确定一次函数解析式课件_
合集下载
一次函数解析式ppt课件

. .B
A OP
完整版课件
31
P是y轴上一动点,是否存在平行于y轴的直 线x=t,使它与直线y=x和直线 y 1 x 2 分别交于点D、E(E在D的上方),且2 △PDE为 等腰直角三角形,若存在,求出t的值及P的 坐标;若不存在,请说明理由.
E PD
O
完整版课件
32
P是y轴上一动点,是否存在平行于y轴的直 线x=t,使它与直线y=x和直线 y 1 x 2 分别交于点D、E(E在D的上方),且2 △PDE为 等腰直角三角形,若存在,求出t的值及P的 坐标;若不存在,请说明理由.
完整版课件
20
10.已知直线y=2x+1.若直线 y=kx+b与已知直线关于y轴对 称,求k,b的值.
完整版课件
21
小结:
(1)会用待定系数法确定一次函数 解析式。 (2)会求直线与坐标轴围成的三 角形的面积。
完整版课件
22
1.已知直线经过点
5 2
,0
,
且与坐标轴所围成的三角形的面积
为 2 5 ,求该直线的函数解析式。
完整版课件
27
21、已知直线y=kx+b经过点 (2.5,0),且与坐标轴所围成 的三角形的面积为6.25,求该直 线的解析式。
完整版课件
28
4、已知一次函数y=(3m-7)x+m-1的图 象与y轴的交点在x轴的上方,且y随x 的增大而减小,m为整数。
(1)求函数的解析式;
(2)画出函数的图象;
(C)k= 1
2
,b=1y (D)k=2,b=1
1
o1 1
x
2
完整版课件
36
4.已知:一条直线经过点A(0,4)、点
A OP
完整版课件
31
P是y轴上一动点,是否存在平行于y轴的直 线x=t,使它与直线y=x和直线 y 1 x 2 分别交于点D、E(E在D的上方),且2 △PDE为 等腰直角三角形,若存在,求出t的值及P的 坐标;若不存在,请说明理由.
E PD
O
完整版课件
32
P是y轴上一动点,是否存在平行于y轴的直 线x=t,使它与直线y=x和直线 y 1 x 2 分别交于点D、E(E在D的上方),且2 △PDE为 等腰直角三角形,若存在,求出t的值及P的 坐标;若不存在,请说明理由.
完整版课件
20
10.已知直线y=2x+1.若直线 y=kx+b与已知直线关于y轴对 称,求k,b的值.
完整版课件
21
小结:
(1)会用待定系数法确定一次函数 解析式。 (2)会求直线与坐标轴围成的三 角形的面积。
完整版课件
22
1.已知直线经过点
5 2
,0
,
且与坐标轴所围成的三角形的面积
为 2 5 ,求该直线的函数解析式。
完整版课件
27
21、已知直线y=kx+b经过点 (2.5,0),且与坐标轴所围成 的三角形的面积为6.25,求该直 线的解析式。
完整版课件
28
4、已知一次函数y=(3m-7)x+m-1的图 象与y轴的交点在x轴的上方,且y随x 的增大而减小,m为整数。
(1)求函数的解析式;
(2)画出函数的图象;
(C)k= 1
2
,b=1y (D)k=2,b=1
1
o1 1
x
2
完整版课件
36
4.已知:一条直线经过点A(0,4)、点
19.2.2.3 确定一次函数的解析式

必做题:《教材》 P99 习题19.2 第6、7题 选做题:《课件》课后提升
【课后作业】完成《学法大视野》 【预习】课本P93—P95《一次函数与方程、不等式》
已知一次函数的图象过点(0,2),且与两坐标轴围成 的三角形的面积为2,求此一次函数的解析式.
学有驰,习有张 书山有路勤独秀 学漠无垠恒至洲
x O2
2. 如图,直线l是一次函数y=kx+b的图象,填空:
(1)b=___2___,k=____23__;
y
y
(2)当x=30时,y=__-1_8___; l 4
3
(3)当y=30时,x=__-_4_2__.
2
1
x
O 12345 x
3. 已知直线l与直线y=-2x平行,且与y轴交于点(0,2), 求直线l的解析式.
