人工神经网络基本概念

合集下载

《人工神经网络》课件

《人工神经网络》课件

拟牛顿法
改进牛顿法的不足,使用正定矩阵近 似Hessian矩阵,提高优化效率。
共轭梯度法
结合梯度下降法和共轭方向的思想, 在每一步迭代中选择合适的共轭方向 进行搜索。
遗传算法
模拟生物进化过程的优化算法,通过 选择、交叉、变异等操作寻找最优解 。
正则化技术
L1正则化
对权重参数的绝对值进行惩罚总结词
自然语言处理是利用人工神经网络对自然语言文本进行分析和处理的技术。
详细描述
自然语言处理是实现人机文本交互的关键技术之一,通过训练神经网络对大量文本数据进 行学习,可以实现对文本的自动分类、情感分析、机器翻译等功能。
具体应用
在社交媒体领域,自然语言处理技术可以用于情感分析和舆情监控;在新闻媒体领域,可 以用于新闻分类和摘要生成;在机器翻译领域,可以用于实现多语言之间的自动翻译。
06
人工神经网络的未 来展望
新型神经网络模型的研究
持续探索新型神经网络模型
随着技术的不断发展,新型神经网络模型的研究将不断涌现,以解决传统模型无法处理 的复杂问题。这些新型模型可能包括更复杂的拓扑结构、更高效的参数优化方法等。
结合领域知识进行模型设计
未来的神经网络模型将更加注重与领域知识的结合,以提高模型的针对性和实用性。例 如,在医疗领域,结合医学影像和病理学知识的神经网络模型能够更准确地辅助医生进
THANKS
感谢您的观看
文字、人脸等目标的技术。
02 03
详细描述
图像识别是人工神经网络应用的重要领域之一,通过训练神经网络对大 量图像数据进行学习,可以实现对图像的自动分类、目标检测、人脸识 别等功能。
具体应用
在安防领域,图像识别技术可以用于人脸识别和视频监控;在医疗领域 ,可以用于医学影像分析;在电商领域,可以用于商品图片的自动分类 和检索。

人工神经网络概述

人工神经网络概述

2.1 感知器
单层感知器的学习法:
2.1 感知器
多层感知器:
在输入层和输出层之间加入一层或多层隐单元,构成 多层感知器。提高感知器的分类能力。
两层感知器可以解决“异或”问题的分类及识别任一凸 多边形或无界的凸区域。
更多层感知器网络,可识别更为复杂的图形。
2.2 BP网络
多层前馈网络的反向传播 (BP)学习算法,简称BP 算法,是有导师的学习,它 是梯度下降法在多层前馈网 中的应用。
基本感知器
是一个具有单层计算神经元的两层网络。 只能对线性可分输入矢量进行分类。
n个输入向量x1,x2, …, xn 均为实数,w1i,w2i,…,wni 分别是n个输入 的连接权值,b是感知器的阈值,传递函数f一般是阶跃函数,y 是感 知器的输出。通过对网络权值的训练,可以使感知器对一组输入矢量 的响应成为0或1的目标输出,从而达到对输入矢量分类识别的目的。
网络结构 见图,u、y是网络的输
入、输出向量,神经元用节 点表示,网络由输入层、隐 层和输出层节点组成,隐层 可一层,也可多层(图中是 单隐层),前层至后层节点 通过权联接。由于用BP学习 算法,所以常称BP神经网络 。
2.2 BP网络
已知网络的输入/输出样本,即导师信号 。
BP学习算法由正向传播和反向传播组成 :
net.trainparam.goal=0.00001;
网络可能根本不能训
% 进行网络训练和仿真:
练或网络性能很差;
[net,tr]=train(net,X,Y);
若隐层节点数太多,
% 进行仿真预测
虽然可使网络的系统
XX1=[0.556 0.556 0.556 0.556 0.556 0.556 0.556] 误差减小,但一方面

