。
9
相控阵采用的高技术:
计算机技术 固态技术 信号处理技术 光电子技术 新材料技术 以及器件、结构、工艺的发展
铁氧体(4段) 波导 图5.7铁氧体移相器
铁氧体移相器结构如图5.7。其中,铁氧体上的线圈未画出。利 用线圈对每段铁氧体独立充磁,改变各段磁化状态,从而改变波导 中的相位移。
速度慢、体积大、、功率大
移相的量化误差。
23
波束形成网络
波束形成分发射波束形成、接收波束形成, 一般指接收波束形成。
射频波束形成 中频波束形成 数字波束形成 多波束形成
线性调频扫描 非线性调频扫描
噪声
|f2-f1| |f2-f1|
B
分辨率 1/比特率
1/|f2-f1| 1/|f2-f1|
1/B
4
9.脉冲压缩原理:
设信号函数为s(t),对应的匹配滤波器的冲激响应为: h(t)=s*(t0-t) 经过匹配滤波器的输出信号y(t)为:
y(t) s(t) * h(t) s()s*( t t0)d
F Fa Fe
Fe(θ)称为阵元因子。
关于阵列天线的栅瓣
阵列因子图: 主瓣
栅瓣
栅瓣
-π/2
0
π/2
π
3π/2 2π
图5-2阵列因子图
15
主瓣
栅瓣
栅瓣
-π/2
0
π/2
π
阵列天线PPT课件

.
35
N元非等幅均匀阵列
• 阵因子比较 • 二项式分布阵列 • 多尔夫-切比雪夫多项式阵列 • 泰勒分布阵列
.
36
N元非等幅均匀阵列
• 阵因子比较 • 二项式分布阵列 • 多尔夫-切比雪夫多项式阵列 • 泰勒分布阵列
.
37
阵因子
• 均匀幅值阵列具有最小的半功率波束宽度 • 二项式分布幅值阵列能够实现最小的副瓣电平 • 二项式分布幅值阵列单元间距小于半波长时,副瓣
.
N元等幅均匀线阵
求解最大值点:
阵列存在唯一的一个最大值点,即m=0 求解阵因子的3dB波束点:
.
线阵实例 1: 侧射阵
• 波束最大指向θ0=90°(线阵沿Z轴),当单元 的波束最大指向和阵因子的最大波束指向均指向 θ0=90°时,便可达到最佳的侧射阵。 • 对于单元天线的波束指向要求,可以通过选择 合适的辐射单元来满足要求 • 对于阵因子的波束指向要求,可以通过合理的 调整阵列单元间的间距、每个单元的相位激励实 现。
.
N元非等幅均匀阵列
• 阵因子比较 • 二项式分布阵列 • 多尔夫-切比雪夫多项式泰勒线阵—线源激励计算
线源激励幅度的分布为
i1
Ii (p)12 Sn(m)com s()p m1
1
m0
Sn(m)=(i1[m (i )1!(i)!]21m)!ii1112A2m (2i12)2 0mi
➢在每个天线单元的馈端 以及电缆的公共馈端处各 接入一个开关 ➢控制联动开关可使波束 从边射移到45°方向
.
相控阵
➢ 每个阵列单元都有移相器和衰减器,所有馈电 电缆都布置成等长度的组合结构
.
相控阵
➢端馈相控阵也需要逐个单元配有移相器和衰减 器,由于在单元之间引入了递进的相位移,随着 频率的变化,在额定的相位移之外,还需要附加 相反的相位变化作为补偿
一种ka频段相控阵天线

