北京市西城区2018-2019学年第一学期期末八年级数学试题(含答案)

合集下载

北京市西城区2018—2019学年度第一学期期末试卷

北京市西城区2018—2019学年度第一学期期末试卷

北京市西城区2018—2019学年度第一学期期末试卷九年级化学2019.1H 1 C 12 O 16 S 32 Cl 35.5 Cu 64第一部分选择题(共30分)(每小题只有1个选项符合题意。

每小题1分)1. 空气成分中,体积分数约为21%的是A.氮气B.氧气C.稀有气体D.二氧化碳2. 地壳中含量最多的元素是A.氧B.硅C.铝D.铁3. 下列金属活动性最强的是A.铁B.金C.铜D.锌的是4. 下列元素符号书写不正确...A.硅SI B.硫S C.钠Na D.铜Cu5.吸烟有害健康,烟气中的一种有毒气体是A.O2B.N2C.CO D.CO2“低碳”理念的是6. 下列做法不符合...A.选择公交出行B.自带布袋购物C.垃圾分类处理D.多用一次性餐具7. 下列物质的性质中,属于化学性质的是A.颜色B.密度C.可燃性D.沸点8. 下列图标中,表示“禁止燃放鞭炮”的是A B C D9.下列物质在氧气中燃烧,火星四射的是A.铁丝B.硫粉C.蜡烛D.红磷空气质量监测的是10.2012年我国新修订《环境空气质量标准》,下列项目未.列入..A .NO 2B .N 2C .COD .PM 2.5 11.右图为某强化锌固体饮料包装,其中“锌”是指 A .原子 B .分子 C .元素 D .单质 12.某些食品需要充气防腐。

下列气体最宜充入的是 A .氢气B .氧气C .氮气D .空气13.碳元素与氧元素的本质区别是A .质子数不同B .电子数不同C .中子数不同D .最外层电子数不同 14.某同学制作的试剂标签如下,其中化学式书写不正确...的是A B C D15.下列不属于...氧气用途的是 A .气焊 B .光合作用 C .医疗急救 D .火箭助燃剂 16.化学反应前后肯定发生变化的是 A .原子数目 B .原子质量 C .分子种类 D .元素种类 17.下列符号能表示2个氧原子的是A .O 2B .2OC .2O 2-D .2O 218.某种碳原子可用于检测人体中的幽门螺旋杆菌。

北京市丰台区2018-2019学年八年级上期末数学试卷及答案

北京市丰台区2018-2019学年八年级上期末数学试卷及答案

一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1. 如果二次根式2x -有意义,那么x 的取值范围是A. 2x ≠B. 0x ≥C. 2x >D. 2x ≥ 2. 剪纸是中华传统文化中的一块瑰宝,下列剪纸图案中不是..轴对称图形的是3. 9的平方根是A .3B .±3C .3±D .81 4. 下列事件中,属于不确定事件的是 A .晴天的早晨,太阳从东方升起 B .一般情况下,水烧到50°C 沸腾C .用长度分别是2cm ,3cm ,6cm 的细木条首尾相连组成一个三角形D .科学实验中,前100次实验都失败,第101次实验会成功 5. 如果将分式2xx y+中的字母x 与y 的值分别扩大为原来的10倍,那么这个分式的值 A .不改变 B .扩大为原来的20倍 C .扩大为原来的10倍 D .缩小为原来的1106. 如果将一副三角板按如图方式叠放,那么∠1等于A .120°B .105°C .60°D .45°160°45°7. 计算32a b(-)的结果是 A. 332a b - B. 336a b - C. 338a b- D. 338a b8. 如图,在△ABC 中,∠ACB =90°, CD ⊥AB 于点D ,如果∠DCB =30°,CB =2,那么AB 的长为A. 23B. 25C. 3D. 4 9.下列计算正确的是 A.325+= B. 1233-= C.326⨯= D.842= 10. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是 A.102B. 104C.105D. 5二、填空题(本题共18分,每小题3分) 11. 如果分式14x x --的值为0,那么x 的值是_________. 12. 计算:2(3)-=_________. 13. 在-1,0,2,π,13这五个数中任取一个数,取到无理数的可能性是_________. 14. 如图,ABC △中,90C ∠=,BD 平分ABC ∠交AC 于点D ,如果CD =6cm ,那么点D 到AB 的距离为_________cm. 15. 如图,△ABC 是边长为2的等边三角形,BD 是AC 边上的中线,延长BC 至点E ,使CE =CD ,联结DE ,则DE 的长是 .ABCD D CBAACBEABCD16. 下面是一个按某种规律排列的数表:第1行 1第2行232第3行567223第4行1011231314154……那么第5行中的第2个数是,第n(1n>,且n是整数)行的第2个数是 .(用含n的代数式表示)三、解答题(本题共20分,每题5分)17. 计算:381232-+-.18. 计算:2121.224a a aa a--+÷--19. 解方程:11322x x x-+=--.20. 已知:如图,点B ,E ,C ,F 在同一条直线上, AB ∥DE ,AB =DE ,BE=CF . 求证:AC =DF .四、解答题(本题共11分,第21题5分,第22题6分) 21. 已知30x y -=,求22(+)+2x yx y x xy y -+的值.22. 列方程解应用题:学校要建立两个计算机教室,为此要购买相同数量的A 型计算机和B 型计算机.已知一台A 型计算机的售价比一台B 型计算机的售价便宜400元,如果购买A 型计算机需要22.4万元,购买B 型计算机需要24万元.那么一台A 型计算机的售价和一台B 型计算机的售价分别是多少元?E A C DB F五、解答题(本题共21分,每小题7分)23. 已知:如图,△AOB 的顶点O 在直线l 上,且AO =AB .(1)画出△AOB 关于直线l 成轴对称的图形△COD ,且使点A 的对称点为点C ; (2)在(1)的条件下, AC 与BD 的位置关系是 ;(3)在(1)、(2)的条件下,联结AD ,如果∠ABD =2∠ADB ,求∠AOC 的度数.24. 我们知道,假分数可以化为整数与真分数的和的形式.例如:32=112+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像11x x +-,22x x -,…这样的分式是假分式;像42x - ,221x x +,…这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:112122111111x x x x x x x x +-==+=+-----(-)+;22442(2)4422222x x x )x x x x x x -++-+===++----(. (1)将分式12x x -+化为整式与真分式的和的形式; (2)如果分式2211x x --的值为整数,求x 的整数值.BAOl25. 请阅读下列材料:问题:如图1,△ABC中,∠ACB=90°,AC=BC,MN是过点A的直线,DB⊥MN于点D,联结CD.求证:BD+ AD =2CD.小明的思考过程如下:要证BD+ AD =2CD,需要将BD,AD转化到同一条直线上,可以在MN上截取AE=BD,并联结EC,可证△ACE和△BCD全等,得到CE=CD,且∠ACE=∠BCD,由此推出△CDE为等腰直角三角形,可知DE =2CD,于是结论得证.小聪的思考过程如下:要证BD+ AD =2CD,需要构造以CD为腰的等腰直角三角形,可以过点C作CE⊥CD交MN于点E,可证△ACE和△BCD全等,得到CE=CD,且AE=BD,由此推出△CDE为等腰直角三角形,可知DE =2CD,于是结论得证.请你参考小明或小聪的思考过程解决下面的问题:(1) 将图1中的直线MN绕点A旋转到图2和图3的两种位置时,其它条件不变,猜想BD,AD,CD之间的数量关系,并选择其中一个图形加以证明;(2) 在直线MN绕点A旋转的过程中,当∠BCD=30°,BD =2时,CD=__________.MDNBCA图2BCNMDA图3AC BNDM E图1丰台区2019-2019学年度第一学期期末练习初二数学评分标准及参考答案一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案DCBDABCDBA二、填空题(本题共18分,每小题3分)题号 11 12 1314 1516答案13256332()212n -+三、解答题(本题共20分,每小题5分) 17.解:原式=22323-+- …… 3分 =433-. …… 5分 18.解:原式=21(1)22(2)a a a a --÷-- …… 2分=212(2)2(1)a a a a --⨯-- ……3分=21a -. ……5分19.解:11322x x x -+=-- ……1分13(2)1x x +-=- ……2分1361x x +-=- ……3分24x =2x =. ……4分经检验,2x = 是原方程的增根,所以,原方程无解. ……5分 20.证明:∵AB ∥DE ,∴∠B =∠DEC . ……1分∵BE = CF ,∴BE +EC = CF +EC ,即BC = EF . ……2分在△ABC 和△DEF 中,,AB DE B DEC BC EF ===⎧⎪⎨⎪⎩∠∠ ……3分 ∴△ABC ≌△DEF (SAS ). ……4分 ∴AC = DF .(全等三角形对应边相等)…5分 四、解答题(本题共11分,第21题5分,第22题6分)21.解:原式=()()2x yx y x y -⋅++ ……1分=x yx y-+. ……2分 ∵30x y -=,∴=3x y . ……3分∴原式=33y yy y-+. ……4分=12. ……5分22.解:设一台A 型计算机的售价是x 元,则一台B 型计算机的售价是(x +400)元.根据题意列方程,得 ……1分224000240000400x x =+ ……3分 解这个方程,得5600x = ……4分经检验,5600x =是所列方程的解,并且符合实际问题的意义. ……5分当5600x =时,+4006000x =.答:一台A 型计算机的售价是5600元,一台B 型计算机的售价是6000元. ……6分五、解答题(本题共21分,每小题7分) 23.(1)如图1.……1分 (2)平行. ……2分 (3)解:如图2,由(1)可知,△AOB 与△COD 关于直线l 对称, ∴△AOB ≌△COD .……3分∴AO =CO ,AB = CD ,OB = OD ,∠ABO =∠CDO . 图1 图2 ∴∠OBD =∠ODB . ……4分∴∠ABO+∠OBD =∠CDO+∠ODB ,即∠ABD =∠CDB .∵∠ABD =2∠ADB ,∴∠CDB =2∠ADB .∴∠CDA =∠ADB .……5分由(2)可知,AC ∥BD ,∴∠CAD =∠ADB .∴∠CAD =∠CDA ,∴CA = CD .……6分 ∵AO = AB ,∴AO = OC = AC ,即△AOC 为等边三角形. ∴∠AOC = 60°. ……7分 24.解:(1)12x x -+()232x x +-=+ ……1分2232x x x +=+-+ ……2分312x+=-. ……3分(2)2211x x --22211x x -+=- ()()21111x x x +-+=-()1211x x =++-. ……5分 ∵分式的值为整数,且x 为整数, ∴11x -=±,∴x =2或0.……7分25.解:(1)如图2,BD -AD =2CD . ……1分ABCDOllO DCB A如图3,AD -BD =2CD . ……2分证明图2:( 法一)在直线MN 上截取AE =BD ,联结CE .设AC 与BD 相交于点F ,∵BD ⊥MN ,∴∠ADB =90°,∴∠CAE+∠AFD =90°.∵∠ACB =90°,∴∠1+∠BFC =90°. ∵∠AFD =∠BFC ,∴∠CAE =∠1.∵AC =BC ,∴△ACE ≌△BCD (SAS ). ……3分 ∴CE =CD ,∠ACE =∠BCD .∴∠ACE -∠ACD =∠BCD -∠ACD ,即∠2=∠ACB =90°.在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分 ∵DE = AE -AD = BD -AD ,∴BD -AD =2CD . ……5分 ( 法二)过点C 作CE ⊥CD 交MN 于点E ,则∠2=90°. ∵∠ACB =90°,∴∠2+∠ACD =∠ACB+∠ACD , 即∠ACE =∠BCD .设AC 与BD 相交于点F ,∵DB ⊥MN ,∴∠ADB =90°. ∴∠CAE+∠AFD =90°,∠1+∠BFC =90°. ∵∠AFD =∠BFC ,∴∠CAE =∠1.∵AC =BC ,∴△ACE ≌△BCD (ASA ). ……3分 ∴CE =CD ,AE =BD .在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分 ∵DE = AE -AD = BD -AD ,∴BD -AD =2CD . ……5分 证明图3:( 法一)在直线MN 上截取AE =BD ,联结CE . 设AD 与BC 相交于点F ,∵∠ACB =90°,∴∠2+∠AFC =90°. ∵BD ⊥MN ,∴∠ADB =90°,∠3+∠BFD =90°. ∵∠AFC =∠BFD ,∴∠2=∠3.∵AC =BC ,∴△ACE ≌△BCD (SAS ). ……3分 ∴CE =CD ,∠1=∠4.∴∠1+∠BCE =∠4+∠BCE ,即∠ECD =∠ACB =90°.在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分F12图2A C BND ME FE M DNBC A 图221E BCN M DA 图3123F 4数学试卷∵DE = AD -AE = AD -BD ,∴AD -BD =2CD . ……5分 ( 法二)过点C 作CE ⊥CD 交MN 于点E ,则∠DCE =90°.∵∠ACB =90°,∴∠ACB -∠ECB = ∠DCE -∠ECB ,即∠1=∠4. 设AD 与BC 相交于点F ,∵DB ⊥MN ,∴∠ADB =90°. ∴∠2+∠AFC =90°,∠3+∠BFD =90°.∵∠AFC =∠BFD ,∴∠2=∠3.∵AC =BC ,∴△ACE ≌△BCD (ASA ).……3分 ∴CE =CD ,AE =BD .在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分∵DE = AD -AE = AD -BD ,∴AD -BD =2CD .……5分 (2)31± .……7分 4F 321 图3A D M N C B E。

