2013年沈阳工业大学考博真题高等运筹学
运筹学题库60题带答案

目录Chapter 2 Linear programming (2)Solution: (4)Chapter 3 Simplex (6)Solution: (7)Chapter 4 Sensitivity Analysis and duality (11)Solution: (14)Chapter 5 Network (18)Solution: (20)Chapter 6 Integer Programming (23)Solution: (25)Chapter 7 Nonlinear Programming (28)Solution: (28)Chapter 8 Decision making under uncertainty (29)Solution: (31)Chapter 9 Game theory (34)Solution: (36)Chapter 10 Markov chains (39)Solution: (41)Chapter 11 Deterministic dynamic programming (43)Solution: (43)Expanded Projects (44)Chapter 2 Linear programming1. A firm manufactures chicken feed by mixing three different ingredients. Eachingredien t contains three key nutrients protein, fat and vitamin. The amount of each nutrient contained in 1 kilogram of the three basic ingredients is summarized in the following table:Ingredient Protein(grams)F at(grams)Vitamin(units)12511235245101603327190The costs per kilogram of Ingredients 1, 2, and 3 are $0.55, $0.42 and $0.38, respectively. Each kilogram of the feed must contain at least 35 grams of protein, a minimum of 8 grams of fat and a maximum of 10 grams of fat and at least 200 units of vitamin s. Formulate a linear programming model for finding the feed mix that has the minimum cost per kilogram.2.For a supermarket, the following clerks are required:Days Min. number of clerksMon 20T ue16Wed13Th u16F ri19Sat14Sun12Each clerk works 5 consecutive days per week and may start working on Monday, Wednesday or Friday.The objective is to find the smallest number of clerks required to comply with the above requirements. Formulate the problem as a linear programming model.3.Consider the following LP problem:12121212126841634243412,0MaxZ x x Subject tox x x x x x x x =++≤+≤-≤≥ (a) Sketch the feasible region.(b) Find two alternative optimal extreme (corner) points.(c) Find an infinite set of optimal solutions.4. A power plant has three thermal generators. The generators’ generation costsare $36/MW, $30/MW, and $25/MW, respectively. The output limitation for the generators is shown in the table. Some moment, the power demand for thisplant is 360MW, please set up an LP optimization model and find out the optimal output for each generator (with lowest operation cost).5. Use the Graphical Solution to find the optimal solutions to the following LP:12121212max 4.. 36 20 ,0z x x s t x x x x x x =-++≤-+≤≥Solution :1. Let x 1 = the amoun t of Ingredien t 1 mixed in 1 kilogram of thechicken feedx 2 = the amoun t of Ingredien t 2 mixed in 1 kilogram of the chicken feedx 3 = the amoun t of Ingredien t 3 mixed in 1 kilogram of the chicken feedThe LP model is:1231231231231231231230.550.420.382545323511107811107102351601902001,,0Min Z x x x Subject tox x x x x x x x x x x x x x x x x x =++++≥++≥++≤++≥++=≥2.Let x1 = number of clerks start working on Mondayx2 =number of clerks start working on Wednesday x3 =number of clerks start working on Friday The LP model is:12313131212123232312320161316191412,,0Min Z x x x Subject tox x x x x x x x x x x x x x x x x x =+++≥+≥+≥+≥++≥+≥+≥≥3. (a)(b) The t w o alternativ e optimal extreme points are (4, 3) and (6,3/2 ). (c) The infinite set of optimal solutions: {λ(4, 3) + (1 − λ)(6,3/2) : 0 ≤ λ ≤ 14. Model:123123111123max 363025.. 