简述电网中性点接地方式有哪几种

合集下载

电力系统中性点接地方式分类、特征及应用

电力系统中性点接地方式分类、特征及应用

电力系统中性点接地方式分类、特征及应用摘要:供电系统的中性点接地方式涉及电网的安全运行,供电可靠性,过电压和绝缘的配合,继电保护,接地设计等多个因素,而且对通信和电子设备的电子干扰、人身安全等方面有重要影响。

目前供配电系统的接地方式主要有中性点不接地、中性点直接接地、中性点经电阻接地和中性点经消弧线圈接地四种,本文对这四种中性点接地方式进行了分类、分析与比较,并针对发展中城市配电系统中接地变的应用进行分析和建议。

关键词:中性点接地系统接地变电力系统中性点接地方式是指电力系统中的发电机和变压器的中性点与地的连接方式。

可以分为大接地电流系统和小接地电流系统,前者即中性点直接接地电流系统,后者又分为中性点不接地系统和中性点经消弧线圈或电阻接地系统。

1.大接地电流系统大接地电流系统,即将中性点直接接地。

该系统运行中若发生一相接地故障时,就形成单相接地短路,线路上将流过很大的短路电流,使线路保护装置迅速动作,断路器跳闸切除故障。

大电流接地系统在发生单相接地故障时,中性点电位仍为零,非故障相对地电压基本不变,这是它的最大优点。

因此在这种系统中的输电设备绝缘水平只需按电网的相电压考虑,较为经济。

此外,该系统单相接地故障时,不会产生间歇性电弧引起的过电压,不会因此而导致设备损坏。

大接地电流系统不装设绝缘监察装置。

中性点直接接地系统缺点也很多,首先是发生单相接地故障时,不允许电网继续运行,防止短路电流造成较大的损失,因此可靠性不如小接地电流系统。

其次中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。

中性点直接接地系统单相接地故障时产生的接地电流较大,对通讯系统的干扰影响也大,特别是当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。

2.小接地电流系统小电流接地系统,即中性点不接地或经消弧线圈或电阻接地系统。

小接地电流系统可分为中性点不接地系统,中性点经消弧圈接地或经电阻接地系统。

配电网中性点接地方式的分类及特点

配电网中性点接地方式的分类及特点

配电网中性点接地方式的分类及特点配电网中性点接地方式的分类及特点一、我国城乡配电网中性点接地方式的发展概况(1)建国初期,我国各大城市电网开始改造简化电压等级,将遗留下来的3kV、6kV配电网相继升压至10kV,解放前我国城市配电网中性点不接地、直接接地和低电阻接地方式都存在过,上海10kV电缆配电网中性点不接地、经电缆接地、经电抗接地3种方式并存运行至今,北京地区10kV系统中性点低电阻与消弧线圈并联接地,上海35kV系统中性点经消弧线圈和低电阻接地2种方式并存至今。

但是,从50年代至80年代中期,我国10,66kV系统中性点,逐步改造为采用不接地或经消弧线圈接地两种方式,这种情况在原水利电力部颁发的《电力设备过电压保护设计技术规程SDJ7-79》中规定得很明确。

(2)80年代中期我国城市10kV配电网中,电缆线路增多,电容电流相继增大,而且运行方式经常变化,消弧线圈调整存在困难,当电缆发生单相接地故障时间一长,往往发展相短路。

从1987年开始,广州区庄变电站为了满足较低绝缘水平10kV电缆线路的成为两要求,采用低电阻接地方式,接着在近20个变电站推广采用了低电阻接地方式,随后深圳、珠海和北京的一些小区,以及苏州工业园20kV配电网采用了低电阻接地,90年代上海35kV配电网也全面采用电阻接地方式。

(3)90年代对过电压保护设计规范(SDJ7-79)进行了修订,并已颁布执行,在新规程中,有关配电网中性点接地方式的修改主要有以下几点:1 ?原规程中规定3,10kV配电网中单相接地电容电流大于30A时才要求安装消弧线圈,新的规程将电容电流降低为大于10A时,要求装消弧线圈。

2 ?根据国内已有的中性点经低电阻接地的运行经验,对6,35kV主要由电缆线路构成的系统,其单相接地故障电流较大时,中性点经低电阻接地方式作为一种可选用的方案列入了新规程。