第6章人工神经网络算法ppt课件

第6章人工神经网络算法ppt课件
1.基本概念 1.3 主要的神经网络模型 目前使用的比较典型的一些神经网络模型主要有以下几类:
4.随机型神经网络 随机型神经网络其基本思想是:不但让网络的误差和能量函数向减小的方
向变化,而且还可按某种方式向增大的方向变化,目的是使网络有可能跳出局部 极小值而向全局最小点收敛。随机型神经网络的典型算法是模拟退火算法。
曲线越陡。
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 神经元采用了不同的激活函数,使得神经元具有不同的信息处理特性,并且
神经元的信息处理特性是决定神经网络整体性能的主要因素之一。 下面介绍四种常用的激活函数形式:
(4)高斯函数。高斯函数(也称钟型函数)也是极为重要的一类激活函数,常用 于径向基神经网络(RBF网络),其表达式为:
通过调整权值和阈值,使得误差能量达到最小时,网络趋于稳定状态,学习
结束。
(1)输出层与隐含层之间的权值调整。对每一个 wjk 的修正值为:
w jk
E
w jk
E
netk
netk w jk
J
式中: 为学习步长,取值介于(0,1),对式 netk wjkOj 求偏导得:
j0
netk wjk
Oj
x1
w1i
x2
w2ifΒιβλιοθήκη yixnwni
x0 1
六、人工神经网络算法
1.基本概念 1.2 人工神经元模型 在神经元中,对信号进行处理采用的是数学函数,通常称为激活函数、激励
函数或挤压函数,其输入、输出关系可描述为
u j
f
n
wij xi
j
i1
y f uj
式中xi i 1,2,,n是从其它神经元传来的输入信号; j 是该神经元的阈值;

人工神经网络的基本原理和应用

人工神经网络的基本原理和应用

人工神经网络的基本原理和应用概述人工神经网络是一种受到人脑神经元启发的计算模型。

它由许多高度互连的处理单元(神经元)组成,这些神经元之间通过连接强度(权值)相互通信。

人工神经网络能够通过学习和训练,自动调整权值和拓扑结构,从而实现某种特定任务。

基本原理人工神经网络的基本原理是模拟生物神经元的工作方式。

每个神经元接收一组输入信号,并根据这些输入信号的权值和激活函数的输出,产生一个输出信号。

这个输出信号又可以作为其他神经元的输入信号,从而实现信息的传递和处理。

人工神经网络通常由多层神经元组成,包括输入层、隐藏层和输出层。

输入层接收外部输入信号,隐藏层和输出层对输入信号进行处理和转换。

隐藏层和输出层之间的连接强度(权值)通过训练过程进行学习和调整,以实现预期的输出结果。

应用领域人工神经网络在各个领域都有广泛的应用,包括但不限于以下几个方面:1.图像识别–人工神经网络可用于图像识别任务,如人脸识别、物体识别等。

通过训练大量图像数据,神经网络可以学习到图像中的特征,并通过对输入图像进行处理,达到准确分类和识别的目的。

2.自然语言处理–人工神经网络在自然语言处理方面也有着广泛的应用。

它可以用于语音识别、情感分析、机器翻译等任务。

通过训练大量文本数据,神经网络可以学习到单词和语义之间的关联,从而实现对自然语言的理解和处理。

3.预测和分类–人工神经网络可以通过训练历史数据,对未来事件进行预测。

例如,它可以用于股票市场预测、天气预报等领域。

此外,神经网络还可用于数据分类,如垃圾邮件过滤、疾病诊断等任务。

4.控制与优化–人工神经网络在控制与优化领域也有着广泛应用。

它可以用于自动驾驶车辆、工业生产优化、智能电网调度等控制系统中,通过学习和训练,实现自动控制和优化的目标。

优势与挑战人工神经网络相比传统的算法有一些明显的优势,但同时也面临一些挑战。

优势•并行处理能力:神经网络的并行处理能力可以加快训练和推理的速度。

•自适应学习:神经网络可以通过训练和反馈机制,自动学习和调整权值,适应输入数据的变化。

人工神经网络算法基础精讲ppt课件

人工神经网络算法基础精讲ppt课件
30
2.3学习规则
学习规则
在神经网络的学习中,各神经元的连接权值需按一定的规则
调整,这种权值调整规则称为学习规则。下面介绍几种常见的学习
规则。
1.Hebb学习规则
2.Delta(δ)学习规则
3.LMS学习规则
4.胜者为王学习规则
5.Kohonen学习规则
6.概率式学习规则
2.3学习规则
1.Hebb学习规则
突触结构示意图
1.3生物神经元的信息处理机理
电脉冲
输 入
树 突
细胞体 形成 轴突




