(完整版)第三章Z变换(数字信号处理)

合集下载

数字信号处理(第三版)(高西全)第3章

数字信号处理(第三版)(高西全)第3章

。后面要讨论的频域采样理论将会
加深对这一关系的理解。我们知道,周期延拓序列频谱
完全由其离散傅里叶级数系数 X ( k ) 确定,因此,X(k) 实质上是x(n)的周期延拓序列x((n)) N的频谱特性,这就
是N点DFT的第二种物理解释(物理意义)。
第3章 离散傅里叶变换(DFT)
现在解释DFT[R4(n)]4=4δ(k)。根据DFT第二种物 理解释可知,DFT[R4(n)]4表示R4(n)以4为周期的周期
i 为整数 i 为整数
第3章 离散傅里叶变换(DFT)
所以,在变换区间上满足下式:
IDFT[X(k)]N=x(n) 0≤n≤N-1 由此可见,(3.1.2)式定义的离散傅里叶逆变换是唯一的。 【例3.1.1】 x(n)=R4(n), 求x(n)的4点和8点DFT。 解 设变换区间N=4,则
3 3 j 2π 4
X (k )
x ( n )W
n0
kn 4

e
n0
kn

1 e 1 e
j2 π k 2π 4
j
k
4 0
k 0 k 1, 2, 3
第3章 离散傅里叶变换(DFT)
设变换区间N=8,则
X (k )

7
x ( n )W 8 sin ( sin (
式中,a、b为常数,取N=max[N1, N2], 则y(n)的N点
DFT为 Y(k)=DFT[y(n)]N=aX1(k)+bX2(k) 0≤k≤N-1
X (k ) X ( z )
ze
j 2π N k
k 0,1, , N 1
(3.1.3)

第3章 离散傅里叶变换(DFT)

(完整word版)《数字信号处理》课程教学大纲

(完整word版)《数字信号处理》课程教学大纲

课程编号15102308《数字信号处理》教学大纲Digital Signal Processing一、课程基本信息二、本课程的性质、目的和任务《数字信号处理》课程是信息工程本科专业必修课,它是在学生学完了高等数学、概率论、线性代数、复变函数、信号与系统等课程后,进一步为学习专业知识打基础的课程。

本课程将通过讲课、练习使学生建立“数字信号处理”的基本概念,掌握数字信号处理基本分析方法和分析工具,为从事通信、信息或信号处理等方面的研究工作打下基础。

三、教学基本要求1、通过对本课程的教学,使学生系统地掌握数字信号处理的基本原理和基本分析方法,能建立基本的数字信号处理模型。

2、要求学生学会运用数字信号处理的两个主要工具:快速傅立叶变换(FFT)与数字滤波器,为后续数字技术方面课程的学习打下理论基础。

3、学生应具有初步的算法分析和运用MA TLAB编程的能力。

四、本课程与其他课程的联系与分工本课程的基础课程为《高等数学》、《概率论》、《线性代数》、《复变函数》、《信号与系统》等课程,同时又为《图像处理与模式识别》等课程的学习打下基础。

五、教学方法与手段教师讲授和学生自学相结合,讲练结合,采用多媒体教学手段为主,重点难点辅以板书。

六、考核方式与成绩评定办法本课程采用平时作业、期末考试综合评定的方法。

其中平时作业成绩占40%,期末考试成绩占60%。

七、使用教材及参考书目【使用教材】吴镇扬编,《数字信号处理》,高等教育出版社,2004年9月第一版。

【参考书目】1、姚天任,江太辉编,《数字信号处理》(第二版),华中科技大学出版社,2000年版。

2、程佩青著,《数字信号处理教程》(第二版),清华大学出版社出版,2001年版。

3、丁玉美,高西全编著,《数字信号处理》,西安电子科技大学出版社,2001年版。

4、胡广书编,《数字信号处理——理论、算法与实现》,清华大学出版社,2004年版。

5、Alan V. Oppenheim, Ronald W. Schafer,《Digital Signal Processing》,Prentice-Hall Inc, 1975.八、课程结构和学时分配九、教学内容绪论(1学时)【教学目标】1. 了解:什么是数字信号处理,与传统的模拟技术相比存在哪些特点。

(完整版)数字信号处理教程程佩青课后题答案

(完整版)数字信号处理教程程佩青课后题答案

第一章 离散时间信号与系统2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2(4)3 .已知 10,)1()(<<--=-a n u a n h n,通过直接计算卷积和的办法,试确定单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。