3 ?对于6kV和10kV配电系统以及厂用电系统,单相接地电流较小时,将中性点经高电阻接地也作为一种可选择的方案,列入了新规程。

中性点接地方式

中性点接地方式

三、接地方式的性能评价
• 正常运行的电力系统,无论何种接地方式都对 其没有影响。
• 但系统受到扰动或发生故障时,不同的接地方 式将出现不同的情况。
• 对供电可靠性的影响
• 电力系统单相对地故障约占80%,而其中绝大 多数故障都是瞬时性的。
• 架空线路中瞬时性故障约占单相接地故障的 90%;电缆线路约占30%。
个系统性、全局性问题。
二、接地方式的种类
• 中性点接地方式有:不接地(绝缘)、经电阻接 地、经电抗接地、经消弧线圈接地、直接接地。
• 电力系统中性点接地方式可划分为两大类:有 效接地方式和非有效接地方式。
• 有效接地方式又称大接地电流方式;非有效接 地方式又称小接地电流方式。
• 非有效接地电网依靠中性点的高阻抗将单相接 地故障电流控制在较小的数值。
• 丹东某变电站2001年8月至2002年2月间瞬时 性接地故障30余次,无一次永久接地,对供电 连续性没有任何影响。
• 小电流接地方式发生单相接地故障时不需要 继电保护和断路器动作,在系统和用户几乎无 感觉的情况下,接地电弧自动熄灭,系统保持 连续供电。
• 对于永久性单相接地故障,可以允许电网在 一段时间内(一般2小时)带故障运行。
• 大电流接地方式主要有:中性点直接接地方式、 中性点经小电阻或小电抗接地方式。 • 小电流接地方式主要有:中性点不接地方式、 中性点经消弧线圈接地方式和中性点经高电阻 接地方式等。
• 接地阻抗或接地电流的大小是相对的,因而需 要采用明确的指标来对两种接地方式进行界定。
• 多数国家规定:凡是系统的零序电抗(x0)与正 序电抗(x1)的比值≤3且零序电阻(r0)与正序电抗 (x1)的比值≤1的系统,属于有效接地系统;零序 电抗(x0)和正序电抗(x1)的比值>3且零序电阻 (r0)与正序电抗(x1)的比值>1的系统,属于非有 效接地系统。

3~66kV电网中性点接地方式解析

3~66kV电网中性点接地方式解析

3~66kV电网中性点接地方式解析从3-66kV电网供电的安全可靠性、电气设备的绝缘水平以及对通信系统的干扰等方面,综合分析、解读了中性点电阻接地与中性点谐振(消弧线圈)接地等系统以及中性点不接地(绝缘)系统的优缺点。

标签:中性点接地方式;过电压;电阻0 引言3~66kV电网中性点接地方式是涉及电力系统诸多方面的综合性技术问题。

本文对3~66kV配电网历史上使用的接地方式的优缺点进行了比对分析,同时简要介绍了我国电气设备的绝缘配合情况。

1 电力系统中性点接地系统介绍国家曾出台有关规定:对电力系统内中性接地方式划分成小接地短路系统和大接地短路电流系统2类,后期由于对电流大小的界定关系不好实施,从而改成中性点有效接地和中性点非有效接地两大系统[1]。

通常在电力系统内,中性点非有效接地的方式主要包括不接地(绝缘)和经消弧线圈(谐振)接地。

消弧线圈接地系统使用历史。

早先一些发达国家的配电网正式不再使用消弧线圈进行接地,一些国家也对配电网中的中性点减少了谐振接地的方式,这些方式对当时的接地方式产生很大影响,后经分析这并不是由于谐振接地方式不好而造成的。

(1)根据升压的要求和需要。

根据绝缘水平的原因,同时满足降低过电压的需要,需要把中性点从不接地和谐振接地系统更改为经电阻接地系统。

(2)复杂电网中的使用消弧线圈效果不佳。

(3)电网对地电容电流越大,消弧线圈容量越大,设备不经济。

2 各种接地系统的过电压情况以及我国电气设备的绝缘水平DL_T_620-1997《交流电气装置的过电压保护和绝缘配合》中,4.2.8 66kV 及以下系统发生单相间歇性电弧接地故障时,可产生过电压,过电压的高低随接地方式不同而异。

一般情况下最大过电压不超过下列数值:不接地系统 3.5p.u.消弧线圈接地系统 3.2p.u.电阻接地系統 2.5p.u.GB_311~1-1997《高压输变电设备的绝缘配合》规定,我国3~66kV输变电设备短时工频耐受过电压倍数Kp(P.U)如表1所示。