信息处理
传输
图 12.2 生物神经元功能模型
神经元的兴奋与抑制
当传入神经元冲动,经整和使细胞膜电位升高,超过动作电位 的阈值时,为兴奋状态,产生神经冲动,由轴突经神经末稍传出。 当传入神经元的冲动,经整和,使细胞膜电位降低,低于阈值时, 为抑制状态,不产生神经冲动。
④神经元的输出和响应是个输入值的综合作用的结果。
⑤兴奋和抑制状态,当细胞膜电位升高超过阈值时,细胞进入兴奋 状态,产生神经冲动;当膜电位低于阈值时,细胞进入抑制状态。
13
1.6激活函数
神经元的描述有多种,其区别在于采用了不同的激活函数,不 同的激活函数决定神经元的不同输出特性,常用的激活函数有如下 几种类型:
1957年,F.Rosenblatt提出“感知器”(Perceptron)模型,第一 次把神经网络的研究从纯理论的探讨付诸工程实践,掀起了人工神 经网络研究的第一次高潮。
4
1.1人工神经网络发展简史
20世纪60年代以后,数字计算机的发展达到全盛时期,人们误以 为数字计算机可以解决人工智能、专家系统、模式识别问题,而放 松了对“感知器”的研究。于是,从20世纪60年代末期起,人工神 经网络的研究进入了低潮。

基于人工神经网络的预测模型

基于人工神经网络的预测模型

基于人工神经网络的预测模型随着计算机技术的不断进步,人工神经网络得到了广泛的应用。

人工神经网络是一种模拟人类神经系统的计算模型,它通过学习和适应来实现对数据的预测和分类。

其中,基于人工神经网络的预测模型具有重要的应用价值。

本文将围绕基于人工神经网络的预测模型展开探讨。

一、人工神经网络的基本概念人工神经网络是由神经元和它们之间的联系构成的一种网络结构。

它采用一种类似于大脑神经元之间相互联系的方式,对输入信号进行加工处理,产生相应的输出信号。

它的结构大致分为输入层、隐含层和输出层三部分,其中隐含层是神经网络最核心的部分,在这里所有的计算、加工都以神经元为基本单元,最终得到预测值或者分类结果。

二、基于人工神经网络的预测模型基于人工神经网络的预测模型是一种利用神经网络来对未来事件的趋势进行预测的方法。

其基本思想是将历史数据作为神经网络的输入数据,在神经网络中进行训练和学习,并生成一组能够对未来事件进行预测的参数。

基于这些参数,可以通过将未来事件的输入数据带入到神经网络中进行预测,得到预测结果。

通常,基于人工神经网络的预测模型分为两种类型:前向神经网络和逆向神经网络。

前向神经网络是把输入信号从输入层传输到输出层。

在此过程中,训练样本经过多次迭代调整,使得网络产生最佳的连接权重,然后通过输入未来事件,得到预测结果。

而逆向神经网络则是对输出信号进行学习和训练,从时间维度反推输入信号,从而实现预测。

在实际应用中,基于人工神经网络的预测模型的预测效果较好,而且可以适用于很多领域,如股票走势预测、交通流量预测等。

在金融领域中,基于人工神经网络的预测模型可以用来预测股票市场走势,帮助投资者做出正确的决策。

在交通领域中,监测地区的路况和交通流量,以提供数据支持给政府进行城市规划。

三、基于人工神经网络的预测模型的优缺点优点:第一,基于人工神经网络的预测模型可以快速地学习和处理大量的数据,使其适用于多种领域的应用。

第二,基于人工神经网络的预测模型能够自适应地进行学习,具有强大的自学习能力,同时还能够随着输入数据量的增加不断地提高预测准确率。

人工神经网络

人工神经网络
最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、 自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了 良好的智能特性。
神经元
如图所示 a1~an为输入向量的各个分量 w1~wn为神经元各个突触的权值 b为偏置 f为传递函数,通常为非线性函数。以下默认为hardlim() t为神经元输出 数学表示 t=f(WA'+b) W为权向量 A为输入向量,A'为A向量的转置 b为偏置 f为传递函数
分类
根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。在监督学习中,将训练样本的数据 加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经 多次训练后收敛到一个确定的权值。当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学 习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学 习阶段与工作阶段成为一体。此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb 学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。自组织映射、 适应谐振理论网络等都是与竞争学习有关的典型模型。
神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。其中,具有分布存储、并行处理、 自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经 成为一大研究热点。由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可 以获得更好的应用效果。目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集 理论、分形理论、证据理论和灰色系统等的融合。

什么是神经网络?

什么是神经网络?