4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:)6()( )( )n 313si n()( )()873cos()( )(ππππ-==-=n j e n x c A n x b n A n x a分析:序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列,nmm m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 31 2 5 . 0 ) ( 01当 3 4n m nm m n n y n 2 2 5 . 0 ) ( 1⋅ = = - ≤ ∑ -∞ = - 当 aa a n y n a a an y n n h n x n y a n u a n h n u n x m m nnm mn -==->-==-≤=<<--==∑∑--∞=---∞=--1)(11)(1)(*)()(10,)1()()()(:1时当时当解①当=0/2ωπ整数,则周期为0/2ωπ;②;为为互素的整数)则周期、(有理数当 , 2 0Q Q P QP =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。

解:(1)0142/3πω=,周期为14 (2)062/13πω=,周期为6 (2)02/12πωπ=,不是周期的 7.(1)[][]12121212()()()()()()[()()]()()()()[()][()]T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+所以是线性的T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。

数字信号处理第三章

数字信号处理第三章

FS:~x (t)
X (k0 )e jk0t
k
(周期为T0
,Ω0
2
T0

对上式进行抽样,得:
(抽样间隔为T,s
2π ) T
~x(nT )
X~(k0 )e jk0nT
n
反 : x(nT ) 1 s / 2 X (e jT )e jnT d
s s / 2
---
时域抽样间隔为T ,
频域的周期为 s
2
T
注:DTFT反变换原式为 x(n) 1 X (e j )e jnd
2
根据关系
T 将变量换为
,并利用s
2
T
即得
x(nT ) 1 s / 2 X (e jT )e jnT d
jnk0T
s k0
又 0T
2
T0
T
0
2
s
2
N
这里 T Ω0 1 ,因此 T0 Ωs N
j 2 k
N 1
j 2 nk
X (e N ) x(nT)e N
n0
1 N 1
j 2 k
j 2 nk
x(nT)
X (e N )e N
N k0
x(nT ) 视作 n 的函数, x(nT ) x(n)
0 -0.5
-1 0
500
1000
1500
2000
2500
500
1000
1500
2000
2500
500
1000
1500
2000
2500
500
1000
1500
2000
2500
§ 3-3 周期序列的离散傅里叶级数 Discrete Fourier Series (DFS)

数字信号处理z变换公式表

数字信号处理z变换公式表

数字信号处理z变换公式表序号变换名称公式。

1双边Z变换定义X(z)=∑_n = -∞^∞x(n)z^-n,收敛域为R_x -<| z|2单边Z变换定义(因果序列)X(z)=∑_n = 0^∞x(n)z^-n,收敛域为| z| > R_x -3Z变换的线性性质若x_1(n)↔ X_1(z),R_1 -<| z|,x_2(n)↔ X_2(z),R_2 -<| z|,则ax_1(n)+bx_2(n)↔ aX_1(z)+bX_2(z),收敛域为R_ -<| z|,其中R_ -=max(R_1 -,R_2 -),R_ +=min(R_1 +,R_2 +)4序列的移位(双边Z变换)若x(n)↔ X(z),R_x -<| z|,则x(n - m)↔ z^-mX(z),收敛域为R_x -<| z|(m为整数)5序列的移位(单边Z变换)若x(n)↔ X(z),则x(n - m)u(n)↔ z^-mX(z)+∑_k =0^m - 1x(k - m)z^-k(m>0),收敛域为| z| > R_x -6Z域尺度变换(乘以指数序列)若x(n)↔ X(z),R_x -<| z|,则a^nx(n)↔X((z)/(a)),收敛域为| a| R_x -<| z|<| a| R_x +(a≠0)7序列的线性加权(Z域求导)若x(n)↔ X(z),R_x -<| z|,则nx(n)↔ -z(dX(z))/(dz),收敛域为R_x -<| z|8序列的反褶若x(n)↔ X(z),R_x -<| z|,则x(-n)↔ X((1)/(z)),收敛域为(1)/(R_x +)<| z|<(1)/(R_x -)9卷积定理(双边Z变换)若x_1(n)↔ X_1(z),R_1 -<| z|,x_2(n)↔ X_2(z),R_2 -<| z|,则x_1(n)*x_2(n)↔ X_1(z)X_2(z),收敛域为R_ -<| z|,其中R_ -=max(R_1 -,R_2 -),R_ +=min(R_1 +,R_2 +)10卷积定理(单边Z变换)设x_1(n)和x_2(n)为因果序列,x_1(n)↔ X_1(z),x_2(n)↔ X_2(z),则x_1(n)*x_2(n)↔ X_1(z)X_2(z),收敛域为| z| >max(R_1 -,R_2 -)11初值定理(因果序列)若x(n)是因果序列,x(n)↔ X(z),则x(0)=lim_z→∞X(z)12终值定理(因果序列,X(z)的极点在单位圆内,最多在z = 1处有一阶极点)若x(n)是因果序列,x(n)↔ X(z),则lim_n→∞x(n)=lim_z→1(z - 1)X(z)。