能力提升
已知一次函数y=kx+b(k≠0)的自变量的取值范围是
- 3≤x≤ 6,相应函数值的范围是- 5≤y≤ - 2 ,求
这个函数的解析式.
分析:(1)当- 3≤x≤ 6时,- 5≤y≤ - 2,实质是给出
了两组自变量及对应的函数值;
(2)由于不知道函数的增减性,此题需分两种情况讨论.
答案:y = 1 x - 4或y = - 1 x - 3
∴b=2
∵一次函数的图象与x轴的交点是( 2 ,0),
k
则 1 2 2 2, 解得k=1或-1.
2
k
故此一次函数的解析式为y=x+2或y=-x+2.
当堂练习
1.一次函数y=kx+b(k≠0)的图象如图,则下列结论 正确的是 ( D )
A.k=2
B.k=3
y
【课后作业】完成《学法大视野》 【预习】课本P93—P95《一次函数与方程、不等式》
已知一次函数的图象过点(0,2),且与两坐标轴围成 的三角形的面积为2,求此一次函数的解析式.
学有驰,习有张 书山有路勤独秀 学漠无垠恒至洲
x O2
2. 如图,直线l是一次函数y=kx+b的图象,填空:
(1)b=___2___,k=____23__;
y
y
(2)当x=30时,y=__-1_8___; l 4
3
(3)当y=30时,x=__-_4_2__.
2
1
x
O 12345 x
3. 已知直线l与直线y=-2x平行,且与y轴交于点(0,2), 求直线l的解析式.
能力提升
已知一次函数y=kx+b(k≠0)的自变量的取值范围是
- 3≤x≤ 6,相应函数值的范围是- 5≤y≤ - 2 ,求
这个函数的解析式.
分析:(1)当- 3≤x≤ 6时,- 5≤y≤ - 2,实质是给出
了两组自变量及对应的函数值;
(2)由于不知道函数的增减性,此题需分两种情况讨论.
答案:y = 1 x - 4或y = - 1 x - 3
∴b=2
∵一次函数的图象与x轴的交点是( 2 ,0),
k
则 1 2 2 2, 解得k=1或-1.
2
k
故此一次函数的解析式为y=x+2或y=-x+2.
当堂练习
1.一次函数y=kx+b(k≠0)的图象如图,则下列结论 正确的是 ( D )
A.k=2
B.k=3
y
沪科版数学八年级上册12.2.3用待定系数法求函数解析式课件(共19张PPT)

D
解析:把x=1代入y=2x,求得B点坐标为(1,2),再由A(0,3),B(1,2),求得一次函数解析式为y=-x+3.
仿例3
直线y=(m+1)x+m2 +1与y轴的交点坐标是(0,5),且直线经过第一、二、四象限,则直线的解析式为 .
第十二章 一次函数
12.2 一次函数12.2.3 用待定系数法求函数解析式
学习目标
学习重难点
重点
难点
1.理解待定系数法,并会用待定系数法求一次函数的解析式;2.结合一次函数的图象和性质,确定一次函数的表达式.
用待定系数法求一次函数的解析式.
结合一次函数的性质,用待定系数法确定一次函数的解析式.
∴2=-2×0+b,
∴b=2,
∴直线l的表达式为y=-2x+2.
∴k= -2.
练习4
归纳小结
用待定系数法求一次函数的解析式
2. 根据已知条件列出关于k、b的方程组;
1. 设所求的一次函数表达式为y=kx+b;
3. 解方程,求出k、b;
4. 把求出的k,b代回表达式即可.
同学们再见!
授课老师:
时间:2024年9月1日
知识点 用待定系数法求一次函数解析式
利用二元一次方程组求一次函数表达式的一般步骤:
1.用含字母的系数设出一次函数的表达式:y=kx+b.
2.将已知条件代入上述表达式中得k,b的二元一次方程组.
3.解这个二元一次方程组得k,b.
4.进而求出一次函数的表达式.
范例
已知一次函数y=kx+b的图象经过点(-1,1)和点(1,-5),求当x=5时,函数y的值.
解析:由题意得m2+1=5,m=4,m=±2.∵直线过一、二、四象限,∴m+1<0,m<-1,故m=-2,直线解析式为y=-x+5.