北京西城区2018-2019学度初二上年末考试数学试题含解析

北京西城区2018-2019学度初二上年末考试数学试题含解析

北京西城区2018-2019学度初二上年末考试数学试题含解析八年级数学2016.1试卷总分值:100分,考试时刻:100分钟【一】选择题〔此题共30分,每题3分〕下面各题均有四个选项,其中只有一个是符合题意旳、1、计算22-旳结果是〔〕、 A.14B.14- C.4D.4-2、以下剪纸作品中,不是..轴对称图形旳是〔〕、3、在以下分解因式旳过程中,分解因式正确旳选项是〔〕、A.()xz yz z x y -+=-+B.()223232a b ab ab ab a b -+=- C.232682(34)xy y y x y -=- D.234(2)(x 2)3x x x x +-=+-+4、以下分式中,是最简分式旳是〔〕、 A 、2xy x B 、222x y -C 、22x y x y +-D 、22x x + 5、一次函数(2)3y m x =-+旳图象通过第【一】【二】四象限,那么m 旳取值范围是〔〕、A 、0m <B 、0m >C 、2m <D 、2m >6、分式11x--可变形为〔〕、 A 、11x +B 、11x -+C 、11x --D 、11x - 7、假设一个等腰三角形旳两边长分别为2和4,那么那个等腰三角形旳周长是为〔〕、A.8B.10C.8或10D.6或128、如图,B ,D ,E ,C 四点共线,且△ABD ≌△ACE ,假设∠AEC =105°,那么∠DAE 旳度数等于〔〕、A.30°B.40°C.50°D.65°9、如图,在△ABC 中,BD 平分∠ABC ,与AC 交于点D ,DE ⊥AB 于点E ,假设BC =5,△BCD 旳面积为5,那么ED 旳长为〔〕、t (分)S (米)412048010a 0A.12B.1C.2D.510、如图,直线y =﹣x +m 与直线y =nx +5n 〔n ≠0〕旳交点旳横坐标为﹣2,那么关于x 旳不等式﹣x +m >nx +5n >0旳整数解为〔〕、A.﹣5 ,﹣4,﹣3B. ﹣4,﹣3C.﹣4 ,﹣3,﹣2D.﹣3,﹣2【二】填空题〔此题共20分,第11~14题,每题3分,第15~18题,每题2分〕11、假设分式11-x 在实数范围内有意义,那么x 旳取值范围是、 12、分解因式224x y -=、13、在平面直角坐标系xOy 中,点P 〔-2,3〕关于y 轴旳对称点旳坐标是、14、如图,点B 在线段AD 上,∠ABC =∠D ,AB ED =、要使△ABC ≌△EDB ,那么需要再添加旳一个条件是〔只需填一个条件即可〕、15、如图,在△ABC 中,∠ABC =∠ACB ,AB 旳垂直平分线交AC 于点M ,交AB 于点N 、连接MB ,假设AB=8,△MBC 旳周长是14,那么BC 旳长为、16、关于一次函数21y x =-+,当-2≤x ≤3时,函数值y 旳取值范围是、17、如图,要测量一条小河旳宽度AB 旳长,能够在小河旳岸边作AB 旳垂线MN ,然后在MN 上取两点C ,D ,使BC =CD ,再画出MN 旳垂线DE ,并使点E 与点A ,C 在一条直线上,这时测得DE 旳长确实是AB 旳长,其中用到旳数学原理是:﹏、18、甲、乙两人都从光明学校动身,去距离光明学校1500m远旳篮球馆打球,他们沿同一条道路匀速行走,乙比甲晚动身4min 、设甲行走旳时刻为t (单位:min),甲、乙两人相距y (单位:m),表示y 与t 旳函数关系旳图象如下图,依照图中提供旳信息,以下说法: ①甲行走旳速度为30m/min ②乙在距光明学校500m 处追上了甲③甲、乙两人旳最远距离是480m④甲从光明学校到篮球馆走了30min 正确旳选项是﹏﹏﹏〔填写正确结论旳序号〕、练习题改编,识图能力,如何提取信息,数形结合思想【三】解答题〔此题共50分,第19,20题每题6分;第21题~25题每题5分;第26题6分,第27题7分〕19、分解因式:〔1〕2()3()a b a b -+-〔2〕221218ax ax a -+解:解:20、计算:〔1〕42223248515a b a b c c ÷〔2〕24()212x x x x x x -⋅+++ 解:解:21、2a b -=,求222()2ab a a a ba ab b ÷---+旳值、 解:22、解分式方程2242111x x x x x -+=+- 解:23、:如图,A ,O ,B 三点在同一条直线上,∠A =∠C ,∠1=∠2,OD =OB 、求证:AD =CB 、证明:24、列方程解应用题中国地大物博,过去由于交通不便,一些地区旳经济进展受到了制约,自从“高铁网络”在全国陆续延伸以后,许多地区旳经济和旅游发生了翻天覆地旳变化,高铁列车也成为人们外出旅行旳重要交通工具、李老师从北京到某地去旅游,从北京到该地普快列车行驶旳路程约为1352km ,高铁列车比普快列车行驶旳路程少52km ,高铁列车比普快列车行驶旳时刻少8h 、高铁列车旳平均时速是普快列车平均时速旳2.5倍,求高铁列车旳平均时速、解:25、在平面直角坐标系xOy 中,将正比例函数2y x =-旳图象沿y 轴向上平移4个单位长度后与y 轴交于点B ,与x 轴交于点C 、〔1〕画正比例函数2y x =-旳图象,并直截了当写出直线BC 旳【解析】式;〔2〕假如一条直线通过点C 且与正比例函数2y x =-旳图象交于点P (m ,2),求m 旳值及直线CP 旳【解析】式、解:〔1〕直线BC 旳【解析】式:;〔2〕26、阅读以下材料:利用完全平方公式,能够将多项式2(0)ax bx c a ++≠变形为2()a x m n ++旳形式,我们把如此旳变形方法叫做多项式2ax bx c ++旳配方法、运用多项式旳配方法及平方差公式能对一些多项式进行分解因式、例如:21124x x ++=222111111()()2422x x ++-+ =21125()24x +- =115115()()2222x x +++- =(8)(3)x x ++ 依照以上材料,解答以下问题:〔1〕用多项式旳配方法将281x x +-化成2()x m n ++旳形式;〔2〕下面是某位同学用配方法及平方差公式把多项式2340x x --进行分解因式旳解答过程:老师说,这位同学旳解答过程中有错误,请你找出该同学解答中开始出现错误旳地点,并用“”标画出来,然后写出完整旳、正确旳解答过程:〔3〕求证:x ,y 取任何实数时,多项式222416x y x y +--+旳值总为正数、〔1〕解:〔2〕正确旳解答过程是:〔3〕证明:27、:△ABC是等边三角形、〔1〕如图1,点D在AB边上,点E在AC边上,BD=CE,BE与CD交于点F、试推断BF与CF 旳数量关系,并加以证明;〔2〕点D是AB边上旳一个动点,点E是AC边上旳一个动点,且BD=CE,BE与CD交于点F、假设△BFD是等腰三角形,求∠FBD旳度数、图1备用图〔1〕BF与CF旳数量关系为:、证明:〔2〕解:北京市西城区2018—2016学年度第一学期期末试卷八年级数学附加题2016.1试卷总分值:20分【一】填空题〔此题6分〕1、〔1〕32a ba+=,那么ba=;〔2〕115a b-=,那么3533a ab ba ab b----=、【二】解答题〔此题共14分,每题7分〕2、观看以下各等式:(8.1)(9)(8.1)(9)---=-÷-,11()(1)()(1)22---=-÷-,4242-=÷,993322-=÷,┅┅依照上面这些等式反映旳规律,解答以下问题:〔1〕上面等式反映旳规律用文字语言可描述如下:存在两个实数,使得这两个实数旳等于它们旳;〔2〕填空:-4=÷4;〔3〕请你再写两个实数,使它们具有上述等式旳特征:-=÷;〔4〕假如用y表示等式左边第一个实数,用x表示等式左边第二个实数〔x≠0且x≠1〕,①x与y之间旳关系能够表示为:〔用x旳式子表示y〕;②假设x>1,当x时,y有最值(填“大”或“小”),那个最值为、3、如图1,在平面直角坐标系xOy中,点A在y轴上,点B是第一象限旳点,且AB⊥y轴,且AB=OA,点C是线段OA上任意一点,连接BC,作BD⊥BC,交x轴于点D、〔1〕依题意补全图1;〔2〕用等式表示线段OA,AC与OD之间旳数量关系,并证明;〔3〕连接CD,作∠CBD旳平分线,交CD边于点H,连接AH,求∠BAH旳度数、〔1〕依题意补全图1;〔2〕线段OA,AC,OD之间旳数量关系为:﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏;证明:〔3〕解:附加题【答案】1、〔1〕13〔2〕522、〔1〕差商〔2〕16 3〔3〕25255544-=÷;36366655-=÷〔4〕①21xyx=-②2小43、〔1〕〔2〕作BE⊥OD四边形AOEB是正方形△ABC≌△BED∴OA+AC=OD〔3〕∵△ABC≌△BED ∴BC=BD∵BH⊥CD∴A、C、H、B四点共圆∴∠BAH=∠BCH=45°。