什么是神经网络?随着人工智能技术的不断发展,神经网络已成为热门的研究领域之一。

但很多人并不了解神经网络是什么,本文将详细介绍这一领域的基本概念。

一、神经网络的定义和类别神经网络,又称为人工神经网络,其定义为由大量节点(也称为神经元)互相连接组成的网络。

根据神经元之间的连接方式和模型参数的不同,神经网络被分为多种类别,例如前馈神经网络、反馈神经网络和卷积神经网络等。

其中,前馈神经网络是应用最广泛的一类,其结构为由输入层、隐藏层和输出层所构成的三层结构。

二、神经网络的工作原理神经网络的工作原理是通过大量的样本数据进行训练,不断优化神经元间的连接权重,使其能够预测未知数据的结果。

具体过程为:将输入数据通过输入层传递至隐藏层,通过各隐藏节点的权重计算产生输出值,再将输出值传递到输出层进行结果输出,最终与真实结果进行比对得出误差,根据误差值不断更新各神经元之间的权重,使神经网络逐渐提高准确率。

三、神经网络的应用领域神经网络已广泛应用于图像识别、机器学习、自然语言处理、语音识别、智能推荐等领域。

在图像识别中,卷积神经网络能够通过分层抽象特征识别出图像中物体的不同特征,从而实现识别分类;在自然语言处理中,循环神经网络可以实现对语句序列的依赖性建模,对于语言翻译和情感分析等任务有很好的应用前景。

四、神经网络的优缺点神经网络作为一种优秀的机器学习模型,其优点体现在能够处理大量高维度数据和非线性问题、能够进行自我学习和适应、较为灵活等。

但在实际应用中,也存在一些不足之处,例如神经网络训练周期长、容易出现过拟合现象、需要大量数据支持等。

五、神经网络技术的发展前景随着神经网络技术的不断发展,其应用领域也将会得到进一步拓展。

未来,神经网络将会应用于更多领域,例如智能家居、智能医疗、智能制造等,带来更多便利和效益。

总结神经网络是一种通过模拟人类神经元的方式实现信息处理和分析的技术,其应用领域十分广泛,未来有着较大发展空间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《神经网络》讲稿主讲人:谷立臣教授2003年9月第1章基本概念♦作为自然实例的人脑♦人工神经元模型●人工神经网络的拓扑结构及其学习规则♦神经网络的学习策略♦人工神经网络与生物神经网络的比较♦人工神经网络的发展与现状♦人工神经网络与自动控制♦人工神经网络与设备故障诊断♦参考文献♦脑神经生理学家告诉我们:人脑借以记忆与思维的最基本单元是神经元,其数量约为个;♦每一神经元约有个突触;♦神经元间通过突触形成的网络,传递着彼此间的兴奋与抑制;全部大脑神经元构成拓扑上极其复杂的网络群体,由这一网络群体实现记忆与思维。

见图1-1。

111210~103410~10每一个神经元包括细胞体(Cell body或Soma)和突起(Process)两部分。

◆细胞体是神经元新陈代谢的中心,还是接收与处理信息的部件◆突起有两类,即轴突(Axon)与树突(Dendrite)。

轴突的长度相差很大,长的可达1米。

轴突的末端与树突进行信号传递的界面称为突触(synapse),通过突触向其他神经元发送出生物信息,在轴突中电脉冲的传导速度可达到10~100米/秒。

另一类突起——树突(输入),一般较短,但分枝很多,它能接收来自其他神经元的生物电信号,从而与轴突一起实现神经元之间的信息沟通。

突起的作用是传递信息。

◆通过“轴突---突触――树突”这样的路径,某一神经元就有可能和数百个以至更多的神经元沟通信息。

那些具有很长轴突的神经元,更可将信息从一脑区传送到另一脑区。

♦绝大多数神经元不论其体积﹑形状﹑功能如何,不论是记忆神经元还是运动神经元,均可分为一个输入(或感知)器官,一个代数求和器官,一个长距离传递器官和一个输出器官。

见图1-2。

♦既然所有神经元的功能均是相近的,那么何以实现复杂的功能呢?答案是:无一功能是由单个神经元实现的,而是由许多神经元以不同的拓扑结构所共同产生的。

这一平行处理性提高了神经网路系统的冗余度与可靠性。

基于对大脑组织特征的认识及一些生理实验,可以归纳出如下一些大脑神经网络处理信息的特点:♦分布存储与冗余性♦并行处理♦信息处理与存储合一♦可塑性与自组织性♦鲁棒性♦一个事物的信息不只是对应于一个神经元的状态进行记忆,而是分散到许多神经元中进行记忆。