解析:把x=1代入y=2x,求得B点坐标为(1,2),再由A(0,3),B(1,2),求得一次函数解析式为y=-x+3.
仿例3
直线y=(m+1)x+m2 +1与y轴的交点坐标是(0,5),且直线经过第一、二、四象限,则直线的解析式为 .
第十二章 一次函数
12.2 一次函数12.2.3 用待定系数法求函数解析式
学习目标
学习重难点
重点
难点
1.理解待定系数法,并会用待定系数法求一次函数的解析式;2.结合一次函数的图象和性质,确定一次函数的表达式.
用待定系数法求一次函数的解析式.
结合一次函数的性质,用待定系数法确定一次函数的解析式.
∴2=-2×0+b,
∴b=2,
∴直线l的表达式为y=-2x+2.
∴k= -2.
练习4
归纳小结
用待定系数法求一次函数的解析式
2. 根据已知条件列出关于k、b的方程组;
1. 设所求的一次函数表达式为y=kx+b;
3. 解方程,求出k、b;
4. 把求出的k,b代回表达式即可.
同学们再见!
授课老师:
时间:2024年9月1日
知识点 用待定系数法求一次函数解析式
利用二元一次方程组求一次函数表达式的一般步骤:
1.用含字母的系数设出一次函数的表达式:y=kx+b.
2.将已知条件代入上述表达式中得k,b的二元一次方程组.
3.解这个二元一次方程组得k,b.
4.进而求出一次函数的表达式.
范例
已知一次函数y=kx+b的图象经过点(-1,1)和点(1,-5),求当x=5时,函数y的值.
解析:由题意得m2+1=5,m=4,m=±2.∵直线过一、二、四象限,∴m+1<0,m<-1,故m=-2,直线解析式为y=-x+5.
待定系数法ppt课件

如:
1)已知一次函数的图象经过点(1,-1)和点(-1,2)。求 这个函数的解析式。
解:设这个一次函数的解析式为:y=kx+b
把x=1,y=-1;x=-1,y=2,分别代入上式得
1
﹛K+b=-1 -k+b=2
﹛ 解得:
K= 2
b= 3
2
一次函数的解析式为:y=
12x
3 2
(2)解:把x=1,y=3;x=-1,y=7,分别代入上 y=kx+b得
C.k=-2,b=-1 D.k=2,b=-1
11 X
2
1、选择题
(1)一次函数的图象经过点(2,1)和点(1,5),
则这个一次函数是( C ) A.y=4x+9 B. y=4x-9 C. y=-4x+9 D. y=-4x-9
(2)已知点P的横坐标与纵坐标之和为1,且这
点在直线y=x+3上,则该点是( D )
11 X
2
尝试练习
1. 已知一次函数 y k x 2 ,当 x 5 时,
y 的值为4, 求 的值.
2.已知直线 y=kx+b 经过点(9,0)和 点(24,20),求k、b的值.
3.一次函数y=kx+5与直线y=2x-1交于点P(2, m),求k、m的值.
4.一次函数y=3x-b过A(-2,1)则b= ,该图象 经过点B( ,-1)和点C(0, ).
根据题意,得
﹛b=6 4k+b=7.2
﹛ 解这个方程组,得
k=0.3
b=6
所以一次函数的解析式为:y=0.3x+6
(1)一次函数的图象经过点(2,1)和(1,5),则这个一次函数( )
1)已知一次函数的图象经过点(1,-1)和点(-1,2)。求 这个函数的解析式。
解:设这个一次函数的解析式为:y=kx+b
把x=1,y=-1;x=-1,y=2,分别代入上式得
1
﹛K+b=-1 -k+b=2
﹛ 解得:
K= 2
b= 3
2
一次函数的解析式为:y=
12x
3 2
(2)解:把x=1,y=3;x=-1,y=7,分别代入上 y=kx+b得
C.k=-2,b=-1 D.k=2,b=-1
11 X
2
1、选择题
(1)一次函数的图象经过点(2,1)和点(1,5),
则这个一次函数是( C ) A.y=4x+9 B. y=4x-9 C. y=-4x+9 D. y=-4x-9
(2)已知点P的横坐标与纵坐标之和为1,且这
点在直线y=x+3上,则该点是( D )
11 X
2
尝试练习
1. 已知一次函数 y k x 2 ,当 x 5 时,
y 的值为4, 求 的值.