北京市朝阳区2018-2019学年八年级(上)期末数学试卷及答案

北京市朝阳区2018-2019学年八年级(上)期末数学试卷及答案

2018-2019学年北京市朝阳区初二(上)期末数学及答案一.选择题(共8小题,满分24分)1. 画△ABC的边AB上的高,下列画法中,正确的是()【答案】D【解析】试题分析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解:过点C作边AB的垂线段,即画AB边上的高CD,所以画法正确的是D.故选:D.考点:三角形的角平分线、中线和高.2.下列各式属于最简二次根式的是()A. B. C. D.【答案】B【解析】试题解析:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选B.3.若分式的值为0,则x的值是()A. 2或﹣2B. 2C. ﹣2D. 0【答案】A【解析】【分析】直接利用分式的值为零则分子为零进而得出答案.【详解】∵分式的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.【点睛】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.4.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】分析:根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.详解:①a2•a3=a5,故原题计算错误;②(a3)2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④(ab)3=a3b3,故原题计算正确;正确的共2个,故选B.点睛:此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则.5.以下图形中,不是轴对称图形的是()A. B. C. D.【答案】D【解析】试题分析:A、沿一条直线对折后可以重合,是轴对称图形,故本选项错误;B、沿一条直线对折后可以重合,是轴对称图形,故本选项错误;C、沿一条直线对折后可以重合,是轴对称图形,故本选项错误;D、沿任何一条直线对折后都不能重合,不是轴对称图形,故本选项正确.故选:D.点睛:本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.已知∠A=60°24′,∠B=60.24°,∠C=60°14′24″,则( )A. ∠A>∠B>∠CB. ∠A>∠B=∠CC. ∠B>∠C>∠AD. ∠B=∠C>∠A【答案】B【解析】【分析】将∠A、∠B、∠C统一单位后比较即可.【详解】∵∠A=60°24′=60.4°,∠B=60.24°,∠C=60°14′24″=60.24°,∴∠A>∠B=∠C.故选B.【点睛】本题考查了度、分、秒的转化计算,比较简单,注意以60为进制即可.7.下列各式变形中,是因式分解的是()A. a2﹣2ab+b2﹣1=(a﹣b)2﹣1B. x4﹣1=(x2+1)(x+1)(x﹣1)C. (x+2)(x﹣2)=x2﹣4D. 2x2+2x=2x2(1+)【答案】B【解析】【分析】利用因式分解的定义判断即可.【详解】A选项:它的结果不是乘积的形式,不是因式分解,故是错误的;B选项:x4﹣1=(x2+1)(x+1)(x﹣1)结果是乘积形式,是因式分解,故是正确的;C选项:(x+2)(x﹣2)=x2﹣4中结果不是乘积的形式,不是因式分解,故是错误的;D选项:2x2+2x=2x2(1+)结果不是整式乘积的形式,不是因式分解,故是错误的;故选:B.【点睛】考查了因式分解的定义,理解因式分解的定义(把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式)是解题的关键。

北京市西城区2018-2019学年度第一学期期末试卷参考答案及评分标准

北京市西城区2018-2019学年度第一学期期末试卷参考答案及评分标准

北京市西城区2018-2019学年度第一学期期末试卷八年级语文参考答案及评分标准2019.1一.基础·运用(共10分)1.(1)C(2)A (3)B2.答案示例一:请问王老师,您希望学生如何去读书呢?答案示例二:王老师您好,请问您是如何指导学生读书的?)评分标准:语言得体1分,内容1分。

3.“基因编辑婴儿”诞生引发巨大争议。

评分标准:共10分,每小题2分。

二.古诗文阅读(共22分)(一)古诗文默写(共6分)4.烈士暮年5.贫贱不能移6.谁家新燕啄春泥7.惊起一滩鸥鹭8.此中有真意欲辨已忘言评分标准:共6分,每空1分。

(二)古诗阅读(共5分)9.D评分标准:共2分。

10.雄浑、奇美、壮丽晴川历历汉阳树芳草萋萋鹦鹉洲评分标准:共3分,每空1分。

(三)文言文阅读(共10分)11.(1)衡.于虑衡,同“横”,梗塞、不顺。

(2)而后喻.喻,了解,明白。

评分标准:共2分。

每个1分。

12.D评分标准:共2分。

13.示例:了解到这一切之后,就会明白常处忧愁祸患之中可以使人生存,常处安逸快乐之中可以使人死亡。

评分标准:共2分。

14.出身都很贫贱(平凡)或都经过了艰苦磨练;都增长了才干或都成就了不平凡的事业(都成了圣君贤臣、都被明主发现并委以重任)评分标准:共2分,每点1分,答出2点意思对即可。

15.饿其体肤(空乏其身)困于心,衡于虑,而后作评分标准:共2分,每空1分。

附:乙文译文:淮阴侯韩信是江苏淮阴人,还是普通百姓时,经常在别人那里混吃混喝,……有许多人都很讨厌他。

(一天)韩信在城下钓鱼,有几位老太太在河边漂洗丝绵。

有位(在水边漂洗丝绵的)老太太看到他饿了,就拿饭来给他吃,连续漂洗了几十天,天天如此。

韩信非常高兴,对那位老太太说:“我一定会重重地报答您老人家。

”附:丙文译文:西伯姬昌被拘禁而扩写《周易》;孔子受困窘而作《春秋》;屈原被放逐,才写了《离骚》;左丘明失去视力,才有《国语》;孙膑被剜去膝盖骨,《兵法》才撰写出来;吕不韦被贬谪蜀地,后世才流传着《吕氏春秋》;韩非被囚禁在秦国,写出《说难》、《孤愤》;《诗经》三百篇,大都是一些圣贤们抒发愤慨而写作的。

2018-2019学年度八年级上数学期末试卷(解析版)

2018-2019学年度八年级上数学期末试卷(解析版)

2018-2019学年联考八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

北京市西城区三帆中学2018-2019学年八年级(上)期中数学复习试卷(解析版)

北京市西城区三帆中学2018-2019学年八年级(上)期中数学复习试卷(解析版)