360 5020050150 50150 ,,0z x x x s t x x x x x x x x x =++++=≤≤≤≤≤≤≥Solution:x 1=60(MW); x 2=150(MW); x 3=150(MW)5. According to the figure, the solution is: x 1=0; x 2=0Chapter 3 Simplex1. Show that if ties are broken in favor of lower-numbered rows, then cyclingoccurs when the simplex method is used to solve the following LP: 123123412341234369920/32/3099210(1,2,3,4)i Max Z x x x Subject tox x x x x x x x x x x x x i =-+-+--≤+--≤--++≤≥= 2. Use the simplex algorithm to find two optimal solutions to the following LP:123123123123max 53.. 36 53615 ,,0z x x x s t x x x x x x x x x =++++≤++≤≥3. Use the Big M method to find the optimal solution to the following LP:1212121212max 5.. 26 4 25 ,0z x x s t x x x x x x x x =-+=+≤+≤≥4. Use the simplex algorithm to find two optimal solutions to the following LP .123123123123max 53.. 3653615 ,,0z x x x s t x x x x x x x x x =++++≤++≤≥5. For a linear programming problem:1212121234241232850(1,2)i Max Z x x Subject tox x x x x x x i =++≤+≤+≤≥= Find the optimal solution using the simplex algorithm.Solution:1.Here are the pivots:BV={S1,S2,S3}.BV={X2,S2,S3}.We now enter X3 into the basis in Row 2.BV={X2,X3,S3}.We now enter X4 into the basis in Row 1.BV={X4,X3,S3}.X1 now enters basis in Row 2.BV={X4,X1,S3}.We now choose to enter S1 in Row 1.BV={S1,X1,S3}.S2 would now enter basis in Row 2. This will bring us back to the initial tableau, so cycling has occurred. 2. Standard form:1231231123212312max 53.. 36 53615 ,,,,0z x x x s t x x x s x x x s x x x s s =+++++=+++=≥Tableau:So: z=15; x 1=3 ; x 2=0;x 3=03. Standard form:12121211221212max 5.. 26 4 25 ,,,0z x x s t x x x x s x x s x x s s =-+=++=++=≥=>12112112112212121max 5.. 26 4 25 ,,,,0z x x a M s t x x a x x s x x s x x s s a =--++=++=++=≥ Tableau: => => So, the solution is z=15, x 1=3, x 2=04. Standard form:1231231123212312max 53.. 36 53615 ,,,,0z x x x s t x x x s x x x s x x x s s =+++++=+++=≥So, the solution is z=15,x 1=0,x 2=5 or z=15,x 1=3,x 2=0 5. Optimal solution:Chapter 4 Sensitivity Analysis and duality1. Consider the following linear program (LP):1212232420(1,2)i Max Z x x Subject tox x x x i =++≤≤≥=(a). De termin e the shadow price for b 2, the right-hand side of the constrai n t x 2 ≤ b 2. (b). De t e rmin e th e allowable r ange to s tay optimal for c 1, the co e ffic i e n t of x 1 in theob jec tiv e function Z = c 1x 1 + 3x 2.