2.已知直线 y=kx+b 经过点(9,0)和 点(24,20),求k、b的值.
3.一次函数y=kx+5与直线y=2x-1交于点P(2, m),求k、m的值.
4.一次函数y=3x-b过A(-2,1)则b= ,该图象 经过点B( ,-1)和点C(0, ).
根据题意,得
﹛b=6 4k+b=7.2
﹛ 解这个方程组,得
k=0.3
b=6
所以一次函数的解析式为:y=0.3x+6
(1)一次函数的图象经过点(2,1)和(1,5),则这个一次函数( )
八年级数学下册第19章一次函数第36课时求一次函数的解析式课件3

在消费过程中你是如何维护自己权益的?
【提示】以下四点可供参考: 1)明白自己的权利; 2)不忘索要发票; 3)牢记维权时限; 4)运用维权渠道。
一、行使权利有界限
1.行使权利不能超越界限的原因是什么?
(1)任何权利都是有范围的。公民行使权利不能超越它本身的界限,不 能滥用权利。 (2)我国宪法规定,公民在行使自由和权利的时候,不得损害国家的、 社会的、集体的利益和其他公民的合法的自由和权利。
被弄污了,请求出该数值.
x
-1 0
y -6.5 -3 2
解:设 y=kx+b,- 2=3= b -k+b,kb= =52, y=5x+2,x=-1.7.
6.一辆汽车在行驶过程中,路程 y(千米)与时间 x(小时)之间的函数 关系如图所示.当 0≤x≤1 时,y 关于 x 的函数解析式为 y=60x,
若点 B 在直线 y=kx+3 上,则 k 的值为-2.
11.若 A(1,4),B(2,m),C(6,-1)三点在同一条直线上,则 m
的值为 3 .
12.依据给定的条件,求一次函数的解析式. (1)已知一次函数的图象如图所示,求此一次函数的解析式; (2)并判断点(6,5)是否在此函数图象上.
解:(1)设 y=kx+b, 0b= =- 4k8+b, kb==-2 8,y=2x-8; (2)y=12-8≠5,不在;
4.已知一次函数的图象过点(-1,0),(1,-3). (1)求这个函数的解析式; (2)求当 x=3 时的函数值.
解:(1)设 y=kx+b,0-=3= -kk+ +bb,kb= =- -11..55, y=-1.5x-1.5; (2)-6
5.根据某个一次函数的关系式填写出下表,但表中有一数值不小心
谁给你的权利!滥用远光:某足球比赛现场,上万人的体育馆座无虚席。比赛期间,甲队 球迷因对本队比分落后不满,对乙队球迷破口大骂,随后投掷杂物、挥 拳相向,现场一片混乱……
【提示】以下四点可供参考: 1)明白自己的权利; 2)不忘索要发票; 3)牢记维权时限; 4)运用维权渠道。
一、行使权利有界限
1.行使权利不能超越界限的原因是什么?
(1)任何权利都是有范围的。公民行使权利不能超越它本身的界限,不 能滥用权利。 (2)我国宪法规定,公民在行使自由和权利的时候,不得损害国家的、 社会的、集体的利益和其他公民的合法的自由和权利。
被弄污了,请求出该数值.
x
-1 0
y -6.5 -3 2
解:设 y=kx+b,- 2=3= b -k+b,kb= =52, y=5x+2,x=-1.7.
6.一辆汽车在行驶过程中,路程 y(千米)与时间 x(小时)之间的函数 关系如图所示.当 0≤x≤1 时,y 关于 x 的函数解析式为 y=60x,
若点 B 在直线 y=kx+3 上,则 k 的值为-2.
11.若 A(1,4),B(2,m),C(6,-1)三点在同一条直线上,则 m
的值为 3 .
12.依据给定的条件,求一次函数的解析式. (1)已知一次函数的图象如图所示,求此一次函数的解析式; (2)并判断点(6,5)是否在此函数图象上.
解:(1)设 y=kx+b, 0b= =- 4k8+b, kb==-2 8,y=2x-8; (2)y=12-8≠5,不在;
4.已知一次函数的图象过点(-1,0),(1,-3). (1)求这个函数的解析式; (2)求当 x=3 时的函数值.