北京市西城区三帆中学2018-2019学年八年级(上)期中数学复习试卷一.选择题(每小题3分,满分30分)1.下列图形中不是轴对称图形的是()A.B.C.D.2.某市有3000名初一学生参加期末考试,为了了解这些学生的数学成绩,从中抽取200名学生的数学成绩进行统计分析.在这个问题中,下列说法:①这3000名初一学生的数学成绩的全体是总体;②每个初一学生是个体;③200名初一学生是总体的一个样本;④样本容量是200.其中说法正确的是()A.4个B.3个C.2个D.1个3.下列各式变形中,是因式分解的是()A.a2﹣2ab+b2﹣1=(a﹣b)2﹣1B.2x2+2x=2x2(1+)C.(x+2)(x﹣2)=x2﹣4D.x4﹣1=(x2+1)(x+1)(x﹣1)4.如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90°C.BD=AC D.∠B=45°5.如图,在Rt△A BC中,∠C=90°,以顶点A为圆心,适当长为半径画圆弧,分别交AB、AC于点D、E,再分别以点D、E为圆心,大于DE长为半径画圆弧,两弧交于点F,作射线AF交边BC于点G.若CG=3,AB=10,则△ABG的面积是()A.3 B.10 C.15 D.306.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°7.若分式的值为零,则x等于()A.﹣1 B.1 C.﹣1或1 D.1或28.已知等腰三角形有一个角为100°,那么它的底角为()A.100°B.40°C.50°D.80°9.如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm10.将一张长方形的纸片对折,然后用笔尖在上面扎出字母“B”,再把它展开铺平后,你可以看到的图形是()A.B.C.D.二.填空题(满分30分,每小题3分)11.如图,AB=AC,点D,E分别在AB,AC上,CD,BE交于点F,只添加一个条件使△ABE≌△ACD,添加的条件是:.12.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=.13.如图,AB∥CD,O为∠BAC、∠ACD的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD之间的距离等于.14.已知x=﹣2时,分式无意义;x=4时,分式的值为0,则a+b=.15.因式分解:(a﹣b)2﹣(b﹣a)=.16.如图,BD=CF,FD⊥BC于点D,DE⊥AB于点E,BE=CD,若∠AFD=140°,则∠EDF=.17.化简:=.18.已知Rt△ABC中,∠C=90°,AC=6,BC=8,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D处,折痕交另一直角边于E,交斜边于F,则△CDE的周长为.19.如图,Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分线与AC交于点D,与AB交于点E,连接BD.若AD=14,则BC的长为.20.如图,在△ABC中,高AD和BE交于点H,且BH=AC,则∠ABC=.三.解答题(共1小题,满分8分,每小题8分)21.(8分)分解因式:(1)a2b﹣b3;(2)﹣(x2+2)2+6(x2+2)﹣9四.解答题(共3小题,满分15分,每小题5分)22.(5分)先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=2019.23.(5分)如图,AC∥BD.(1)利用尺规作AB的垂直平分线(保留作图痕迹,不写作法);(2)若AB的垂直平分线分别交AC、BD于点M、N,连接BM,求证△BMN是等腰三角形.24.(5分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名学生?(2)将图1补充完整;(3)求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;(4)根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.五.解答题(共3小题,满分17分)25.(6分)知识链接:将两个含30°角的全等三角尺放在一起,让两个30°角合在一起成60°,经过拼凑、观察、思考,探究出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.如图,等边三角形ABC的边长为4cm,点D从点C出发沿CA向A运动,点E从B出发沿AB的延长线BF向右运动,已知点D、E都以每秒0.5cm的速度同时开始运动,运动过程中DE与BC相交于点P,设运动时间为x秒.(1)请直接写出AD长.(用x的代数式表示)(2)当△ADE为直角三角形时,运动时间为几秒?(3)求证:在运动过程中,点P始终为线段DE的中点.26.(5分)如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.27.(6分)如图,△ABC中,AB=AC,∠BAC=50°,P是BC边上一点,将△ABP绕点A逆时针旋转50°,点P旋转后的对应点为P′.(1)画出旋转后的三角形;(2)连接PP′,若∠BAP=20°,求∠PP′C的度数;六.解答题(共2小题,满分10分)28.(4分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:①△A DC≌△CEB.②DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图(3)的位置时,请直接写出DE,AD,BE之间的等量关系.29.(6分)在直角三角形ABC中,若AB=16cm,AC=12cm,BC=20cm.点P从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C →A→B的方向移动,如果点P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,请用含t的代数式表示,①当点Q在AC上时,CQ=;②当点Q在AB上时,AQ=;③当点P在AB上时,BP=;④当点P在BC上时,BP=.(2)如图2,若点P在线段AB上运动,点Q在线段CA上运动,当QA=AP时,试求出t的值.(3)如图3,当P点到达C点时,P、Q两点都停止运动,当AQ=BP时,试求出t的值.参考答案一.选择题1.解:A、不是轴对称图形,故本选项符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:A.2.解:①这3000名初一学生的数学成绩的全体是总体正确;②每个初一学生的期末数学成绩是个体,故命题错误;③200名初一学生的期末数学成绩是总体的一个样本,故命题错误;④样本容量是200,正确.故选:C.3.解:A a2﹣2ab+b2﹣1=(a﹣b)2﹣1中不是把多项式转化成几个整式积的形式,故A 错误;B2x2+2x=2x2(1+)中不是整式,故B错误;C(x+2)(x﹣2)=x2﹣4是整式乘法,故C错误;Dx4﹣1=(x2+1)(x2﹣1)=(x2+1)(x+1)(x﹣1),故D正确.故选:D.4.解:添加AB=AC,符合判定定理HL;添加BD=DC,符合判定定理SAS;添加∠B=∠C,符合判定定理AAS;添加∠BAD=∠CAD,符合判定定理ASA;选其中任何一个均可.故选:A.5.解:作GH⊥AB于H,由基本尺规作图可知,AG是△ABC的角平分线,∵∠C=90°,GH⊥AB,∴GH=CG=3,∴△ABG的面积=×AB×GH=15,故选:C.6.解:∵∠B=80°,∠C=30°,∴∠BAC=180°﹣80°﹣30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE﹣∠DAC,=70°﹣35°,=35°.故选:B.7.解:依题意得|x|﹣1=0,且x2﹣3x+2≠0,解得x=1或﹣1,x≠1和2,∴x=﹣1.故选:A.8.解:当100°为顶角时,其他两角都为40°、40°,当100°为底角时,等腰三角形的两底角相等,由三角形的内角和定理可知,底角应小于90°,故底角不能为100°,所以等腰三角形的底角为40°、40°.故选:B.9.解:∵△ABC中,边AB的中垂线分别交BC、AB于点D、E,AE=3cm,∴BD=AD,AB=2AE=6cm,∵△ADC的周长为9cm,∴AC+AD+CD=AC+BD+CD=AC+BC=9cm,∴△ABC的周长为:AB+AC+BC=15cm.故选:C.10.解:由题意可得,展开后的图形呈轴对称,故选:C.二.填空题(共10小题,满分30分,每小题3分)11.解:∠B=∠C,理由是:∵在△ABE和△ACD中∴△ABE≌△ACD(ASA),故答案为:∠B=∠C.12.解:原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98] =(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97]=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96]=…=(a+1)100.故答案为:(a+1)100.13.解:过O作OF⊥AB,OG⊥CD,∵AO为∠BAC的平分线,且OE⊥AC,OF⊥AB,∴OE=OF=1,∵CO为∠BAC的平分线,且OE⊥AC,OG⊥CD,∴OG=O E=1,∴FG=OF+OG=2,∵AB∥CD,∴AB与CD之间的距离等于2,故答案为:214.解:由题意,得﹣2+a=0,4﹣b=0,解得a=2,b=4.a+b=2+4=6,故答案为:6.15.解:原式=(a﹣b)2+(a﹣b)=(a﹣b)(a﹣b+1),故答案为:(a﹣b)(a﹣b+1)16.解:∵∠AFD=140°,∴∠DFC=40°,∵DE⊥AB,DF⊥BC,∴∠DEB=∠FDC=90°,在Rt△BDE和Rt△CFD中,∵,∴Rt△BDE≌Rt△CFD(HL)∴∠BDE=∠CFD=40°,∴∠EDF=180°﹣∠FDC﹣∠BDE=50°,故答案为:50°.17.解:==;故答案为:.18.解:当角B翻折时,B点与D点重合,DE与EC的和就是BC,也就是说等于8,CD 为AC的一半,故△CDE的周长为8+3=11;当A翻折时,A点与D点重合.同理DE与EC的和为AC=6,CD为BC的一半,所以CDE 的周长为6+4=10.故△CDE的周长为10.19.解:∵DE为线段AB的垂直平分线,∴BD=AD=14,∴∠BCD=2∠A=30°,∵∠ACB=90°,∴BC=BD=7,故答案为:7.20.解:∵△ABC为锐角三角形,∴高AD和BE在三角形内.∵高AD和BE交于点H,∴∠ADC=∠BEC=90°.∵∠EBD+∠BHD=90°,∠AHE+∠HAE=90°,∠BHD=∠AHE,∴∠EAD=∠EBD,又∵BH=AC,∠ADC=∠BDH=90°,∴△BDH≌△ADC(AAS),∴BD=AD,∵∠ADB=90°,∴∠ABC=45°.故答案为45°三.解答题(共1小题,满分8分,每小题8分)21.解:(1)原式=b(a2﹣b2)=b(a+b)(a﹣b);(2)原式=﹣[(x2+2)2﹣6(x2+2)+9]=﹣(x2﹣1)2=﹣(x+1)2(x﹣1)2.四.解答题(共3小题,满分15分,每小题5分)22.解:原式=x2﹣4y2+5y2﹣2xy=x2﹣2xy+y2,=(x﹣y)2,当x=2018,y=2019时,原式=(2018﹣2019)2=(﹣1)2=1.23.(1)解:如图,直线MN即为所求;(2)证明:∵MN垂直平分线段AB,∴MA=MB,∴∠AMN=∠BMN,∵AC∥BD,∴∠AMN=∠BNM,∴∠BMN=∠BNM,∴BM=BN,∴△BMN是等腰三角形.24.解:(1)130÷65%=200,答:此次抽样调查中,共调查了200名学生;(2)反对的人数为:200﹣130﹣50=20,补全的条形统计图如右图所示;(3)扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:×360°=36°;(4)1500×=375,答:该校1500名学生中有375名学生持“无所谓”意见.五.解答题(共3小题,满分17分)25.解:(1)由题意得,CD=0.5x,则AD=4﹣0.5x;(2)∵△ABC是等边三角形,∴AB=BC=AC=4cm,∠A=∠ABC=∠C=60°.设x秒时,△ADE为直角三角形,∴∠ADE=90°,BE=0.5x,AD=4﹣0.5x,AE=4+0.5x,∴∠AED=30°,∴AE=2AD,∴4+0.5x=2(4﹣0.5x),∴x=;答:运动秒后,△ADE为直角三角形;(3)如图2,作DG∥AB交BC于点G,∴∠GDP=∠BEP,∠DGP=∠EBP,∠CDG=∠A=60°,∠CGD=∠ABC=60°,∴∠C=∠CDG=∠CGD,∴△CDG是等边三角形,∴DG=DC,∵DC=BE,∴DG=BE.在△DGP和△EBP中,,∴△DGP≌△EBP(ASA),∴DP=PE,∴在运动过程中,点P始终为线段DE的中点.26.解:(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,在△BGD与△CFD中,∵∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.27.解:(1)旋转后的三角形ACP'如图所示:(2)由旋转可得,∠PAP'=∠BAC=50°,AP=AP',△ABP≌△ACP',∴∠APP'=∠AP'P=65°,∠AP'C=∠APB,∵∠BAC=50°,AB=AC,∴∠B=65°,又∵∠BAP=20°,∴∠APB=95°=∠AP'C,∴∠PP'C=∠AP'C﹣∠AP'P=95°﹣65°=30°.六.解答题(共2小题,满分10分)28.解:(1)①∵AD⊥MN,BE⊥MN,∴∠ADC=∠ACB=90°=∠CEB,∴∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);②∵△ADC≌△CEB,∴CE=AD,CD=BE,∴DE=CE+CD=AD+BE;(2)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);∴CE=AD,CD=BE,∴DE=CE﹣CD=AD﹣BE;(3)当MN旋转到题图(3)的位置时,AD,DE,BE所满足的等量关系是:DE=BE﹣AD.理由如下:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CE=AD,CD=BE,∴DE=CD﹣CE=BE﹣AD.29.解:(1)①当点Q在AC上时,CQ=t;②当点Q在AB上时,AQ=t﹣12;③当点P在AB上时,BP=16﹣2t;④当点P在BC上时,BP=2t﹣16;故答案为:t;t﹣12;16﹣2t;2t﹣16;(2)由题意得,12﹣t=2t,解得,t=4;(3)∵AQ=BP∴当点P在线段AB上运动,点Q在线段CA上运动时,12﹣t=16﹣2t,解得,t=4,当点P在线段BC上运动,点Q在线段CA上运动时,12﹣t=2t﹣16,解得,t=,当点P在线段BC上运动,点Q在线段AB上运动时,t﹣12=2t﹣16,解得,t=4(不合题意)则当t=4或t=时,AQ=BP.。