一种ka频段相控阵天线近年来,随着通信技术的不断发展,相控阵天线作为一种重要的天线技术,被广泛应用于卫星通信、雷达、无线通信等领域。
在这些应用中,ka频段相控阵天线因其高频率、高速率和高带宽等特点,成为了研究的热点之一。
本文将介绍一种ka频段相控阵天线的设计和实现。
一、ka频段相控阵天线的基本原理相控阵天线是一种由多个天线单元组成的天线阵列,通过控制每个天线单元的相位和振幅,实现对天线阵列的辐射方向和波束宽度的控制。
ka频段相控阵天线的工作频率在26.5GHz至40GHz之间,具有高频率、高速率和高带宽等特点,因此在卫星通信、雷达、无线通信等领域有着广泛的应用。
二、ka频段相控阵天线的设计和实现本文设计的ka频段相控阵天线由16个天线单元组成,每个天线单元由一个微带天线和一个相位调节器组成。
微带天线采用圆形贴片天线,具有小尺寸、低成本、易制造等优点。
相位调节器采用PIN二极管,通过改变二极管的偏置电压,实现对天线单元的相位控制。
在实现相控阵的过程中,需要对每个天线单元的相位进行精确的控制。
为了实现这一目标,本文采用了一种基于DSP的相位控制方法。
具体来说,通过DSP芯片对每个天线单元的相位进行数字控制,实现对天线阵列的辐射方向和波束宽度的控制。
三、ka频段相控阵天线的性能测试为了验证本文设计的ka频段相控阵天线的性能,我们进行了一系列的实验。
实验结果表明,本文设计的相控阵天线具有较好的辐射特性和波束宽度控制能力。
在26.5GHz至40GHz的频段内,天线阵列的增益达到了20dB以上,波束宽度可控制在2度以内。
四、结论本文介绍了一种ka频段相控阵天线的设计和实现。
通过采用微带天线和PIN二极管相位调节器,实现了对天线阵列的相位控制。
同时,通过基于DSP的相位控制方法,实现了对天线阵列的辐射方向和波束宽度的精确控制。
实验结果表明,本文设计的相控阵天线具有较好的性能和应用前景。
干货!有源相控阵的天线设计的核心:T-R组件

干货!有源相控阵的天线设计的核心:T/R组件
有源相控阵天线设计的核心是T/R组件。
T/R组件设计考虑的主要因素有:不同形式集成电路的个数,功率输出的高低,接收的噪声系数大小,幅度和相位控制的精度。
同时,辐射单元阵列形式的设计也至关重要。
1 芯片设计理想情况下,所有模块的电路需要集成到一个芯片上,在过去的几十年,大家也都在为这个目标而努力。
然而,由于系统对不同功能单元需求的差别,现有的工程技术在系统性能与实现难度上进行了折衷的考虑,因此普遍的做法是将电路按功能进行了分类,然后放置于不同的芯片上,再通过混合的微电路进行连接,如图所示。
一个T/R模块的基本芯片设置包括了3个MMICs组件和1个数字大规模集成电路(VLSI),如图所示。
高功率放大器(MMIC)
低噪声放大器加保护电路(MMIC)
可调增益的放大器和可调移相器(MMIC)
数字控制电路(VLSI)
根据不同的应用需求,T/R模块可能还需要其他一些电路,如预功放电路需要将输入信号进行放大以满足高峰值功率需求。
大多数X波段及以上频段T/R组件都采用基于GaAs工艺的MMICs技术。
该技术有个缺点就是热传导系数极低,因此基于GaAs的电路需要进行散热设计。
未来T/R组件的发展方向是基于GaN和SiGe的设计工艺。
基于GaN的功率放大器可实现更高的峰值功率输出,从而提升雷达的灵敏度或探测距离,输出功率是基于GaAS工艺电路的5倍以上。
SiGe工艺虽然传输的功率不如GaAs,然而该材料成本较低,适用于未来低成本、低功率密度雷达系统的设计。
2 功率输出通常情况下,在给定阵列的口径后,雷达系统所需要的平均功率输出也基本确。
完整版简洁ppt模板.ppt