(c). De termin e the allowable range to stay feasible for b 1, th e right-hand side of theconstrai n t 2x 1 + x 2 ≤ b 1.2. There is a LP model as following,1212121234524123280(1,2)i Max Z x x Subject tox x x x x x x i =++≤+≤+≤≥= The optimal simplex tableau is1) Give the dual problem of the primal problem.2) If C2 increases from 4 to 5, will the optimal solution change? Why? 3) If b2 changes from 12 to 15, will the optimal solution change? Why? 3. There is a LP model as following12312312312236222333280(1,2)j Min Z x x x Subject tox x x x x x x x x j =++++≥-++≤-+≤≥= 1) give its dual problem.2) Use the graphical solution to solve the dual problem.4. You have a constraint that limits the amount of labor available to 40 hours perweek. If your shadow price is $10/hour for the labor constraint, and the market price for the labor is $11/hour. Should you pay to obtain additional labor? 5. Consider the following LP model of a production plan of tables and chairs:Max 3T + 2C (profit) Subject to the constraints:2T + C ≤100 (carpentry hrs) T + C ≤80 (painting hrs)T ≤ 40T, C ≥ 0 (non-negativity)1) Draw the feasible region. 2) Find the optimal solution.3)Does the optimal solution change if the profit contribution for tables changed from $3 to $4 per table?4) What if painting hours available changed from 80 to 100?6. For a linear programming problem:11221212121234524123280(1,2)i Max Z c x c x x x Subject tox x x x x x x i =+=++≤+≤+≤≥=Suppose C2 rising from 4 to 5, if the optimal solution will change? Explain the reason. 7. For a linear programming problem:112212121221234524123280(1,2)i Max Z c x c x x x Subject tox x x x b x x x i =+=++≤+≤=+≤≥=Suppose b2 rising from 12 to 15, if the optimal solution will change? Explain thereason.8. For a linear programming problem:112212121221234524123280(1,2)i Max Z c x c x x x Subject tox x x x b x x x i =+=++≤+≤=+≤≥=Calculate the shadow price of all of the three constraints. 9.1) Use the simplex algorithm to find the optimal solution to the model below(10 points)1212125231250(1,2)i Max Z x x Subject tox x x x x i =++≤+≤≥=2) For which objective function coefficient value ranges of x 1 and x 2 does thesolution remain optimal? (10 points) 3) Find the dual of the model; (5 points)4) Find the shadow prices of constraints. (5 points)5) If x1 and x2 are all integers, using the branch-and-bound to solve it.( 15points)10. A factory is going to produce Products I, II and III by using raw materials A and B.1) Please arrange production plan to make the profit maximization. (15) 2) Write the dual problem of the primal problem. (5)3) If one more kg of raw material A is available, how much the total profit will be increased? (5) 4) If the profit of product II changes from 1 to 2,will the optimal solution change? (5)Solution :1.(a) T h e shadow pr ic e for b 2 is 2.5. Replace th e constrai n t x 2 ≤ 2 by the constrain t x 2 ≤ 3.The new optimal solution is (x 1, x 2) = (0.5, 3) with Z = 9.5. Thus, a unit increas e in b 2 leads t o a 2.5 unit increase in Z .