北京市西城区2018-2019学年高一上学期期末考试数学试题(解析版)

北京市西城区2018-2019学年高一上学期期末考试数学试题(解析版)

北京市西城区2018-2019学年高一上学期期末考试数学试题(解析版)一、选择题(本大题共10小题,共40.0分) 1. sin(−π3)的值是( )A. 12B. −12C. √32D. −√32【答案】D【解析】解:sin(−π3)=−sin π3=−√32,故选:D .由条件利用诱导公式进行化简求值,可得结论. 本题主要考查利用诱导公式进行化简求值,属于基础题.2. 函数f(x)=sin(x2+π3)的最小正周期为( )A. πB. 2πC. 4πD. 6π【答案】C【解析】解:函数f(x)=sin(x 2+π3)的最小正周期为:T =2π12=4π.故选:C .直接利用三角函数的周期求解即可.本题考查三角函数的简单性质的应用,周期的求法,考查计算能力.3. 如果向量a ⃗ =(0,1),b ⃗ =(−2,1),那么|a ⃗ +2b⃗ |=( ) A. 6B. 5C. 4D. 3【答案】B【解析】解:由向量a ⃗ =(0,1),b ⃗ =(−2,1), 所以a ⃗ +2b ⃗ =(−4,3),由向量的模的运算有:|a ⃗ +2b ⃗ |=√(−4)2+33=5, 故选:B .本由向量加法的坐标运算有:a ⃗ +2b ⃗ =(−4,3),由向量的模的运算有|a ⃗ +2b ⃗ |=√(−4)2+33=5,得解.本题考查了向量加法的坐标运算及向量的模的运算,属简单题. 4.sin(π2−α)cos(−α)=( )A. tanαB. −tanαC. 1D. −1【答案】C 【解析】解:sin(π2−α)cos(−α)=cosαcosα=1.故选:C .利用诱导公式化简即可计算得解.本题主要考查了诱导公式在三角函数化简求值中的应用,属于基础题.5. 已知函数y =sinx 和y =cosx 在区间I 上都是减函数,那么区间I 可以是( )A. (0,π2)B. (π2,π) C. (π,3π2) D. (3π2,2π)【答案】B【解析】解:A :y =sinx 在(0,π2)上是增函数; C :y =cosx 在(π,3π2)上是增函数;D :y =cosx 在(3π2,2π)上是增函数. 故选:B .依次分析四个选项可得结果.本题考查了正、余弦函数的单调区间,熟练掌握函数图象是关键,属基础题.6. 如图,在△ABC 中,D 是BC 上一点,则AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗⃗ =( ) A. BD⃗⃗⃗⃗⃗⃗ B. DB ⃗⃗⃗⃗⃗⃗ C. CD ⃗⃗⃗⃗⃗ D. DC ⃗⃗⃗⃗⃗【答案】D【解析】解:AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ . 故选:D .根据向量加法和减法的几何意义即可得出答案. 考查向量加法和减法的几何意义.7. 已知a ⃗ ,b ⃗ 为单位向量,且a ⃗ ⋅b ⃗ =−√22,那么向量a ⃗ ,b ⃗ 的夹角是( )A. π4B. π2C. 2π3D. 3π4【答案】D【解析】解:∵a ⃗ ,b ⃗ 为单位向量,且a ⃗ ⋅b ⃗ =−√22; ∴a ⃗ ⋅b ⃗ =|a ⃗ ||b ⃗ |cos <a ⃗ ,b ⃗ >=cos <a ⃗ ,b ⃗ >=−√22;又0≤<a ⃗ ,b ⃗ >≤π;∴<a ⃗ ,b ⃗ >=3π4.故选:D .根据条件即可求出cos <a ⃗ ,b ⃗ >=−√22,根据向量夹角的范围即可求出向量a ⃗ ,b ⃗ 的夹角. 考查单位向量的概念,向量数量积的计算公式,以及向量夹角的范围.8. 设α∈[0,2π),则使sinα>12成立的α的取值范围是( )A. (π3,2π3)B. (π6,5π6)C. (π3,4π3)D. (7π6,11π6)【答案】B【解析】解:∵α∈[0,2π),sinα>12, ∴π6<α<5π6.∴设α∈[0,2π),则使sinα>12成立的α的取值范围是(π6,5π6).故选:B .利用正弦函数的图象和性质直接求解.本题考查满足正弦值的角的取值范围的求法,考查正弦函数的图象和性质等基础知识,考查运算求解能力,是基础题.9. 已知函数f(x)=A 1sin(ω1x +φ1),g(x)=A 2sin(ω2x +φ2),其图象如图所示.为得到函数g(x)的图象,只需先将函数f(x)图象上各点的横坐标缩短到原来的12倍(纵坐标不变),再( )A. 向右平移π6个单位 B. 向右平移π3个单位 C. 向左平移π6个单位D. 向左平移π3个单位【答案】A【解析】解:函数f(x)=A 1sin(ω1x +φ1),g(x)=A 2sin(ω2x +φ2),其图象如图所示, 可见f(x)的周期为2π,g(x)的周期为π,且f(x)图象上的点(0,0),在g(x)的图象上对应(π6,0),为得到函数g(x)的图象,只需先将函数f(x)图象上各点的横坐标缩短到原来的12倍(纵坐标不变),在向右平移π6个单位, 故选:A .利用函数y =Asin(ωx +φ)的图象变换规律,得出结论.本题主要考查函数y =Asin(ωx +φ)的图象变换规律,属于基础题.10. 在△ABC 中,A =π2,AB =2,AC =1.D 是BC 边上的动点,则AD ⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ 的取值范围是( )A. [−4,1]B. [1,4]C. [−1,4]D. [−4,−1]【答案】A【解析】解:建立平面直角坐标系,如图所示;则A(0,0),B(2,0),C(0,1), 设D(x,y),则x2+y =1,x ∈[0,2]; ∴AD⃗⃗⃗⃗⃗⃗ =(x,y), BC ⃗⃗⃗⃗⃗ =(−2,1),∴AD ⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =−2x +y =−2x +(1−12x)=−52x +1∈[−4,1],则AD ⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ 的取值范围是[−4,1]. 故选:A .建立平面直角坐标系,利用坐标表示向量AD ⃗⃗⃗⃗⃗⃗ 、BC ⃗⃗⃗⃗⃗ ,求出AD ⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ 的取值范围即可. 本题考查了平面向量数量积的计算问题,是基础题.二、填空题(本大题共11小题,共44.0分)11. 若cosθ=−12,且θ为第三象限的角,则tanθ=______. 【答案】√3【解析】解:∵cosθ=−12,且θ为第三象限的角, ∴sinθ=−√1−sin 2θ=−√32, ∴tanθ=sinθcosθ=−√32−12=√3.故答案为:√3.由已知利用同角三角函数基本关系式先求sinθ,进而可求tanθ的值.本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.12. 已知向量a ⃗ =(1,2).与向量a ⃗ 共线的一个非零向量的坐标可以是______. 【答案】(2,4)【解析】解:2a⃗ =(2,4)与a ⃗ 共线; 即与向量a⃗ 共线的一个非零向量的坐标可以是(2,4). 故答案为:(2,4).可求出2a ⃗ =(2,4),而2a ⃗ 与a ⃗ 共线,即得出与向量a ⃗ 共线的一个非零向量的坐标可以是(2,4).考查共线向量基本定理,向量坐标的数乘运算.13. 如果tan(x +π3) =0 (x >0),那么x 的最小值是______. 【答案】2π3【解析】解:tan(x +π3) =0 (x >0), 可得x +π3=kπ, 即x =kπ−π3,k ∈N ∗, 可得x 的最小值为π−π3=2π3,故答案为:2π3,由正切韩寒说的图象和性质可得x +π3=kπ,k 为正整数,即可得到所求最小值. 本题考查三角方程的解法,注意运用正切函数的图象和性质,考查运算能力,属于基础题.14. 如图,已知正方形ABCD.若AD ⃗⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC⃗⃗⃗⃗⃗ ,其中λ,μ∈R ,则λμ=______.【答案】−1【解析】解:∵AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD⃗⃗⃗⃗⃗⃗ , ∴AD⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC ⃗⃗⃗⃗⃗ , ∴λ=−1,μ=1, ∴λμ=−1, 故答案为:−1.利用向量加减法容易把AD ⃗⃗⃗⃗⃗⃗ 表示成AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ ,从而得λ,μ,得解. 此题考查了向量加减法,属容易题.15. 在直角坐标系xOy 中,已知点A(3,3),B(5,1),P(2,1),M 是坐标平面内的一点.①若四边形APBM 是平行四边形,则点M 的坐标为______; ②若PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ =2PM ⃗⃗⃗⃗⃗⃗ ,则点M 的坐标为______. 【答案】(6,3) (4,2)【解析】解:①设M(x,y),则:AP ⃗⃗⃗⃗⃗ =(−1,−2),MB ⃗⃗⃗⃗⃗⃗ =(5−x,1−y); ∵四边形APBM 是平行四边形; ∴AP ⃗⃗⃗⃗⃗ =MB ⃗⃗⃗⃗⃗⃗ ;∴(−1,−2)=(5−x,1−y); ∴{1−y =−25−x=−1; 解得{y =3x=6;∴点M 的坐标为(6,3);②PA ⃗⃗⃗⃗⃗ =(1,2),PB ⃗⃗⃗⃗⃗ =(3,0),PM ⃗⃗⃗⃗⃗⃗ =(x −2,y −1); ∵PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ =2PM ⃗⃗⃗⃗⃗⃗ ;∴(1,2)+(3,0)=2(x −2,y −1); ∴(4,2)=(2(x −2),2(y −1)); ∴{2(y −1)=22(x−2)=4; 解得{y =2x=4;∴点M 的坐标为(4,2). 