(完整版)铜合金在浇铸时元素的作用

合集下载

铸造铜合金的性能和用途

铸造铜合金的性能和用途

-1-
表 3 铸造铜合金的性能和用途
铸造
力学性质


方法

牌号
抗 拉 强 度伸长率布氏硬 S-砂型
J-金属型 σb/MPa δ5/% 度 HBS
特性及用途
锡 青 ZCuSn5Pb5Zn5 铜
S 200 J 250
13 590 耐磨性、耐蚀性良好,铸造性能 和气密性较好,易切削,用于轴
13 635 瓦、衬套、蜗轮等
铜及其合金
铜及其合金分为纯铜、黄铜、青铜相白铜,它具有良好的导 电性、导热性和耐腐蚀性,并且其焊接性能也很好。
黄铜分为普通黄铜(铜锌合金)和特殊黄铜(铜锌合金加人 其他元素的多元合金);青铜是以锡、铝、硅、锰、银、镉为主 要元素的铜合金;白铜是以镍为主要元素的铜合金。
黄铜的牌号、化学成分和用途见表 1,青铜的牌号、化学成 分和用途见表 2,铸造铜合金的性能和用途见表 3。
状简单的大型铸件,在 250 尤以 20 930 下工作的管配件
锰 黄 ZCuZn409Mn2 铜
S 345 J 390
20 785 铸造性能良好,受热时组织稳定, 耐蚀耐磨,可焊接,适于在蒸汽
25 885 和液体燃料中工作的各类零件
铝 黄 ZCuZn31Al2 铜
普 通
ZCuZn38 黄 铜
S 295 J 390 S 295 J 295
锡 青 ZCuSnlOPb1 铜
铝 青 ZCuAl9Mn2 铜
S 220 J 310 S 390 J 440
3
785 有较好的铸造性能,硬度高,耐
磨性很好,易切削,可焊接,用
于蜗轮、齿轮、轴瓦、衬套等,
2
885 以及自动机床丝杠螺母

微量合金元素对铜合金组织的影响

微量合金元素对铜合金组织的影响

微量合金元素对铜合金组织的影响
1.磷(P):磷是一种常见的微量合金元素,对纯铜和铜合金都有很大的影响。

磷的加入可以提高铜合金的强度和硬度,同
时还能够提高铜合金的耐腐蚀性能。

磷与铜形成的磷化铜溶解
度很低,可以细化铜合金的晶粒结构,从而提高合金的强度。

2.锡(Sn):锡是一种广泛应用于铜合金中的微量合金元素。

锡的加入可以提高铜合金的耐蚀性,尤其是在海水中具有良好
的抗腐蚀性能。

此外,锡还能够改善铜合金的润滑性能和耐磨
性能。

锡与铜形成的固溶体可以使铜合金晶粒细化,进而提高
合金的强度和硬度。

3.硼(B):硼是一种强过渡元素,对铜合金具有很强的固溶强化作用。

硼的加入可以显著提高铜合金的强度和硬度,并且
还能够改善其耐腐蚀性能。

硼与铜形成的固溶体具有高的固溶度,可以细化铜合金的晶粒结构,从而提高合金的强度。

4.锌(Zn):锌是一种常见的微量合金元素,通常与铜形成
黄铜合金。

锌的加入可以显著提高铜合金的强度和硬度,并且
还可以改善合金的耐磨性能和耐腐蚀性能。

锌与铜形成的固溶
体可以细化铜合金的晶粒结构,并且还可以改变合金的相变温
度和熔点。

铸造低合金钢中合金元素的作用

铸造低合金钢中合金元素的作用

铸造低合金钢常用的合金元素有Mn、Si、Cr› Ni、Mo和Cu,除MO 以外,加入量通常大于1%。

一、镒锦在钢中一部分溶于铁素体,如经热处理后钢中有残留奥氏体,则奥氏体中也溶有镒;另一部分形成碳化物Mn3C,Mn3C又与渗碳体复合成为含镒渗碳体(Fe,Mn)3C°镒在钢中扩大奥氏体区,使钢的上临界温度和共析温度降低。