数字信号处理3z变换的基本性质与定理

数字信号处理3z变换的基本性质与定理

dz
dz n
n
dz
x(n)(n)zn1 z1 nx(n)zn
n
n
z1ZT [nx(n)]
ZT [nx(n)] z dX (z) dz
Rx z Rx
课件
6
5、共轭序列
若 ZT [x(n)] X (z) Rx z Rx 则 ZT [x*(n)] X *(z* ) Rx z Rx
n
n
x(n)( z 1 ) n
n
X
1 z
1
1
1
Rx
z
Rx
Rx
z
Rx
课件
8
7、初值定理
对于因果序列x(n),有 lim X (z) x(0)
z
证:因为x(n)为因果序列
X (z) x(n)zn x(n)zn
n
n0
x(0) x(1)z1 x(2)z2 K
lim X (z) x(0) z
课件
15
例:已知LSI系统的单位抽样响应:
h(n) bnu(n) abn1u(n 1),
求系统输入x(n) anu(n)的响应。 解:X (z) ZT [x(n)] ZT [anu(n)] z
za
za
H (z) ZT [h(n)] ZT [bnu(n) abn1u(n 1)]
ZT [bnu(n)] aZT [bn1u(n 1)]
则 ZT [nx(n)] z d X (z)
dz
Rx z Rx
同理: ZT [n2 x(n)] ZT [n nx(n)]
z d {ZT[nx(n)]} dz
z
d dz
z
dX (z) dz
课件
5

数字信号处理-z变换与离散时间傅立叶变换(DTFT)

数字信号处理-z变换与离散时间傅立叶变换(DTFT)
离散时间系统
N a i y i ( n ) T a i xi ( n ) i 1 i 1
N
9
4.移不变系统
——系统的响应与激励施加于系统的时刻无关
x ( n)
移位m
T[ ]
T [ x(n m)]
x ( n)
T[ ]
移位m
y ( n m)
10
5.单位抽样响应与卷积和
序列x(n)的Fourier反变换定义:
a<-1
0<a<1
-1<a<0
a=1
a=-1
7
5.复指数序列 x(n) Ca n
x(n) C a n cos(0 n ) j sin( 0 n )
|a|=1
C C e j a a e j0
|a|>1
|a|<1
8
3.线性系统
——满足叠加原理(可加性、比例性)
15
1.1 z变换的定义
序列x(n)的Z变换定义为:
X ( z) Z x(n) x(n) z
n

n
Z是复变量,所在的平面称为Z平面
16
1.2 z变换的收敛域
对于任意给定的序列x(n),使其Z变换X(z)收敛的所有z值
的集合称为X(z)的收敛域(Region of convergence,ROC)。
=X (e
jT
ˆ ( j ) ) X a
抽样序列在单位圆上的z变换=其理想抽样信号的傅里叶变换
52
第五节 序列的傅立叶变换(DTFT)
5.1 序列的傅立叶变换定义
序列x(n)的Fourier变换定义:
X (e ) DTFT [ x(n)]