故答案为:(6,3),(4,2).①可设M(x,y),得出AP ⃗⃗⃗⃗⃗ =(−1,−2),MB ⃗⃗⃗⃗⃗⃗ =(5−x,1−y),根据四边形APBM 为平行四边形即可得出AP ⃗⃗⃗⃗⃗ =MB ⃗⃗⃗⃗⃗⃗ ,从而得出(−1,−2)=(5−x,1−y),从而得到{1−y =−25−x=−1,解出x ,y 即可;②可求出PA ⃗⃗⃗⃗⃗ =(1,2),PB ⃗⃗⃗⃗⃗ =(3,0),PM ⃗⃗⃗⃗⃗⃗ =(x −2,y −1),根据PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ =2PM ⃗⃗⃗⃗⃗⃗ 即可得出(4,2)=(2(x −2),2(y −1)),从而得出{2(y −1)=22(x−2)=4,解出x ,y 即可.考查相等向量的概念,根据点的坐标可求向量的坐标,向量坐标的加法和数乘运算.16.设函数f(x)=sin(ωx+π3).若f(x)的图象关于直线x=π6对称,则ω的取值集合是______.【答案】{ω|ω=6k+1,k∈Z}【解析】解:由题意ωπ6+π3=kπ+π2,k∈Z,得ω=6k+1,k∈Z,故答案为:{ω|ω=6k+1,k∈Z}.利用正弦函数图象的对称轴为x=kπ+π2,列出关于ω的方程,得解.此题考查了正弦函数的对称性,难度不大.17.若集合A={x|0<x<3},B={x|−1<x<2},则A∪B=______.【答案】{x|−1<x<3}【解析】解:∵集合A={x|0<x<3},B={x|−1<x<2},∴A∪B={x|−1<x<3}.故答案为:{x|−1<x<3}.利用并集定义直接求解.本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题.18.函数f(x)=1log2x的定义域是______.【答案】{x|0<x<1或x>1}【解析】解:由函数的解析式可得log2x≠0,即{x≠1x>0,解得函数的定义域为{x|0<x<1或x>1},故答案为{x|0<x<1或x>1}.由函数的解析式可得log2x≠0,即{x≠1x>0,由此求得函数的定义域.本题主要考查函数的定义域的求法,对数函数的单调性和特殊点,对数函数的定义域,属于基础题.19.已知三个实数a=312,b=√2,c=log32.将a,b,c按从小到大排列为______.【答案】c<b<a【解析】解:312=√3>√2>1,log32<log33=1;∴c<b<a.故答案为:c<b<a.容易得出312>√2>1,log32<1,从而a,b,c从小到大排列为c<b<a.考查对数函数和y =√x 的单调性,以及增函数的定义.20. 里氏震级M 的计算公式为:M =lgA −lgA 0,其中A 0=0.005是标准地震的振幅,A 是测震仪记录的地震曲线的最大振幅.在一次地震中,测震仪记录的地震曲线的最大振幅是500,则此次地震的里氏震级为______级;8级地震的最大振幅是5级地震最大振幅的______倍. 【答案】5 1000【解析】解:根据题意,假设在一次地震中,测震仪记录的最大振幅是500,此时标准地震的振幅为0.005,则M =lgA −lgA 0=lg500−lg0.005=lg105=5. 设8级地震的最大的振幅是x ,5级地震最大振幅是y , 8=lgx +5,5=lgy +5,解得x =103,y =1, ∴x y=1000.故答案为:5;1000.根据题意中的假设,可得M =lgA −lgA 0=lg500−lg0.005=lg105=5;设8级地震的最大的振幅是x ,5级地震最大振幅是y ,8=lgx +5,5=lgy +5,由此知8级地震的最大的振幅是5级地震最大振幅的1000倍.本题考查对数的运算法则,解题时要注意公式的灵活运用,是基础题.21. 已知函数f(x)={x −1, c <x ≤3.x 2+x, −2≤x≤c若c =0,则f(x)的值域是______;若f(x)的值域是[−14,2],则实数c 的取值范围是______.______. 【答案】[−14,+∞) [12,1] [12,1]【解析】解:c =0时,f(x)=x 2+x =(x +12)2−14, f(x)在[−2,−12)递减,在(−12,0]递增, 可得f(−2)取得最大值,且为2,最小值为−14; 当0<x ≤3时,f(x)=1x 递减,可得f(3)=13, 则f(x)∈[13,+∞),综上可得f(x)的值域为[−14,+∞);∵函数y =x 2+x 在区间[−2,−12)上是减函数, 在区间(−12,1]上是增函数,∴当x ∈[−2,0)时,函数f(x)最小值为f(−12)=−14, 最大值是f(−2)=2;由题意可得c>0,∵当c<x≤3时,f(x)=1x 是减函数且值域为[13,1c),当f(x)的值域是[−14,2],可得12≤c≤1.故答案为:[−14,+∞);[12,1].若c=0,分别求得f(x)在[−2,0]的最值,以及在(0,3]的范围,求并集即可得到所求值域;讨论f(x)在[−2,1]的值域,以及在(c,3]的值域,注意c>0,运用单调性,即可得到所求c的范围.本题给出特殊分段函数,求函数的值域,并在已知值域的情况下求参数的取值范围,着重考查了函数的值域和二次函数的单调性和最值等知识,属于中档题.三、解答题(本大题共6小题,共66.0分)22.已知α∈(0,π2),且sinα=35.(Ⅰ)求sin(α−π4)的值;(Ⅱ)求cos2α2+tan(π4+α)的值.【答案】解(Ⅰ):因为α∈(0,π2),sinα=35,所以cosα=√1−sin2α=45.所以sin(α−π4)=√22(sinα−cosα)=−√210.(Ⅱ):因为sinα=35,cosα=45,所以tanα=sinαcosα=34.所以cos2α2+tan(π4+α)=1+cosα2+1+tanα1−tanα=7910.【解析】(Ⅰ)根据同角的三角函数的关系,以及两角差的正弦公式即可求出,(Ⅱ)根据二倍角公式和两角和的正切公式即可求出.本题考查同角的三角形函数的关系,以及两角差的正想说和二倍角公式,属于中档题23.函数f(x)=Asin(ωx+φ)的部分图象如图所示,其中A>0,ω>0,|φ|<π.(Ⅰ)求f(x)的解析式;(Ⅱ)求f(x)在区间[π2,π]上的最大值和最小值;(Ⅲ)写出f(x)的单调递增区间.【答案】(Ⅰ)解:由函数f(x)=Asin(ωx +φ)的部分图象可知 A =3, 因为 f(x)的最小正周期为T =7π6−π6=π,所以 ω=2πT=2.令 2×π6+φ=π2,解得 φ=π6,适合|φ|<π. 所以 f(x)=3sin(2x +π6).(Ⅱ)解:因为x ∈[π2,π],所以2x +π6∈[7π6, 13π6].所以,当2x +π6=13π6,即x =π时,f(x)取得最大值32,当2x +π6=3π2,即x =2π3时,f(x)取得最小值−3.(Ⅲ)解:结合f(x)的图象可得它的单调递增区间为[ kπ−π3, kπ+ π6 ](k ∈Z). 【解析】(Ⅰ)由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出φ的值,可得f(x)的解析式.(Ⅱ)利用正弦函数的定义域和值域,求得f(x)在区间[π2,π]上的最大值和最小值. (Ⅲ)由f(x)的图象,可得它的单调递增区间.本题主要考查由函数y =Asin(ωx +φ)的部分图象求解析式,由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出φ的值,正弦函数的定义域和值域,正弦函数的增区间,属于中档题.24. 在直角坐标系xOy 中,已知点A(−1,0),B(0,√3),C(cosθ,sinθ),其中θ∈[ 0, π 2]. (Ⅰ)求AC ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ 的最大值;(Ⅱ)是否存在θ∈[ 0, π 2],使得△ABC 为钝角三角形?若存在,求出θ的取值范围;若不存在,说明理由.【答案】解:(Ⅰ)由题意,AC⃗⃗⃗⃗⃗ =(cosθ+1,sinθ), BC ⃗⃗⃗⃗⃗ =(cosθ,sinθ−√3); ……………………(2分)所以 AC ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =(cosθ+1)⋅cosθ+sinθ⋅(sinθ−√3)……………………(3分)=cosθ−√3sinθ+1=2cos(θ+π3)+1; ……………………(4分)因为 θ∈[ 0, π2],所以 θ+π3∈[π3, 5π6]; ……………………(5分)所以 当θ+π3=π3,即θ=0时,AC ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ 取得最大值2; ……………………(6分) (Ⅱ)因为|AB|=2,|AC| =√(1+cosθ)2+sin 2θ=√2+2cosθ,|BC| =√cos 2θ+(sinθ−√3)2=√4−2√3sinθ; 又 θ∈[ 0, π2],所以 sinθ∈[0,1],cosθ∈[0,1], 所以|AC|≤2,|BC|≤2;所以 若△ABC 为钝角三角形,则角C 是钝角, 从而CA⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ <0;………………(8分) 由(Ⅰ)得2cos(θ+π3)+1<0,解得cos(θ+π3)<−12; ……………………(9分)所以 θ+π3∈(2π3, 5π6],即θ∈(π3, π2]; ……………………(11分) 反之,当θ∈(π3, π2]时,CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ <0, 又 A ,B ,C 三点不共线,所以△ABC 为钝角三角形;综上,当且仅当θ∈(π3, π2]时,△ABC 为钝角三角形.