(b) The all o wabl e range to s tay optimal i s 0 ≤ c 1 ≤ 6. The ob j e ctiv e fun c t ion Z =c 1x 1 + 3x 2 is p arall e l to th e c on s tr ain t boundary equation 2x 1 + x 2 = 4 when c 1 = 6. The ob j e ctiv e function Z = c 1x 1 + 3x 2 is parallel to t he c on s tr ain t boundary equation x 2 = 2 wh e n c 1 = 0.(c) T h e allowable range to stay feasible is 2 ≤ b 1 < ∞. The righ t -h and sideb 1 can b e decreased un t il thec on s tr ain t boundary e qu ation 2x 1 + x 2 = 4 intersects th e solution (x 1, x 2) = (0, 2). This occurs when b 1 = 2. T h e right-hand side b 1 can b e in c r e ase d w i thou t i nte r s ec t ing a s olu tion .2.1) the dual problem:123123123125128..233424,0Min w y y y S ty y y y y y y y =++++≥++≥≥2) when C2 changes from 4 to 5, the optimal basic variable will not change, because the coefficient of the nonbasic variable remain positive.3) when b2 changes from 12 to 15, the optimal basic variable will not change. 3.1) the dual problem of the primal problem is :121212121223..222336,0Max w y y S ty y y y y y y y =--≤+≤+≤≥ 2) using the graphical solution, the optimal solution of the dual problem is: w= 19/5, y1=8/5, y2=-1/5.4. No. If you obtain one additional labor, you should pay $11. But by the shadowprice, you can only earn $10. So we should not pay to obtain additional labor. 5.2) The optimal solution is T=20, C=60 and the maximum profit is 180.3) If the profit contribution for tables changed from $3 to $4 per table, therewill be two optimal solutions, says T=20, C=60 and T=40, C=20, and the maximum profit is 200.4) Because painting hrs is a constraint condition for T=20, C=60, so theoptimal solution will change. The new optimal solution is T=0, C=100, and the maximum profit is 200.6. Parameter is calculated below:1212311211[,,][,][0,4,3][0,0]11104202311/81/403/81/401/41/2111240320001001BV NBV s j BV NBVBV s x x NBV s s C C B B a a a N c c B N c --====⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦--⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦=-If c2 rising from 4 to 5, then ,and >0,so the optimal solution will not change.7. If b2 rising from 12 to 15, every element of =[9/8,29/8,1/4] is large thenzero,so the optimal solution will not change. 8. Shadow price is calculated by 。
最新运筹学试题及答案(共两套)

运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。
每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3) B.(3, 4, 0, 0)C.(2, 0, 1, 0) D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。
2015-2016名校运筹学考研考博试题存储论题目解析

1 2
1 2
1 C*Q + C*(Q─R) + C*(Q─2R) C*(Q─(n-1)R) 2
又因为 Q=nR,那么 C*(Q─(n-1)R)=C*R 依此类推,可得
1 C*Q + C*(Q─R) + C*(Q─2R) C*(Q─(n-1)R) 2
= C*nR+ C*(n─1)R C*R
分析:此题没有课本上的现成公式照搬。订货量与存储量变化情况图 如下。
R R Q R R n 个月