而且每个神经元实际上存储着多种不同信息的部分内容。

在分布存储的内容中,有许多是完成同一功能的,即网络具有冗余性。

网络的冗余性导致网络的存储具有容错性,即其中某些神经元受到损伤或死亡时,仍不至于丢失其记忆的信息。

信息在神经网络中的记忆,主要反映在神经元的突触连接强度上。

♦神经网络并行处理的含义不同于目前的并行处理机,它不是简单地“以空间的复杂性为代价来求得时间上的快速性”,而是反映了根本不同的操作机理。

神经网络既是处理器,又是存储器。

♦人们从未发现大脑皮层中记忆和处理分别属于不同区域的情况,这是因为每个神经元都兼有信息处理和存储的功能。

神经元之间突触连接强度的变化既反映了神经元对激励的响应,即信号处理过程,同时其响应结果又反映了信息的记忆。

这种和二为一的优点对于提高网络信息处理的速度和智能是至关重要的。

♦网络的高连接度意味着一定的误差和噪声不会使网络的性能恶化,即网络具有鲁棒性。

♦大脑的记忆是由环境的刺激在神经元之间形成新的突触连接,或者使原来就有的突触连接加强而形成的。

能形成和改变神经元之间突触连接的现象称为可塑性。

由于环境的刺激,形成和调整神经元之间的突触连接,并逐渐构成神经网络的现象,称为神经系统的自组织性。

由此可见,可塑性是学习和记忆的基础。

♦生物神经元是一个多输入(即它的多个树突和细胞体与其他多个神经元轴突末梢突触连接)﹑单输出单元(每个神经元只有一个轴突作为输出通道),沿神经元轴突传递的信号是脉冲,其等效模型如图1-3所示。

♦从图中可以看出人脑神经系统的工作原理:外部刺激信号或上级神经元信号合成后由树突传给神经元细胞体处理,最后由突触输出给下级神经元或作出响应。

树突突触细胞体轴突输入输出图1-3 生物神经元等效模型♦常用的人工神经元模型主要是基于模拟上述的生物神经元信息的传递特性,即输入﹑输出关系。

如果将生物神经元输入﹑输出脉冲的密度用模拟电压来表示,则上述生物神经元信息传递的主要特性可以用图1-4的模型来模拟。

♦图中,为加在输入端(突触)上的输入信号;为相应的突触连接权系数,它是模拟突触传递强度的一个比例系数;Σ表示突触后信号的空间累加;⊙表示神经元的阈值,表示神经元的响应函数。

该模型的数学表达式为:i x (i=0,1,2,L,n-1)i w f[]011n X X X -011n W W W -θ-Y ∑()f •图1-4 人工神经元模型n 1i i i 0net w x y f (net)===-θ=∑通常被称为响应函数(或变换函数)f[]θθ通常被称为响应函数(或变换函数)。

n 1i i i 0net w x y f (net)===-θ=∑f[]根据响应函数的不同,人工神经元有以下几种类型:♦⑴阈值函数(硬限幅函数﹑阶跃函数)其响应函数如图1-5(a)所示♦⑶sigmoid 函数(函数)在实际的神经网络中,常取为1。

其响应函数如图1-5(c)所示♦⑵线性函数其响应函数如图1-5(b)所示♦⑷双曲正切函数其响应函数如图1-5(d)所示1,x 0f (net)0,x 0≥⎧=⎨<⎩δλx 1f (x)1e -λ=+f (x)kx =f (x)th(x)=β常见神经元激活函数线性型f (x ) = x符号型Sigmoid 型1()1x f x e-=+10()10x f x x >⎧=⎨-≤⎩图1-7 常见神经元响应函数♦神经元的模型确定之后,一个神经网络的特性及能力主要取决于网络的拓扑结构(topology)及学习方法。

(拓扑(结构),拓扑学The physical or logical placement of nodesin a computer network.计算机网络中各个网点的物理或逻辑布局)。

人工神经网络连接的几种基本形式,如图1-6所示。

♦⑴前向网络。

网络的结构如图1-6(a)所示。

♦⑵从输出到输入有反馈的前向网络。

网络的结构如图1-6(b)所示。

♦⑶层内互联前向网络。

网络的结构如图1-6(c)所示。

♦⑷互联网络。

网络的结构如图1-6(d)所示。

前向网络:网络中的神经元是分层排列的,每个神经元只与前一层的神经元相连接。

最上一层为输出层,隐含层可以是一层或多层。

前向网络应用很广泛(如感知器﹑BP﹑RBF网络)。

•人工神经网络的拓扑结构前向神经网络从输出到输入有反馈的前向网络: 网络的本身是前向型的,与前一种不同的是从输出到输入有反馈回路,如ART 网络。

层内互联前向网络:通过层内神经元之间的相互连接,可以实现同一层神经元之间横向抑制或兴奋的机制,从而限制层内能同时动作的神经元数,或者把层内神经元分为若干组,让每组作为一个整体来动作。