解:(1)设 y=kx+b,0-=3= -kk+ +bb,kb= =- -11..55, y=-1.5x-1.5; (2)-6
5.根据某个一次函数的关系式填写出下表,但表中有一数值不小心
谁给你的权利!滥用远光:某足球比赛现场,上万人的体育馆座无虚席。比赛期间,甲队 球迷因对本队比分落后不满,对乙队球迷破口大骂,随后投掷杂物、挥 拳相向,现场一片混乱……
用待定系数法求一次函数解析式(超赞)名师公开课获奖课件百校联赛一等奖课件

1
5 2 x
3k 6k b 4
b解得k b
1 3 4
一次函数因 k旳为解正此析负题式,中且为没一有次明函确
数y=kx+b(k≠0)只有 在k>0时,y随x旳
当k30时, 把(3,2),(6,5)分别代入y
得:
2 5
3k 6k b
b解得k b
1 3
3
增 0时k大x,而y增随b中大x旳,,增在大k<而
b=6 4k+b=7.2 解得
k=0.3 b=6
所以一次函数旳解析式为:y=0.3x+6
Page 20
一次函数y=kx+b(k≠0)旳自变量旳取值范围是-
3≤x≤6,相应函数值旳范围是-5≤y≤-2,求这个函数旳解 析式.
解: 当k0时, 把(3,5),(6,2)分别代入y kx b中,
得:
y
解:设过A,B两点旳直线旳体现式为y=kx+b.
由题意可知, 1 3k b,
2 0 b,
∴
k 1, b 2.
∴过A,B两点旳直线旳体现式为y=x-2.
∵当x=4时,y=4-2=2.
∴点C(4,2)在直线y=x-2上.
∴三点A(3,1), B(0,-2),C(4,2)在同一条直线上.
Page 22
请写出 y 与x之间旳关系式,并求当所挂物
体旳质量为4公斤时弹簧旳长度。
Page 18
在某个范围内,某产品旳购置量y(单位:kg)与单价x(单 位:元)之间满足一次函数,若购置1000kg,单价为800元;若 购置2023kg,单价为700元.若一客户购置400kg,单价是多 少?
解:设购置量y与单价x旳函数解析式为y=kx+b
用待定系数法求一次函数解析式精品课件ppt

从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
2、已知直线y=kx+b经过点 (2.5,0),且与坐标轴所围 成的三角形的面积为6.25,求 该直线的解析式。 3、判断点A(3,2)、B(-3,1)、 C(1,1)是否在一直线上?
Page 1
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
例1:已知正比例函数 y= kx,(k≠0) 的图象经过点(-2,4).
求这个正比例函数的解析式.
解:设这个一次函数的解析式为y=kx.
变式3:已知一次函数y=2x+b 的 图象过点(2,-1).求这个一次函数 的解析式.
解:
∵ y=2x+b 的图象过点(2,-1).
∴ -1=2×2 + b 解得 b=-5 ∴这个一次函数的解析式为y=2x-5
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
变式7:一次函数y=kx+b(k≠0)的自 变量的取值范围是-3≤x≤6,相应函 数值的范围是-5≤y≤-2,求这个函数的 解析式.
2.分段函数 从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。 在一个变化过程中,函数 y 随自变量 x 变化的函数解析式
八年级数学一次函数课件-求一次函数的解析式

数学
(2)∵△ABC的面积为4,
∴4=12BC×OA,即4=12BC×2. ∴BC=4. ∴OC=BC-OB=4-3=1. ∴C(0,-1). 设直线l2的解析式为y=kx+b. ቊ2kb+ =b-=10. ,解得ቐbk==-121,.
∴直线l2的解析式为y=12x-1.
八年级 下册
人教版
第4课时求一次函数的解析式
知识点1 待定系数法求一次函数的解析式 类型一 已知直线的解析式和图象上一点的坐标 【例题1】若函数y=3x+b的图象经过点(2,-6),求函数的 解析式. y=3x-12.
数学
八年级 下册
人教版
第4课时求一次函数的解析式
【变式1】若一次函数y=kx-3的图象经过点M(-2,1),求 这个一次函数的解析式. 解:∵一次函数y=kx-3的图象经过点 M(-2,1). ∴-2k-3=1.解得k=-2. ∴这个一次函数的解析式为y=-2x-3.