[数字信号处理]序列的z变换

[数字信号处理]序列的z变换

[数字信号处理]序列的z 变换序列的z 变换z 变换的定义z 变换的定义如下X (z )=∞∑n =−∞x (n )z −n其中z =e j ω,是⼀个复数.在复平⾯上,z 相当于单位圆上的⼀点.典型序列的z 变换单位脉冲序列的z 变换求序列δ(n )的z 变换X (z )=∞∑n =−∞δ(n )z −n =δ(0)z 0=1,0<|z |<∞最后的⼀句话是收敛域阶越序列的z 变换求序列u (n )的z 变换X (z )=∞∑n =−∞u (n )z −n =n =∞∑n =0z −n =11−z −1,|z |>1矩形序列的z 变换求序列R 4(n )的z 变换X (n )=∞∑n =∞R 4(n )z −n =3∑n =0z −n =1+z −1+z −2+z −3=1−z −41−z −1,0<|z |<∞收敛域z 变换的性质线性设x 1(n )的z 变换是X 1(z )x 2(n )的z 变换是X 2(z )如果x 3(n )=ax 1(n )+bx 2(n )那么X 3(z )=aX 1(z )+bX 2(z )X 3(z )的收敛域为X 1(z )的收敛域和X 2(z )的收敛域的交集移位性质双边序列x (n )为双边序列时设x (n )的z 变换是X (z )则x (n +n 0)的z 变换是z n 0X (z )序列移位不会改变z 变换的收敛域右边序列右移公式x (n )为右边序列设x (n )的z 变换是X (z )x (n −1)的z 变换是z −1X (z )+x (−1)x (n −2)的z 变换是z −2X (z )+z −1x (−1)+x (−2)如此类推右边序列左移公式x (n )为右边序列设x (n )的z 变换是X (z )x (n +1)的z 变换是z 1X (z )−x (1)x (n +2)的z 变换是z 2X (z )−z 1x (1)−x (2)如此类推序列乘实指数序列设x (n )的z 变换是X (z )y (n )=a n x (n )的z 变换Y (z )=X (a −1z )复共轭序列的z 变换设x (n )的z 变换是X (z )则x ∗(n )的z 变换是X ∗(z ∗)初值定理设x (n )的z 变换是X (z )则x (0)=lim终值定理设x(n)的z 变换是X(z) \\则x(\infty)=\lim_{z->1}(z-1)X(z)序列类型收敛域有限长序列$0<右边序列$左边序列$双边序列$R_{x-}<Loading [MathJax]/jax/element/mml/optable/BasicLatin.js帕斯维尔定理(能量定理)时域总能量等于z域总能量(能量守恒)E=\sum_{n=-\infty}^{\infty}|x(n)|^2=\frac{1}{2\pi}\int_{-\pi}^{\pi}|X(e^{j\omega})|^2d\omega。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对比序列的傅里叶变换定义, 很容易得到FT和ZT 之间的关系, 用下式表示:
X (e j ) X (z) ze j
(3.4)
第三章 序列的Z变换
式中z=e jω表示在z平面上r=1的圆, 该圆称为单位圆。 (3.4)式表明单位圆上的Z变换就是序列的傅里叶变换。 如果已知序列的Z变换, 可用(3.4)式, 很方便的求出 序列的FT, 条件是收敛域中包含单位圆。
第三章 序列的Z变换
3.2 序列特性对收敛域的影响
序列的特性决定其Z变换收敛域。
1. 有限长序列
如序列x(n)满足下式:
x(n) x(n)=
n1≤n≤n2
0
其它
第三章 序列的Z变换
即序列x(n)从n1到n2序列值不全为零, 此范围之 外序列值为零, 这样的序列称为有限长序列。 其Z
变换为
n2
X (z) x(n)zn
Z R 时收敛 因此左序列的收敛域是半径为R+的圆内区域
第三章 序列的Z变换
例 3.4求x(n)=-anu(-n-1)的Z变换及其收敛域。
1
X (z)
anu(n 1)zn
n
n
anzn
n1
anzn
X(z)存在要求|a-1 z|<1, 即收敛域为|z|<|a|
X
(z)
a 1 z 1 a1z
n0
(3.2)
第三章 序列的Z变换
这种单边Z变换的求和限是从零到无限大, 因此对于因 果序列, 用两种Z变换定义计算出的结果是一样的。 本书中如不另外说明, 均用双边Z变换对信号进行分 析和变换。
(3.1)式Z变换存在的条件是等号右边级数收敛, 要 求级数绝对可和, 即