第八章电力系统中性点接地方式

第八章电力系统中性点接地方式
中性点非有效接地主要有不接地和经消弧线圈接地两种。 一、中性点不接地系统
中性点不接地又叫做中性点绝缘。在这种系统中,中性点 对地的电位是不固定的,在不同的情况下,它可能具有不同的 数值。中性点对地的电位偏移称为中性点位移。中性点位移的 程度,对系统绝缘的运行条件来说是至为重要的。
发电厂电气部分
1.中性点不接地系统的正常运行 图8-1(a)为一中性点不接地系统正常运行的示意图。 中性点不接地系统正常运行时,中性点所具有的对地电位, 称为不对称电压,Un用o 表示。 各相对地电流的相量和应为零,即
U (0)
1 3
(UU
UV
UW )
1 (0 3
3UU e j150
3UU e j150) UU U O
V、W相的电容电流分别为
ICV
UV jXV
3CVUU e j60
ICW
UW jXW
3CWUU e j120

IC ICV ICW j3CUU j3CUO
(8-11)
(8-12) (8-13) (8-14)
QF ICW ICV
IC
K
IC
CU
ICV
CV
ICW
CW
(a)
UW U W
U O
O
U U
U V
ICW
ICV
U V
IC
(b)
UV UV UO 3UU e j150
UW UW UO
3UU e j150
图8-2 中性点不接地系统U相金属性接地
(8-10)
发电厂电气部分
故障点的零序电压 为 U (0)
U W
ICW
W
U V
ICV

学习笔记-中压配电网单相接地故障-选线及定位技术

学习笔记-中压配电网单相接地故障-选线及定位技术

中压配电网单相接地故障——选线及定位技术杨以涵齐郑编著(中国电力出版社2014.07)第一章中压配电网中性点接地方式在这一章中主要介绍了配电网的中性点接地的方式,以及各种接地方式对电网的影响。

中性点接地方式中性点接地方式主要有以下几种:中性点直接接地方式,即将中性点直接接入大地中性点不接地方式,即中性点对地绝缘中性点经消弧线圈接地方式,即在中性点和大地之间接入一个电感线圈。

中性点经电阻接地方式,即在中性点和大地之间接入一个电阻。

分为中性点经高阻抗接地,中性点经小电阻接地和中性点经中阻抗接地三种方式。

中性点经消弧线圈接地方式,与不接地方式相比,需要更多的投资,但是能够保障系统的安全性,提高供电可靠性。

抑制单相接地故障的短路电流,利于电弧的熄灭,避免系统的过电压。

但是面临新的问题,1、单相接地故障选线困难,抑制了故障线路的零序电流;2、造成中性点的位移电压过高,随着经济的发展,在馈电的线路中电缆所占的比重越来越大,中性点经消弧线圈接地方式的弊端逐渐暴露,1)只能补偿电容的基频无功分量,谐波分量无法补偿;2)配电网的电容电流大,导致消弧线圈的价格高;3)以电缆为主的配电网单相故障多为永久性故障(外力破坏的故障),消弧线圈的优势不明显;4)当接地点为电缆内部的时候,接地电弧为封闭性电弧,消弧线圈就不具备优势了。

中性点经电阻接地,为了限制配电网的过电压的幅值,解决消弧线圈容量无法满足电容电流的需求的问题,可以采用中性点经电阻接地方式。

优点是当电容电流在一定范围波动的时,能有效地限制间歇性电弧接地过电压和铁磁谐振过电压,同时不必像消弧线圈那样严格匹配电容电流。

适用的情况是采用绝缘水平低的设备,对电压要求比较严的配电网或存在大量电缆的配电网。

根据我国具体情况,主要采用经小电阻接地方式。

中性点接地方式的影响中性点接地方式的影响的内容主要有:安全隐患,由接地故障引起的电弧会对环境造成危害,引发火灾。

单相接地故障会对接地点附近产生较大的跨步电压和接触电压,对人畜造成危害。

电力系统中性点接地的三种方式

电力系统中性点接地的三种方式

电力系统中性点接地的三种方式有效接地系统(又称大电流接地系统)小电流接地系统(包含不接地和经消弧线圈接地)经电阻接地系统(含小电阻、中电阻和高电阻)大电流接地系统用于110kV及以上系统及。