一些自组织竞争型神经网络就属于这种类型。

互联网络:互联网络有局部互联和全互连两种。

全互连网络中的每个神经元都与其他神经元相连。

局部互联是指互联只是局部的,有些神经元之间没有连接关系,如Hopfield网络。

全互联网络人工神经网络的学习规则人工神经网络最有价值的特性就是它的自适应功能,这种自适应功能是通过所谓的学习或训练实现的人工神经网络的学习规则可分为如下几种:•相关规则:仅依赖于连接间的激活水平改变权重,如Hebb规则及其各种修正形式等•纠错规则:依赖于输出节点的外部反馈改变网络权重,如感知器学习规则、δ规则等•竞争学习规则:类似于聚类分析算法,学习表现为自适应于输入空间的事件分布,如矢量量化算法、SOM算法、以及的ART训练算法•随机学习规则:利用随机过程、概率统计和能量函数的关系来调节连接权,如模拟退火(SimulatedAnnealing)算法。

此外,基于生物进化规则的基因遗传(Genetic Algorithm GA)算法在某种程度上也可视为一类随机学习算法。

神经网络的学习规则多种多样,可归结为以下两类:•有指导学习•无指导学习•有指导学习不但需要学习用的输入事例,同时还要求与之对应的表示所需期望输出的目标矢量。

进行学习时,首先计算一个输入矢量的网络输出,然后同相应的目标输出比较,比较结果的误差用来按规定的算法改变加权。

如上述纠错规则以及随机学习规则就是典型的有指导学习。

•无指导学习不要求有目标矢量,网络通过自身的“经历”来学会某种功能,在学习时,关键不在于网络实际输出怎样与外部的期望输出相一致,而在于调整权重以反映学习样本的分布,因此整个训练过程实质是抽取训练样本集的统计特性。

如纠错规则和竞争学习规则。

•在工程实践中,有指导学习和无指导学习并不是相互冲突的,目前已经出现了一些融合有指导学习和无指导学习的训练算法。

•如在应用有指导学习训练一个网络后,再利用一些后期的无指导学习来使得网络自适应于环境的变化。

♦一个神经网路的拓扑结构确定之后,为了使它具有某种智能特性,还必须有相应的学习方法与之配合。

可以这样说,学习方法是人工神经网络研究中的核心问题。

♦学习方法归根结底就是网络连接权的调整方法。

人工神经网络连接权的确定通常有两种方法:一种是根据具体要求直接计算出来,如Hopfield网络作优化计算时就属于这种情况;另一种是通过学习得到的,大多数人工神经网络都用这种方法。

♦人工神经网络中一些基本的﹑通用的学习规则主要有:⑴Hebb学习规则⑵学习规则⑶相似学习规则Hebb 学习规则:它是Donall Hebb 根据生理学中条件反射机理。

于1949年提出的神经元连接强度变化的规则。

其内容为:如果两个神经元同时兴奋(即同时被激活),则它们之间的突触连接加强。

如果用,表示神经元i 和j 的激活值(输出),表示两个神经元之间的连接权,则学习规则可以表示为这里a 表示学习速率。

Hebb 学习规则是人工神经网络学习的基本规则,几乎所有神经网络的学习规则都可以看作Hebb 学习规则的变形。

i v j v ij w ij i jw av v学习规则这种方法是用已知样本作为教师对网络进行学习,又称误差校正规则。

设为输入﹑输出样本对,,。

把作为网络的输入,在连接权的作用下,可得网络的的实际输出。

设神经元i 到神经元j 的连接权为,则权的调整量为式中,a 为学习速率;为误差(即期望输出与实际输出之差);为第i 个神经元的输出。

函数根据具体情况而定。

δk k (X ,Y )(k 1,2,,p)=k T 12m Y [y ,y ,,y ]=k 12n X [x ,x ,,x ]=k X k 12m Y [y ,y ,,y ]=ij w ij j i j j j w a v F(y y )=δδ=-i i y y -i v F[]相似学习规则:设为从神经元i 到神经元j 的连接权,为神经元i 的输出,则连接权的调整为在这种学习中,是使趋近于的值。

相关文档
最新文档