计算结果精度比 原有算法高
50%
空间存储容量为 原有算法的
75%
Summary (总结)
得到优秀的结果的原因
1 在这里填写结果原因,在这里填写结果原因,在这里填写结果
原因,在这里填写结果原因。
2 在这里填写结果原因,在这里填写结果原因,在这里填写结果
原因,在这里填写结果原因。
3 在这里填写结果原因,在这里填写结果原因,在这里填写结果
相控阵天线
课件
主要内容
相控阵 天线原
理
发展历 程
发展前 景
相控阵天线原理
Background (背景)
用一张图片来说明研究背景
Solution (方案)
方案具体步骤说明
在这里输入方案步 骤,在这里输入方 案步骤,在这里输
入方案步骤。
在这里输入方案步 骤,在这里输入方 案步骤,在这里输
入方案步骤。
在这里输入方案步 骤,在这里输入方 案步骤,在这里输
入方案步骤。
在这里输入方案步 骤,在这里输入方 案步骤,在这里输
入方案步骤。
Solution (方案)
方案说明: 在这里输入方案说明,在这里输入方案说明,在这里输入方案说 明,在这里输入方案说明,在这里输入方案说明,在这里输入方案 说明。 所以,需要选择这样的方案。
方案说明: 在这里输入方案说明,在这里输入方案说明,在这里输入方案说 明,在这里输入方案说明,在这里输入方案说明,在这里输入方案 说明,在这里输入方案说明。 所以,需要选择这样的方案。
Solution (方案)
Simple
简单
Effective
有效
总结提出的方案,不仅简单,而且有效。
Result (成果)
相控阵天线 ppt课件

磁场
电场 电波传输方向
磁场
电场
1 天线的基本结构及工作原理 2 天线的阻抗匹配 3 天线的极化方式 4 天线的辐射方向图 5 天线的增益 6 相控阵的基本模型
无限长传输线上各点电压与电流的比值等于特 性阻抗,用符号Z。表示
通常Z。=50欧姆
馈线特性阻抗与导体直径、导体间距和导体间 介质的介电常数有关,与馈线长短、工作频率 以及馈线终端所接负载阻抗大小无关。
50 ohms
朝前 W
当传输线的特性阻抗Z。天线的输入阻抗Z
(Z -Z。) 反射系数Γ= --------------------
(Z ( 1+Γ)
驻波系数S=------------(1-Γ)
终端负载阻抗和特性阻抗越接近,反射系
数越小,驻波系数越接近于1,匹配也就
无源相控阵仅有一 个中央发射机和一 个接收机,发射机 产生的高频能量经 过计算机自动分配 给天线阵的各个辐 射器,目标反射信 号经接收机统一放 大
当相邻单元的相位依次相差Φ时,最大 波束形成于θ0空间方向。
2λ πd•sin0
d sin
d
d
0
2
k
0
12
k
0
si
n 1
d2/
(N- 1)
N- 1
移相器是电调天线的重要组成 部分,它通过调节馈电网络的 长度来改变各振子馈电相位, 实现天线波束下倾
有源相控阵的每个 辐射器都配装有一 个发射/接收组件, 每个组件都能自己 产生,接收电磁波, 因此在频宽,信号 处理和冗度设计上 都比无源相控阵具 有较大的优势
越好。
1 天线的基本结构及工作原理 2 天线的阻抗匹配 3 天线的极化方式 4 天线的辐射方向图 5 天线的增益 6 相控阵的基本模型
相控阵天线方向图推导及仿真

相控阵天线方向推导及仿真1、推导线阵天线方向图公式一个接收线阵,由等间距为d 的N 个各向同性单元组成,那么在θ方向,相邻单元接收信号的相位差为Ф=2πdλsinθ,线阵排列情况如图1所示。
图1 线阵排列示意图因为天线辐射方向图可以由天线上各种各样电流源辐射的单独贡献进行矢量叠加而得出,故各单元电压和为:E a =sin (ωt )+sin (ωt +ϕ)+sin (ωt +2ϕ)+⋯+sin[ωt +(N −1)ϕ]将等式两边同时乘以2sin(ϕ2),根据积化和差、和差化积等相关数学公式,可得到如下公式:2sin (ϕ2)E a =cos (ωt −ϕ2)−cos (ωt +ϕ2)+cos (ωt +ϕ2)−cos (ωt −32ϕ)+⋯+cos (ωt +2N −32ϕ)−cos(ωt +2N −12ϕ)整理得,2sin (ϕ2)E a =cos (ωt −ϕ2)−cos (ωt +2N−12ϕ)=2sin(ωt +N −12ϕ)sin(N2ϕ) 最终得到场强方向图,E a =sin[ωt +(N −1)ϕ2⁄]sin(Nϕ2⁄)sin(ϕ2⁄)平方归一化后,得到辐射方向图(阵列因子):|G a (θ)|=sin 2[Nπ(dλ)sinθ]N 2sin 2[π(dλ)sinθ]上式中,当(dλ)sinθ=0,±1,±2,···±n 时|G a (θ)|取得相等的最大值,但是我们只期望看到(dλ)sinθ=0的情况,取其他值产生的栅瓣是我们所不想见到的,为避免这种情况,特令d <λ。
前面的公式中认定主瓣指向为0°,当主瓣指向θ0方向时,则各向同性单元线阵的归一化辐射方向图为:G (θ)=sin 2[Nπ(dλ)(sinθ−sinθ0)]N 2sin 2[π(d λ)(sinθ−sinθ0)]此时,由于−2≤sin (θ)−sin (θ0)≤2,故防止产生栅瓣的条件为d <λ2⁄。
神通型动中通相控阵卫星天线