x(n)zn
(3.3)
n2
X (z) x(n)zn
n
第三章 序列的Z变换
当 n2≤0
n2
n2
n2
X (Z ) x(n)Z n x(n)Z n x(n) Rn
n
n
n
当 n2>0
n2
0
n2
x(n)Z n x(n)Z n x(n)Z n
n
n
n 1
第二项为有限长序列, 在整个Z平面收敛( z=∞点 不收敛)。 第一项根据前式的论述,当
n1<0, n2>0时, 0<z<∞
n1≥0, n2>0时, 0<z≤∞
例 3.2求x(n)=RN(n)的Z变换及其收敛域
解:
X (z)
n
N 1
RN (n)zn
n0
zn
1 zN 1 z1
这是一个因果的有限长序列, 因此收敛域为0<z≤∞。 但由结果的分母可以看出似乎z=1是X(z)的极点, 但同时分子多项式在z=1时也有一个零点, 极零点 对消, X(z)在单位圆上仍存在, 求RN(n)的FT, 可 将z=ejω代入X(z)得到, 其结果和例题2.2.1中的结果 (2.3.5)公式是相同的。
1
x(n)Z n x(n)Z n x(n)Z n
nn1
nn1
n0
第一项为有限长序列, 设n1≤-1, 其收敛域为0≤|z|< ∞。 第二项为因果序列, 其收敛域为Rx-<|z|≤∞, Rx是第二项最小的收敛半径。 将两收敛域相与, 其收 敛域为Rx- <|z|<∞。 如果x(n)是因果序列, 收敛域定为Rx- <|z|≤∞。 推论:如序列x(n)的Z变换的收敛域包含∞点,则x(n) 是因果序列
第三章 序列的Z变换
2. 右序列
右序列是在n≥n1时,序列值不全为零,而其它n<n1,序 列值全为零。
X (Z) x(n)Z n nn1
ROC: 分析:
Z Rx
当 n1 ≥0时
X (Z) x(n)Z n x(n)Z n x(n) Rn
nn1
nn1
nn1
第三章 序列的Z变换
nn1
设x(n)为有界序列, 由于是有限项求和, 除0与∞
两点是否收敛与n1、 n2取值情况有关外, 整个z平面均 收敛。 如果n1<0, 则收敛域不包括∞点; 如n2>0, 则 收敛域不包括z=0点; 如果是因果序列, 收敛域包括
z=∞点。 具体有限长序列的收敛域表示如下:
第三章 序列的Z变换
n1<0, n2≤0时, 0≤z<∞
例 3.1 x(n)=u(n), 求其Z变换。
解:
X (z)
u(n)zn zn
n
n0
X(z)存在的条件是|z-1|<1, 因此收敛域为|z|>1,
X
ห้องสมุดไป่ตู้
(
z)
1
1 z
1
|z|>1
第三章 序列的Z变换
由x(z)表达式表明, 极点是z=1, 单位圆上的Z变 换不存在, 或者说收敛域不包含单位圆。 因此其傅里 叶变换不存在, 更不能用(3.4)式求FT。 该序列的FT不 存在, 但如果引进奇异函数δ(ω), 其傅里叶变换可以 表示出来(见表2.3.2)。 该例同时说明一个序列的傅里 叶变换不存在, 在一定收敛域内Z变换是存在的。
第三章 序列的Z变换
例 3.3求x(n)=anu(n)的Z变换及其收敛域
解:
X (z)
n
anu(n)zn
n0
anzn
1 1 azn
在收敛域中必须满足|az-1|<1, 因此收敛域为|z|>|a|。
3. 左序列
左序列是在n≤n2时, 序列值不全为零, 而在n>n2, 序列值全为零的序列。 左序列的Z变换表示为
n
使(3.3)式成立, Z变量取值的域称为收敛域。 一
般收敛域用环状域表示
Rx z Rx
第三章 序列的Z变换 图 3.1 Z变换的收敛域
第三章 序列的Z变换
常用的Z变换是一个有理函数, 用两个多项式之比表示
X (z) P(z) Q(z)
分子多项式P(z)的根是X(z)的零点, 分母多项式 Q(z)的根是X(z)的极点。 在极点处Z变换不存在, 因 此收敛域中没有极点, 收敛域总是用极点限定其边界。
1 1 az1
,
z a
第三章 序列的Z变换
4. 双边序列
一个双边序列可以看作一个左序列和一个右序列
之和, 其Z变换表示为
X (z)
x(n)zn X1(z) X2(z)
n
X1(z)
x(n) z n ,
n1
0 Z Rx
X 2(z)
第三章 序列的Z变换
3 序列的Z变换
3.1 Z变换的定义
序列x(n)的Z变换定义为
X (z) x(n)zn
(3.1)
n
式中z是一个复变量, 它所在的复平面称为z平面。 注 意在定义中, 对n求和是在±∞之间求和, 可以称为双 边Z变换。 还有一种称为单边Z变换的定义, 如下式
X (z) x(n)zn
相关文档
最新文档