……………………(12分)【解析】(Ⅰ)由平面向量数量积的坐标运算,利用三角恒等变换求得AC ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ 的最大值2; (Ⅱ)由两点间的距离公式求得|AC|、|BC|,并判断△ABC 为钝角三角形时角C 是钝角, 利用CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ <0,结合题意求得θ的取值范围. 本题考查了平面向量的数量积与解三角形的应用问题,是中档题.25. 已知函数f(x)=xx 2−1.(Ⅰ)证明:f(x)是奇函数;(Ⅱ)判断函数f(x)在区间(−1,1)上的单调性,并用函数单调性的定义加以证明. 【答案】解:(Ⅰ):函数f(x)的定义域为D ={x|x ≠±1}.……………………(1分) 对于任意x ∈D ,因为 f(−x)=−x(−x)2−1=−f(x),……………………(3分) 所以 f(x)是奇函数. ……………………(4分)(Ⅱ)解:函数f(x)=xx 2−1在区间(−1,1)上是减函数.……………………(5分) 证明:在(−1,1)上任取x 1,x 2,且 x 1<x 2,……………………(6分)则 f(x 1)−f(x 2)=x 1x 12−1−x2x 22−1=(1+x 1x 2)(x 2−x 1)(x 12−1)(x 22−1). ……………………(8分)由−1<x 1<x 2<1,得 1+x 1x 2>0,x 2−x 1>0,x 12−1<0,x 22−1<0,所以 f(x 1)−f(x 2)>0,即 f(x 1)>f(x 2).所以 函数f(x)=xx 2−1在区间(−1,1)上是减函数.……………………(10分)【解析】(Ⅰ)先求定义域,再用奇函数的定义f(−x)=−f(x)证明f(x)为奇函数; (Ⅱ)按照①取值,②作差,③变形,④判号,⑤下结论,这5个步骤证明. 本题考查了奇偶性与单调性的综合,属中档题.26. 已知函数f(x)=ax 2+x 定义在区间[0,2]上,其中a ∈[−2,0].(Ⅰ)若a =−1,求f(x)的最小值; (Ⅱ)求f(x)的最大值.【答案】解:(Ⅰ)根据题意,当a =−1时,f(x)=−x 2+x =−(x −12)2+14; 所以 f(x)在区间(0,12)上单调递增,在(12,2)上f(x)单调递减. 因为 f(0)=0,f(2)=−2, 所以 f(x)的最小值为−2. (Ⅱ)①当a =0时,f(x)=x . 所以 f(x)在区间[0,2]上单调递增, 所以 f(x)的最大值为f(2)=2.当−2≤a <0时,函数f(x)=ax 2+x 图象的对称轴方程是x =−12a . ②当0<−12a ≤2,即−2≤a ≤−14时,f(x)的最大值为f(−12a )=−14a . ③当−14<a <0时,f(x)在区间[0,2]上单调递增, 所以 f(x)的最大值为f(2)=4a +2.综上,当−2≤a ≤−14时,f(x)的最大值为f(−12a )=−14a ; 当−14<a ≤0时,f(x)的最大值为4a +2.【解析】(Ⅰ)根据题意,将a =−1代入函数的解析式,结合二次函数的性质分析可得 f(x)在区间(0,12)上单调递增,在(12,2)上f(x)单调递减,分析可得答案;(Ⅱ)根据题意,按a 的取值范围分情况讨论,求出函数的最大值,综合即可得答案. 本题考查二次函数的性质以及函数的最值,注意结合函数的单调性进行讨论.27. 已知函数f(x)的定义域为D.若对于任意x 1,x 2∈D ,且x 1≠x 2,都有f(x 1)+f(x 2)<2f(x 1+x 22),则称函数f(x)为“凸函数”.(Ⅰ)判断函数f 1(x)=2x 与f 2(x)=√x 是否为“凸函数”,并说明理由; (Ⅱ)若函数f(x)=a ⋅2x +b(a,b 为常数)是“凸函数”,求a 的取值范围; (Ⅲ)写出一个定义在(12,+∞)上的“凸函数”f(x),满足0<f(x)<x.(只需写出结论)【答案】(本小题满分10分)(Ⅰ)解:对于函数f 1(x)=2x ,其定义域为R .取x 1=0,x 2=1,有f(x 1)+f(x 2)=f(0)+f(1)=2,2f(x 1+x 22)=2f(12)=2,所以 f(x 1)+f(x 2)=2f(x 1+x 22),所以 f 1(x)=2x 不是“凸函数”.…………(2分)对于函数f 2(x)=√x ,其定义域为[0,+∞).对于任意x1,x2∈[0,+∞),且x1≠x2,由[f(x1)+f(x2)]2−[2f(x1+x22)]2=(√x1+√x2)2−(2√x1+x22)2=−(√x1−√x2)2<0,所以[f(x1)+f(x2)]2<[2f(x1+x22)]2.因为f(x1)+f(x2)>0,2f(x1+x22)>0,所以f(x1)+f(x2)<2f(x1+x22),所以f2(x)=√x是“凸函数”.……………(4分) (Ⅱ)解:函数f(x)=a⋅2x+b的定义域为R.对于任意x1,x2∈R,且x1≠x2,f(x1)+f(x2)−2f(x1+x22)=(a⋅2x1+b)+(a⋅2x2+b)−2(a⋅2x1+x22+b)……………………(5分)=a(2x1+2x2−2×2x1+x22)=a(2x12−2x22)2.……………………(7分)依题意,有a(2x12−2x22)2<0.因为(2x12−2x22)2>0,所以a<0.……………………(8分)(Ⅲ)f(x)=√x−12 (x>12).(注:答案不唯一)……………………(10分)【解析】(Ⅰ)取x1=0,x2=1,有f(x1)+f(x2)=f(0)+f(1)=2,2f(x1+x22)=2f(12)=2,验证,然后利用单调性证明即可.(Ⅱ)函数f(x)=a⋅2x+b的定义域为R.对于任意x1,x2∈R,且x1≠x2,f(x1)+f(x2)−2f(x1+x22)转化证明即可.(Ⅲ)f(x)=√x−12 (x>12).本题考查函数与方程的应用,考查转化思想以及计算能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西城区2018—2019学年度第一学期八年级期末数学试卷2019年1月一、选择题(本题共30分,每小题3分)1.图书馆的标志是浓缩了图书馆文化的符号,下列图书馆标志中,不是..轴对称的是()2.500米口径球面射电望远镜,简称FAST,是世界上最大的单口径球面射电望远镜,被誉为“中国天眼”.2018年4月18日,FAST望远镜首次发现的毫秒脉冲星得到国际认证,新发现的脉冲星自转周期为秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将用科学记数法表示应为()(A)0.519×10-2(B)5.19×10-3(C)51.9×10-4(D)519×10-63.在△ABC中,AB=3,AC=5,第三边BC的取值范围是()(A)10<BC<13 (B)4<BC<12 (C)3<BC<8 (D)2<BC<84.如图,△1+△2+△3+△4+△5等于()(A)360° (B)540° (C)720° (D)900°5.对于一次函数y=(k -3)x+2,y随x的增大而增大,k的取值范围是()(A)k<0 (B)k>0 (C)k<3 (D)k>36.下列各式中,正确的是().(A)2242ab ba c c=(B)1a b bab b++=(C)23193xx x-=-+(D)22x y x y-++=-7.如图,已知△ABC,下面甲、乙、丙、丁四个三角形中,与△ABC全等的是()8.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km,线路二全程90 km,汽车在线路二上行驶的平均时速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时,如果设汽车在线路一上行驶的平均速度为x km/h,则下面所列方程正确的是()(A)759011.82x x=+(B)759011.82x x=-(C)759011.82x x=+(D)759011.82x x=-0.005190.005199.如图,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,当PC 与PE 的和最小时,△CPE 的度数是( )(A )30° (B )45° (C )60° (D )90° 10. 如图,线段AB =6cm ,动点P 以2cm/s 的速度从A ---B---A 在线段AB 上运动,到达点A 后,停止运动;动点Q 以1cm/s 的速度从B---A 在线段AB 上运动,到达点A 后,停止运动.若动点P ,Q 同时出发,设点Q 的运动时间是t (单位:s )时,两个动点之间的距离为s (单位:cm ),则能表示s 与t 的函数关系的是( )二、填空题(本题共18分,第11~16题,每小题2分,第17题3分,第18题3分) 11.若分式11x x -+的值为0,则x 的值为 . 12.在平面直角坐标系xOy 中,点(1,-2)关于x 轴对称的点的坐标为 .13.计算20 + 2-2 = .14.如图,在△ABC 中,AB 的垂直平分线MN 交AC 于点D ,连接BD .若AC =7,BC =5,则△BDC 的周长是 .15.如图,边长为a cm 的正方形,将它的边长增加b cm ,根据图形写一个等式 .PED CBA16.如图,在△ABC 中,CD 是它的角平分线,DE △AC 于点E .若BC =6 cm ,DE =2 cm ,则△BCD 的面积为 cm 2.17.