同时,镒还能使过冷奥氏体的分解速率显著降低。

因此,锦在钢中除有固溶强化作用外,还可以提高钢的淬透性,而且在这方面,镒可以说是作用最强的合金元素。

镜使共析点向碳含量低的方向偏移,在碳含量和冷却速率相同的情况下,提高钢中的镒含量可使组织中的珠光体量增多、分散度增大,从而提高钢的强度和硬度。

此外,由于奥氏体区扩大,上临界温度降低,二次结晶过程中,先共析铁素体因在较低的温度析出而得以细化。

镒还可使马氏体转变的开始温度降低,淬火后组织中残留奥氏体增多,钢的塑性较好,淬火时产生的应力和变形都较少。

用锌作为合金元素的钢也有缺点:一是对过热敏感,易导致晶粒粗大; 二是对回火脆性敏感。

二、硅硅在钢中不形成碳化物,也不溶于碳化物,只固溶于金属基体。

铁素体中固溶的硅有较强的固溶强化作用,能使钢的强度和硬度提高,塑性和韧性则有所下降。

共析转变过程中,过冷奥氏体中析出片状渗碳体时, 硅不进入渗碳体,全部聚集于渗碳体周围,阻碍片状渗碳体生长。

所以, 硅有细化珠光体的作用。

在低碳钢中,硅有促进硬化的作用,因为硅阻碍珠光体转变,使钢中较易于形成马氏体。

但是,在提高钢的淬透性方面,硅的作用较弱。

如果和其他合金元素配合使用,则可有很好的互补效果。

硅在钢中是缩小奥氏体区的元素,使钢的固态相变温度升高,因而热处理温度应随硅含量的增加而提高。

在硅含量较高的钢中,由于珠光体转变在较高的温度下进行,原子扩散速率提高的作用可能超过硅阻碍珠光体转变的作用,从而使珠光体粗大。

三、铭铭在钢中既能固溶于铁素体,又能与碳形成多种质硬而且稳定的碳化物。

压铸铝合金中合金元素的作用及应用

压铸铝合金中合金元素的作用及应用

压铸铝合金中合金元素的作用及应用作者:穆妍君来源:《中国科技纵横》2013年第07期【摘要】介绍压铸铝合金中含有的主要元素及各自的作用,以及由此产生的应用,并简要分析说明其中的机理。

【关键词】压铸铝合金铝硅合金铝铜合金铝镁合金铝锌合金压力铸造是在高压作用下,使液态或半液态金属以较高的速度填充压铸型型腔,并在压力下成型和凝固而获得铸件的方法。

在现今铸造方法中,压力铸造是技术含量较高的先进铸造方法之一,因为其工艺方面比较有优势,所以生产的产品有产品质量好、生产效率高、经济效果优良等优势,从而被广泛应用于电子通讯工业、建筑工程、机械装备仪表以及汽车工业,有色金属合金压铸件特别是轻合金占到总量一半以上。

压铸合金主要有镁合金、锌合金、铜合金、铝合金等,其中使用最为广泛的是铝合金。

铝合金的导热性好、耐腐蚀性好、比强度大、密度小、综合性能好。

大部分铝合金在浓硝酸、汽油、淡水及各种有机物中都有比较好的耐腐蚀性,无论是在高温环境还是低温环境下工作,都能保持良好的力学性能。

此外,铝合金线收缩相对较小,具有很好的填充性能。

1 压铸铝合金中的合金元素及其作用纯铝的抗拉强度较低,塑性较高,不适合直接进行锻造。

为了提升锻造性能,扩宽应用领域,可以在纯铝中加入一些其它的元素来改善其性能。

铸造铝合金中合金元素的加入就可以很好的改善铝合金的铸造性能和力学性能。

这些合金元素主要有Cu、Si、Mg、Mn、Fe、Ni以及稀土元素等。

1.1 铜(Cu)在铝合金中加入铜后可以增强铝合金的抗腐蚀性及机械强度。

铝铜合金的延展性很好,因为其具有是面心立方的晶体结构。

同时由于电子的结构比较松散,这使得这类合金的导电导热性较好。

铝铜合金中铜的含量一般控制在4%~11%之间,主要强化相是CuAl2,在室温和高温下的力学性能都比较好。

铜加入到铝硅合金中后,组织中会出现Si相、CuAl2和α固溶体。

α相分别与CuAl2和Si构成两相共晶体,同时这三个相可共同构成三相共晶体,其共晶温度为524℃,当铜作为强化相固溶于铝基体中或以颗粒状化合物形式存在时,铝合金的强度和硬度可以得到显著提高,但会降低伸长率;当铜形成的化合物成网状时,铝合金的伸长率和强度都会大幅度降低。