数学 人教版 八年级 下册
目 录
CONTENTS
数学
八年级 下册
人教版
第4课时求一次函数的解析式
第十九章 一次函数
19.2 一次函数 第4课时求一次函数的解析式
01 课标要求
02 基础梳理
03 典例探究
04 课时训练
数学
八年级 下册
人教版
第4课时求一次函数的解析式
了解待定系数法的含义;能根据已知条件确定一次函数 的表达式;会用待定系数法确定一次函数的表达式.
数学
八年级 下册
人教版
第4课时求一次函数的解析式
类型二 已知直线经过两个点的坐标 【例题2】一次函数y=kx+b的图象经过点(3,2)和点 (1,-2). (1)求这个函数的解析式; (2)判断(-5,3)是否在此函数的图象上.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§18.3(4)确定一次函数的表达式
快速反应
2、若一次函数y=x+b的图象过点A(1,-1), 则b=__________。
§18.3(4)确定一次函数的表达式
快速反应
3、一次函数y=kx+b的图象如图所示,看图填空: (1)当x=0时,y=______;当x=_____时,y=0. (2)k=__________,b=____________. (3)当x=5时,y=____;当y=30时,x=_____.
7、已知直线与直线y=2x+1的交点的横坐标 为2,与直线y=-x-8的交点的纵坐标为-7, 求直线的表达式。
小结
• •
• • • • • • • • • • • •
待定系数法求函数关系式(其中含有未知常数系数) 先设待求,再根据条件列出方程(或方程组),求出未知系数,从而得到 所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如: 函数y=kx+b中,k,b就是待定系数. 用待定系数法确定一次函数表达式的一般步骤 (1)设函数表达式为y=kx+b; (2)将已知点的坐标代入函数表达式,解方程(组); (3)求出k与b的值,得到函数表达式. 例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的 关系式. 解:设一次函数的关系式为y=kx+b(k≠0), 由题意可知, 解∴此函数的关系式为y=. 【说明】 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一 步,设(根据题中 要求的函数“设”关系式y=kx+b,其中k,b是未知的常量,且k≠0);第 二步,代(根据题目 中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出 待定系数k,b); 第三步,求(把求得的k,b的值代回到“设”的关系式y=kx+b中);第四 步,写(写出函数关系式).
§18.3(4)确定一次函数的表达式
自主学习
3、根据如图所示的条件,求直线的表达式。
§18.3(4)确定一次函数的表达式
自主学习
5 4、已知直线y=kx+b经过 ( ,0), 2
25 且与坐标轴所围成的三角形的面积为 , 4
求该直线的表达式。
§18.3(4)确定一次函数的表达式
自主学习
5、一次函数y=k1x-4与正比例函数y=k2x的图 象经过点(2,-1), (1)分别求出这两个函数的表达式; (2 )求这两个函数的图象与 x轴围成的三角 形的面积。
§18.3(4)确定一次函数的表达式
自主学习
6、有两条直线
l1 : y ax b
,学生甲解出它们的
和
l 2 : y cx 5
交点为(3,-2);学生乙因把c抄错而解出
3 1 它们的交点为 ( , ) 试写出这两条直线的表 4 4 达式。
§18.3(4)确定一次函数的表达式
自主学习
§18.3(4)确定一次函数的表达式
作业:
1.课本P47练习第1---2题 2.课时作业P43---44第1—10题
快速反应
§18.3(4)确定一次函数的表达式
1、 某物体沿一个斜坡下滑,它的速度v(米/ 秒)与其下滑t(秒)的关系如图所示,则 (1)下滑2秒时物体的速度为__________. (2)v(米/秒)与t(秒)之间的函数关系式 为________________. (3)下滑3秒时物体的速度为______.
§18.3(4)确定一次函数的表达式
自主学习
1、已知一次函数的图象经过点(2,1)和 (-1,-3) (1)求此一次函数表达式; (2)求此一次函数与x轴、y轴的交点坐标; (3)求此一次函数的图象与两坐标轴所围成 的三角形的面积。
§18.3(4)确定一次函数的表达式
自主习
2、写出满足下表的一个函数关系式。