设两次订货之间的间隔期为 n 个月,Q 为每次订购批量。 n 个月只订货一次,订购费为 V 元。 每月需求量为 R,n 个月后库存量为 0,则有等式 Q=nR; 开始的订购批量为 Q,半个月后降为 Q─R; 所以,前 15 天的存储费为 C*Q(因存储费为每件每月 C 元,所以 半个月每件 C 元) 。 之后从本月的 15 号到下月的 15 号一个月时间内,存储量为 Q─R, 存储费为 C*(Q─R)元(注意:此处时间是一个月,需求不是连续型 的,只在每月 15 日一天发生,可看作瞬时发生) 。 因此,n 个月的订购费和存储费之和为 V+
有n=
2V 2VR ,Q = nR = CR C
3(北京航空航天大学 2014 年考研试题)已知某产品的月需求量为 75 件,该产品可从 A 公司或 B 公司购买,但这两个公司分别提供不同 的数量价格折扣,如下表所示。
公司 A 数量 1-99 100-399 >399 价格(元) 15.00 12.00 10.00 数量 1-49 50-299 >299 公司 B 价格(元) 16 13 11
2C3 R 2 25 2000 = =100 件 0.2 50 C1
运筹学期末试题及答案4套

《运筹学》试卷一一、(15分)用图解法求解下列线性规划问题二、(20分)下表为某求极大值线性规划问题的初始单纯形表及迭代后的表,、为松弛变量,试求表中到的值及各变量下标到的值。
三、(15分)用图解法求解矩阵对策,其中四、(20分)(1)某项工程由8个工序组成,各工序之间的关系为试画出该工程的网络图。
(2)试计算下面工程网络图中各事项发生的最早、最迟时间及关键线路(箭线下的数字是完成该工序的所需时间,单位:天)五、(15分)已知线性规划问题其对偶问题最优解为,试根据对偶理论求原问题的最优解。
六、(15分)用动态规划法求解下面问题:七、(30分)已知线性规划问题用单纯形法求得最优单纯形表如下,试分析在下列各种条件单独变化的情况下,最优解将如何变化。
(1)目标函数变为;(2)约束条件右端项由变为;(3)增加一个新的约束:八、(20分)某地区有A、B、C三个化肥厂向甲、乙、丙、丁四个销地供应同一种化肥,已知产地产量、销地需求量和各产地运往不同销地单位运价如下表,试用最小元素法确定初始调运方案,并调整求最优运输方案《运筹学》试卷二一、(20分)已知线性规划问题:(a)写出其对偶问题;(b)用图解法求对偶问题的解;(c)利用(b)的结果及对偶性质求原问题的解。
二、(20分)已知运输表如下:25 225(1)用最小元素法确定初始调运方案;(2)确定最优运输方案及最低运费。
三、(35分)设线性规划问题maxZ=2x1+x2+5x3+6x4的最优单纯形表为下表所示:利用该表求下列问题:(1)要使最优基保持不变,C 3应控制在什么范围;(2)要使最优基保持不变,第一个约束条件的常数项b 1应控制在什么范围; (3)当约束条件中x 1的系数变为 时,最优解有什么变化;(4)如果再增加一个约束条件3x 1+2x 2+x 3+3x 4≤14,最优解有什么变化。
工问指派哪个人去完成哪项工作,可使总的消耗时间最小?五、(20分)用图解法求解矩阵对象G=(S 1,S 2,A),其中六、(20分)已知资料如下表:(1)绘制网络图;(2)确定关键路线,求出完工工期。
最新(整理)《运筹学》期末考试试题及参考答案

(整理)《运筹学》期末考试试题及参考答案------------------------------------------作者xxxx------------------------------------------日期xxxx《运筹学》试题参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为 可行解 。
2、在线性规划问题中,图解法适合用于处理 变量 为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是 设立虚供地或虚需求点,化为供求平衡的标准形式 。
4、在图论中,称 无圈的 连通图为树。
5、运输问题中求初始基本可行解的方法通常有 最小费用法 、 西北角法 两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题: 1)max z = 6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x , 解:此题在“《运筹学》复习参考资料。
do c”中已有,不再重复. 2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺⑴⑵ ⑶ ⑷ ⑸、⑹可行解域为ab cda,最优解为b 点。
由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫ ⎝⎛21x x =(11,0)T∴m in z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:A B C 甲 9 4 3 70 乙 4 6 10 1203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解.(10分) 解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z是产品售后的总利润,则m ax z =70x 1+120x 2s .t 。
(整理)《运筹学》期末考试试题及参考答案

-------------《运筹学》试题参考答案一、填空题(每空 2 分,共 10 分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。
2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。
4、在图论中,称无圈的连通图为树。
5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。
二、(每小题 5 分,共 10 分)用图解法求解下列线性规划问题:1)max z = 6x1+4x2⑴2x1x2 10 ⑵x1x28 ⑶x27 ⑷x1,x20 ⑸、⑹《运筹学》复习参考资料解:此题在“.doc”中已有,不再重复。
2)min z =-3x1+2x2⑴2x14x222 ⑵x14x210 ⑶2x1x27 ⑷x1 3x2 1 ⑸x1 , x20 ⑹、⑺解:--------------------------可行解域为 abcda,最优解为 b 点。