该系统在单相接地时,另外两相对地电压基本不变,系统过电压较低,对110kV及以上系统抑制过电压有利,但此时接地电流很大,运行设备很难长时间通过此电流,接地相对地电压很低,甚至为零,系统电压严重不平衡,许多电气设备无法正常工作,必须及时切除接地点。

大电流接地系统要求部分主变的中性点接地,避免单相接地时短路电流过大。

这些主变必须有一个三角形接线的绕组,以构成零序通路,降低零序阻抗。

主变的零序阻抗一般为正序阻抗的1/3,线路的零序阻抗一般为正序阻抗的3倍。

作为220kV枢纽变电站的主变必须并列运行。

其中一台主变的220kV侧中性点和110kV侧中性点必须直接接地,其他主变中性点通过间隙接地。

好处是110kV侧零序阻抗稳定,有利于该110kV系统零序定值的计算和整定,零序过流保护的保护范围变化很小,容易保持其阶梯特性;未220kV系统提供稳定的零序电源,保持220kV 系统零序保护的方向性和稳定性。

主变220kV侧中性点和110kV侧中性点均加装间隙保护,保护动作跳开各侧断路器。

作为220kV负荷变电站的主变必须分列运行。

此时所有主变的220kV侧中性点必须通过间隙接地,110kV侧中性点全部接地运行。

所有主变不能相220kV系统提供零序电流,110kV侧零序阻抗稳定。

主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。

作为链式接线的220kV变电站,其220kV侧母线并列运行并有两个电源。

虽然主变分列运行,但必须有一台主变的220kV侧中性点直接接地,其他主变的220kV 侧中性点通过间隙接地。

110kV侧中性点必须全部直接接地。

主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。

目前运行的110kV变电站全部主变均分裂运行,其电源侧母线为单电源。

1.电力系统中性点接地方式

1.电力系统中性点接地方式
电力系统中性点接地方式
本章分析电力系统中性点常用接地方式 的特点及适用范围
* 概述
一、定义
中性点:电力系统三相交流发电机、变压器接成星形绕组的公共点。
二、种类
1.中性点不接地 2.中性点经消弧线圈接地 3.中性点直接接地 前两种又称中性点非直接接地系统,也称为小接地电流系统。后一种称为大接 地电流系统。




(线电压)
(线电压)
U wd 0

结论: 故障相对地电压为零,非故障相对地电压为线电压, 中性点对地电压为相电压。 下一页
U
N
V W
d Cw Cv Cu


2.电流情况:
W相接地时,三相电容电流不对称。W相电容电流为零,其他两相电容 电流的有效值为: Icu=Icv=ω CUx。 其中:Ux—相电压;ω —角频率;C—相对地电容。 这时三相电流之和不在为零,大地有电流流过,W相接地处的电流简称 为接地电流,用 I c 表示。则:I c =-( I cu + I cv ) 经计算接地电流的有效值为:Ic=3ω CUx,而正常运行时的一相对地电 流为:Ic=ω CUx。可见单相故障时的接地电流等于正常运行时一相对 地电容电流的三倍。由于对地电容与线路的结构和长度有关,很难得 到C的参数。 故实用计算可按下式计算:
3.过补偿
(1)特点:过补偿是使电感电流大于接地电流,即 IL>Ic,,调谐度K>1,脱谐度V<0。单相接地故障接地处 有感性过补偿电流(IL-Ic),这种补偿方式不会有上 述缺点。因为当接地电流减小时,过补偿电流更大,不 会变为完全补偿。另外,即使将来电网发展,原有的消 弧线圈还可以使用。 (2)应用:装在电网中变压器中性点的消弧线圈以及具有 直配线的发电机中性点的消弧线圈应采用过补偿方式。 (3)消弧线圈的装设位置:在发电厂发电机电压侧的消弧 线圈可装在发电机中性点上,也可以装在厂用变压器中 性点上,当发电机与变压器为单元接线时,消弧线圈应 装在变压器中性点上,6~10KV消弧线圈也可装在调相机 的中性点上。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、简述电网中性点接地方式有哪几种,各有何优缺点。

答:①中性点直接接地
1)设备和线路对地绝缘可以按相电压设计,从而降低了造价。

电压等级愈高,因绝缘降低的造价愈显著。

2)由于中性点直接接地系统在单相短路时须断开故障线路,中断用户供电,影响供电可靠性.
3)单相短路时短路电流很大,开关和保护装置必须完善。

4)由于较大的单相短路电流只在一相内通过,在三相导线周围将形成较强的单相磁场,对附近通信线路产生电磁干扰。

②中性点经消弧线圈接地
1)在发生单相接地故障时,可继续供电2小时,提高供电可靠性.
2)电气设备和线路的对地绝缘应按线电压考虑.
3)中性点经消弧线圈接地后,能有效地减少单相接地故障时接地处的电流,迅速熄灭接地处电弧,防止间歇性电弧接地时所产生的过电压,故广泛应用在不适合采用中性点不接地的以架空线路为主的3-60kV系统。