如图,在平面直角坐标系xOy 中, 点A 的坐标为 (4,-3),且OA =5,在x 轴上确定一点P ,使△AOP 为等腰三角形.(1)写出一个符合题意的点P 的坐标 ; (2)请在图中画出所有..符合条件的△AOP . 18.(1)如图1,△MAB =30°,AB =2cm .点C 在射线AM 上,利用图1,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题.你画图时,选取的BC 的长约为 cm (精确到0.1cm ).(2)△MAB 为锐角..,AB =a ,点C 在射线AM 上,点B 到射线AM 的距离为d , BC =x ,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是.三、解答题(本题共30分,每小题6分)19.(1)分解因式()()x x a y a x -+- (2)分解因式321025x y x y xy -+ ECDB A20.计算2212441x x xx x x x--+ +÷++21.解方程61 33xx x+= -+22.如图,点A,B,C, D在一条直线上,且AB=CD,若△1=△2,EC=FB.求证:△E=△F.23.在平面直角坐标系xOy中,直线l1: y=3x与直线l2: y=kx+b交于点A(a,3) ,点B(2,4) 在直线l2上.(1)求a的值;(2)求直线l2的解析式;(3)直接写出关于x的不等式3x<kx+b的解集.四、解答题(本题共12分,第24题7分,第25题5分)24.在平面直角坐标系xOy中,正方形ABCD的两个顶点的坐标分别为A(-2,0) ,D(-2,4) ,顶点B在x轴的正半轴上.(1)写出点B,C的坐标;(2)直线y=5x+5与x轴交于点E,与y轴交于点F.求△EFC的面积.25.阅读下列材料下面是小明同学“作一个角等于60°的直角三角形”的尺规作图过程.请你参考小明同学解决问题的方式,利用图3再设计一种“作一个角等于60°的直角三角形”的尺规作图过程(保留作图痕迹),并写出作法,证明,及推理依据.作法:证明:五、解答题(本题8分)26.在△ABC中,AB=AC,在△ABC的外部作等边三角形△ACD,E为AC的中点,连接DE并延长交BC于点F,连接BD.(1)如图1,若△BAC=100°,求△BDF的度数;(2)如图2,△ACB的平分线交AB于点M,交EF于点N,连接BN.△补全图2;△若BN=DN,求证:MB=MN.北京市西城区2018— 2019学年度第一学期期末试卷八年级数学参考答案及评分标准 2019.1一、选择题(本题30分,每小题3分)题号1 2 3 4 5 6 7 8 9 10答案A B D B D C C A C D 二、填空题(本题共18分,第11~16题每小题2分,第17,18题每小题3分)题号 11 12 13 14 15 16 答案 1(1, 2)11412 a 2 + 2ab + b 2 = ( a + b ) 2 6题号1718答案(1)答案不唯一,如:(-5,0); (2)如图,(1) 答案不唯一,如: BC =1.2cm ;(2) x =d 或x ≥a .三、解答题(本题共30分,每小题6分) 19.(1)解: ()()x x a y a x -+- =()()x x a y x a --- =()()x a x y -- ·················································································· 3分(2)解:321025x y x y xy -+ =2(1025)xy x x -+=2(5)xy x - ······················································································· 3分20. 解:2212441x x x x x x x --++÷++=212(1)(1)(2)x x x x x x -++⋅+- =11(2)x x x +- =21(2)(2)x x x x x -+--=1(2)x x x -- ······························································································ 6分 21.解:方程两边乘 (x - 3)(x + 3),得 x (x +3) + 6 (x -3)= x 2 -9.解得 x = 1 .检验:当x = 1时,(x - 3)(x + 3)≠0.所以,原分式方程的解为x =1 . ································································ 6分22.证明:△ △1+△3=180°,△2+△4=180°.又 △ △1=△2,△ △3=△4,△ AB = CD ,△ AB + BC = CD + BC 即AC = DB . ····························· 3分4321E F H MBA在△ACE和△DBF中,△,43,, AC DB EC FB=⎧⎪∠=∠⎨⎪=⎩△ △ACE △△DBF. ·················································································5分△ △E=△F.··························································································6分23.解:(1)直线l1: y=3x与直线l 2: y=kx+b交于点A(a,3) ,所以3a =3.解得a =1.(2)由(1)点A(1,3) ,直线l2: y=kx+b过点A(1,3) ,点B(2,4) ,所以3,2 4.k bk b+=⎧⎨+=⎩.解方程组得1,2. kb=⎧⎨=⎩直线l2的解析式为y=x+2. ··········4分(3)x<1.············································································································6分四、解答题(本题共12分,第24题8,第25题6分)24.解:(1)点B的坐标为(2,0) ,点C的坐标(2,4);·····································2分直线EC的解析式为4433y x=+,(2)直线y=5x+5与x轴交于点E (-1,0) ,与y轴交于点F(0,5) . ·················4分直线EC的解析式为4433y x=+,EC与y轴交于点H(0,43),所以FH=113.所以S△EFC=1()2E CEH x x⋅+=112. ·······················································8分25.(本题5分)本题答案不唯一,如:作法:如图3,(1)延长BA至B’,使得AB’=AB;(2)分别以点B ,点B’ 为圆心,BB’长为半径画弧,两弧交于点C;(3)连接AC,BC.△ABC就是所求的直角三角形. ·······················1分证明:连接B’C.由作图可知,BC= BB’ = B’C,AB’=AB,∴△ABC是等边三角形(等边三角形定义).△ △B=60° (等边三角形每个内角都等于60°) .△ AC△BB’于点E (等边三角形一边上的中线与这边上的高相互重合) .△ △ABC就是所求作的直角三角形.························································6分四、解答题(本题共8分)26.(1)解:在等边三角形△ACD中,△ E 为AC 的中点,△△ADE =12△ADC =30°. ································································· 2分△ AB =AC ,△ AD =AB .△ △BAD =△BAC +△CAD =160°. △ △ADB =△ABD =10°.△ △BDF =△ADF -△ADB =20°. ······················································· 4分(2)△补全图形,如图所示. ················································································ 5分△证明:连接AN .△ CM 平分△ACB ,△ 设 △ACM =△BCM =α. △ AB =AC , △ △ABC =△ACB =2α. 在等边三角形△ACD 中, △ E 为AC 的中点, △DN △AC . △ NA =NC . △ △NAC =△NCA =α. △ △DAN =60°+ α. 在△ABN 和△ADN 中, △ ,,,AB AD BN DN AN AN =⎧⎪=⎨⎪=⎩△ △ABN △△ADN .△ △ABN =△ADN =30°,△BAN =△DAN =60°+ α. △ △BAC =60°+ 2α.在△ABC 中,△BAC +△ACB +△ABC =180°, △ 60°+ 2α+ 2α+2α=180°. △α=20°.△ △NBC =△ABC -△ABN = 10°. △ △MNB =△NBC + △NCB =30°. △ △MNB =△MBN . △ MB =MN . ························································································· 8分NB DA C E FM。

相关文档
最新文档