神通型动中通相控阵卫星天线北方神通,北京,通信技术有限公司神通?型动中通相控阵卫星天线系统产品描述:神通?型Ku卫星双向相控阵天线是国内卫星通信的革命性的、划时代的突破产品,神通?型的超薄(24cm厚度)相控阵天线系统是专为运动载体(飞机、火车、汽车、轮船)的“动中通”实时通信而设计的。
全新理念的天线系统自动搜索、捕获指定的卫星信号,并且在运动载体高速运动过程中,自动控制方位、仰角和极化角,自动跟踪并保持精确指向。
神通?型卫星双向相控阵天线具有非常广泛的应用,特别是应急通信,因为它可以为公共安全部门和第一响应单位提供高速移动的宽带卫星通信链路,不依赖于易受服务中断、自然灾害和人为破坏所影响的地面通信链路。
也由于它不依赖于地面网络,它可以应用于任何需要的领域,特别是那些偏远的、无电信运营商服务覆盖到的地区和专有军事领域。
产品适用领域有:应急体系、军队、武警、公安、国安、消防、交通、能源、环保、自然资源、运输等各行各业。
系统组成:神通?型由超薄的安装于移动载体的相控阵天线和内部的控制器组成。
外部安装天线内置BUC(可外置以增加发射功率)和LNB,控制器为天线提供电源并控制相控阵天线的运动。
系统特点:, 全自动对星;, 采用GPS信号,自动捕获并跟踪卫星(无GPS时可自动盲扫), 运动中自动寻找卫星信号最大值;, 控制系统可以使之快速从视线遮挡中恢复,天线使用机械和电子混合扫描,保持指向精度;, 邻星干扰保护:如果天线指向偏离大于0.5度,发射链路自动关闭,直到指向误差被天线的跟踪系统纠正。
, 设备采用标准机架安装,同时优化设计适用于移动载体,易于安装和维护。
北方神通,北京,通信技术有限公司神通?型性能指标1. 天线主体型号:ST-2K技术指标:频率范围: 极化调整误差: <1?发送: 14.0-14.5 GHz 天线单元:接收: 12.25-12.75 GHz 尺寸: 1360×1200×248mm(L×W×H)数据速率:重量:?40Kg 发送(回传链路):64kbps,4096 Kbps电性能指标 (外置40W BUC)(根据不同的卫星和地区会有变电源: 30VDC化) 功耗: ?70W 接收(前向链路):大于15 Mbps电源接头: TNC 增益:TX: 33.5dBi 射频接头: TNCRX: 33.5dBi 机械性能指标极化:线极化/圆极化(自动控制)俯仰范围: 20? - 70? 上行 EIRP: 49.5dBw(40w BUC)G/T: 9 dB/K @30度方位范围: 360?连续旁瓣电平:<-14dB 跟踪速率: 60?/s 交叉极化:,27dB极化范围: -90º , +90º IF输入/输出: L频段950-2050MHz工作温度 : 捕获和跟踪:信号捕获并锁定:自动,<60秒天线主体单元: -40?,+55?C极化角调整:自动贮存温度: -50º ,+70ºC 跟踪速率: 45?/秒相对湿度: <90% 重新捕获: <20秒仰角捕获误差:<0.3? 运动速度: ?350 Km/h极化角捕获误差:<0.35?北方神通,北京,通信技术有限公司2. 天线控制器天线控制器作为系统的室内单元,主要完成供电,给天线提供控制信号,以及完成人机操作等工作。