③中性点不接地
1)当发生金属性接地时,接地故障相对地电压为零。

2)中性点对地的电压上升到相电压,且与接地相的电源电压相位相反。

3)非故障相对地电压由相电压升高为线电压。

4)三相的线电压仍保持对称且大小不变,对电力用户接于线电压的设备的工作并无影响,无须立即中断对用户供电。

5)单相接地电流,等于正常运行时一相对地电容电流的三倍,为容性电流。

2,什么是计算负荷?确定计算负荷的目的是什么?
答:(1)根据已知的工厂的用电设备安装容量求取确定的,预期不变的最大假想负荷。

也就是通过负荷的统计运算求出的。

用来按发热条件选择供电系统中各个元件的负荷值,成为计算负荷。

(2)目的:计算负荷是用户供电系统结构设计,供电线路截面选择,变压器数量和容量选择,电气设备额定参数选择等的依据,合理地确定用户各级用电系统的计算负荷非常重要。

3,用什么方法进行计算负荷
需要系数法,附加系数法,二项式法等。

主要计算:Pc计算有功负荷,Qc无功计算负荷,Ic计算电流等。

4,在供电系统中提高功率因数的措施有哪些?
1、提高用户自然功率因数
2、无功补偿:1)就地补偿 2)集中补偿:分组集中补偿,高压集中补偿,低压集中补偿。

5主回路接线方式
有母线类:(1)单母线(2)双母线(3)单母线分段
无母线类:(4)桥形接线
1、单母线接线
优点:接线简单、清晰、操作方便、扩建容易;缺点:运行方式不灵活、供电可靠性差。

2、单母线分段接线
单母线分段接线就是将一段母线用断路器分为两段或多段优点:母线故障或检修时缩小停电范围;
缺点:当一段母线或母线隔离开关故障或检修时,必须断开该分段上的所有电源或出现,这样就减少了系统的发电量,并使该分段单回路供电的用户停电。

3、双母线接线
双母线接线就是将工作线、电源线和出线通过一台断路器和两组隔离开关连接到两组(一次/二次)母线上,且两组母线都是工作线,而每一回路都可通过母线联络断路器并列运行。

优点:(1)线或母线隔离开关,不至引起供电中断,(2)在工作母线发生故障时,通过备用母线能迅速恢复供电。

缺点:开关数目增多,连锁机构复杂,切换操作频繁,造价高,对用户供电系统不推荐。

4,桥型接线
优点:断路器和隔离开关台数少,其配电装置占地面积也小,能够满足变电所可靠性的要求,具有一定的运行灵活性。

缺点:变压器的切除和投入较复杂,需动作两台断路器,影响一回线路的暂时停运;桥连断路器检修时,两个回路需解列运行;出线断路器检修时,线路需较长时期停运。

6闸时的操作顺序
(1)断路器与隔离开关:先隔离开关后断路器
(2)母线隔离开关与线路隔离开关:先母线隔离开关后路隔离开关
7麽叫短路电流的力效应?为什麽要用短路冲击电流来计算?
答:(1)短路电流的力效应:三相载流导体水平敷设在同一平面上,三相短路电流流过各相导体时,根据两平行导体间同相电流力相吸,异相电流力相斥的原理,中间相受力最大。

(2)根据可知短路时情况最糟,影响最大,所以用短
路冲击电流来计算;
其额定电压要与供电电网的额定电压相同。

合适的类型:户内型、户外型。

应根据TV(电压互感器)的测量精度要求来确定二次侧允许接入的负荷。

4—1 什么是继电保护装置?供电系统对继电保护有哪些要求?答:继电保护装置是一种能反映供电系统中电气元件(电力线路、变压器、母线、用电设备等)发生故障或处于不正常运行状态、并动作于断路器跳闸或发出信号的自动装置。

继电保护装置由测量比较、逻辑判
断、执行输出三部分组成。

继电保护一般应满足可靠性、灵敏性、选择性和速动性4个基本要求。

相关文档
最新文档