2 x1 4x222由方程组解出 x1=11,x2=0x20∴X* = x1 =(11,0)T x2∴min z =-3×11+2×0=-33三、(15 分)某厂生产甲、乙两种产品,这两种产品均需要 A 、B、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:A B C甲94370乙4610 1203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5 分)--------------------------2)用单纯形法求该问题的最优解。
(10 分)解: 1)建立线性规划数学模型:设甲、乙产品的生产数量应为x1、x2,则 x1、x2≥0,设 z 是产品售后的总利润,则max z =70x1+120x2s.t.9 x1 4 x23604 x1 6 x22003 x110 x2300x1, x202)用单纯形法求最优解:加入松弛变量 x3,x4,x5,得到等效的标准模型:max z =70x1+120x2+0 x3+0 x4+0 x5s.t.9 x14x2x33604 x16x2x42003 x110x2x5300x j0, j1,2,...,5列表计算如下:--------------------------70120000θ LC B X B bx 1x2x3x4x5 0x3 3609410090 0x420046010100/3 0x5 3003(10)001300000070120↑000 0x3 24039/5 010- 2/5 400/13 0x4 20(11/5 )001- 3/5 100/11 120x2303/10 1 001/1010036120001234↑000-12 0x3 1860/11001-39/11 19/1170 x1100/111005/11- 3/11120x2300/11010- 3/22 2/1143000701200170/11 30/1111000-170/11 -30/11∴X*=( 100 , 300 , 1860,0,0)T11 11 11∴max z =70×100 +120×300 = 4300011 11 11四、(10 分)用大M法或对偶单纯形法求解如下线性规划模型:min z =5x1+2x2+4x33x1x22x3 46x13x25x310x1 , x2 , x30--------------------------解:用大 M 法,先化为等效的标准模型:max z/ =-5x1-2x2-4x3s.t.3x1x22x3 x4 46x13x25x3x5 10y j0, j 1,2,...,5增加人工变量 x6、x7,得到:max z/ =-5x1-2x2-4x3-M x6-M x7 s.t3x1x22x3 x4x6 46x13x25x3x5x7 10x j0, j 1,2,...,7大 M 法单纯形表求解过程如下:--------------------------C B X B -M x6 -M x7-5 x1-M x7-5 x10x4-5 x1-2 x2b- 5-2 - 400-M-Mx1x2x3x4x5x6x7θ L 4(3)12-1 010 4/3106350- 1 0 15/3 -9M- 4M-7MM M-M-M↑4M-2 7M-4-M -M 00 9M-54/311/3 2/3- 1/301/30 ——2011(2)-1 - 2 1 1- 5-M-5/3 -M-10/3 -2 M +5/3M 2M - 5/3- M0M-1/3 M-2/3 2M -5/3 ↑-M - 3M +5/30 5/311/2 5/60-1/6 01/610/3 10(1/2 )1/21-1/2 - 11/22- 5- 5/2 - 25/605/6 0-5/601/2 ↑1/60-5/6 - M-M +5/6 2/3101/3-1 1/3 1-1/320112- 1 - 2 1- 22- 5-2 - 11/311/3 - 1-1/3300-1/3 -1 -1/3 -M +1- M +1/3 2∴x* =(3,2,0,0,0)T最优目标函数值min z =-max z/ =-(-22)= 223 3--------------------------五、(15 分)给定下列运输问题:(表中数据为产地 A i 到销地 Bj 的单位运费)B1 B2 B3 B4 siA 1 1 2 3 4 10A 2 8 7 6 5 80A 3 9 10 11 9 15d j8 22 12 181)用最小费用法求初始运输方案,并写出相应的总运费;(5 分)2)用 1)得到的基本可行解,继续迭代求该问题的最优解。
《运筹学》期末考试试题及参考答案
《运筹学》期末考试试题及参考答案《运筹学》期末考试试题及参考答案一、填空题1、运筹学是一门新兴的_________学科,它运用_________方法,研究有关_________的一切可能答案。
2、运筹学包括的内容有_______、、、_______、和。
3、对于一个线性规划问题,如果其目标函数的最优解在某个整数约束条件的约束范围内,那么该最优解是一个_______。
二、选择题1、下列哪一项不是运筹学的研究对象?( ) A. 背包问题 B. 生产组织问题 C. 信号传输问题 D. 原子核物理学2、以下哪一个不是运筹学问题的基本特征?( ) A. 唯一性 B. 现实性 C. 有解性 D. 确定性三、解答题1、请简述运筹学在日常生活中的应用实例,并就其中一个进行详细说明。
2、某企业生产三种产品,每种产品都可以选择用手工或机器生产。
假设生产每件产品手工需要的劳动时间为3小时,机器生产为2小时,卖价均为50元。
此外,手工生产每件产品的材料消耗为10元,机器生产为6元。
已知每个工人每天工作时间为24小时,可生产10件产品,每件产品的毛利润为50元。
请用运筹学方法确定手工或机器生产的数量,以达到最大利润。
参考答案:一、填空题1、交叉学科;数学;合理利用有限资源,获得最大效益2、线性规划、整数规划、动态规划、图论与网络、排队论、对策论3、整点最优解二、选择题1、D 2. A三、解答题1、运筹学在日常生活中的应用非常广泛。
例如,在背包问题中,如何在有限容量的背包中选择最有价值的物品;在生产组织问题中,如何合理安排生产计划,以最小化生产成本或最大化生产效率;在信号传输问题中,如何设计最优的信号传输路径,以确保信号的稳定传输。
以下以背包问题为例进行详细说明。
在背包问题中,给定一组物品,每个物品都有自己的重量和价值。
现在需要从中选择若干物品放入背包中,使得背包的容量恰好被填满,同时物品的总价值最大。
这是一个典型的0-1背包问题,属于运筹学的研究范畴。