压铸模具钢中各种合金元素的作用

压铸模具钢中各种合金元素的作用

模具钢中的合金元素,最常用的有硅、锰、铬、镍、钼、钨、钒,钛,铌、硼、铝等;以下将分别说明它们在钢中的作用:1、硅在钢中的作用:(1)提高钢中固溶体的强度和冷加工硬化程度使钢的韧性和塑性降低。

(2)硅能显著地提高钢的弹性极限、屈服极限和屈强比,这是一般弹簧钢。

(3)耐腐蚀性。

硅的质量分数为15%一20%的高硅铸铁,是很好的耐酸材料。

含有硅的钢在氧化气氛中加热时,表面也将形成一层SiO2薄膜,从而提高钢在高温时的抗氧化性。

(4)缺点:使钢的焊接性能恶化。

2、锰在钢中的作用:(1)锰提高钢的淬透性。

(2)锰对提高低碳和中碳珠光体钢的强度有显著的作用。

(3)锰对钢的高温瞬时强度有所提高。

锰钢的主要缺点是:(1)含锰较高时,有较明显的回火脆性现象。

(2)锰有促进晶粒长大的作用,因此锰钢对过热较敏感t在热处理工艺上必须注意。

这种缺点可用加入细化晶粒元素如钼、钒钛等来克服。

(3)当锰的质量分数超过1%时,会使钢的焊接性能变坏(4)锰会使钢的耐锈蚀性能降低。

3、铬在钢中的作用:(1)铬可提高钢的强度和硬度。

(2)铬可提高钢的高温机械性能。

(3)使钢具有良好的抗腐蚀性和抗氧化性。

(4)阻止石墨化。

(5)提高淬透性。

缺点:①铬是显著提高钢的脆性转变温度;②铬能促进钢的回火脆性。

4、镍在钢中的作用:(1)可提高钢的强度而不显著降低其韧性。

(2)镍可降低钢的脆性转变温度,即可提高钢的低温韧行。

(3)改善钢的加工性和可焊性。

(4)镍可以提高钢的抗腐蚀能力,不仅能耐酸,而且能抗碱和大气的腐蚀。

5、钼在钢中的作用:(1)钼对铁素体有固溶强化作用。

(2)提高钢热强性(3)抗氢侵蚀的作用。

(4)提高钢的淬透性。

缺点:钼的主要不良作用是它能使低合金钼钢发生石墨化的倾向。

6、钨在钢中的作用:(1)提高强度。

(2)提高钢的高温强度。

(3)提高钢的抗氢性能。

(4)是使钢具有热硬性;因此钨是高速工具钢中的主要合金元素。

7、钒在钢中的作用:(1)热强性。

各元素在压铸铝中的作用

各元素在压铸铝中的作用

各元素在压铸铝中的作用一、硅(Si)硅是铝合金中最主要的合金元素之一,其含量通常在6-13%之间。

硅的作用主要体现在以下几个方面:1. 改善铝合金的流动性:硅能够使铝合金的液态流动性增强,有利于铝液在模具中充填,提高铸件的充模性能。

2. 提高铸件的强度:硅能够在铝基体中形成硅固溶体,增加了合金的强度和硬度。

同时,硅还能够细化铝合金的晶粒,提高其综合性能。

3. 提高耐热性能:硅能够稳定铝合金的相结构,提高其耐热性能。

在高温条件下,硅能够防止铝合金发生相变,保持其稳定的性能。

二、铜(Cu)铜是常用的铝合金元素之一,其含量通常在2-8%之间。

铜的作用主要体现在以下几个方面:1. 提高铝合金的强度和硬度:铜能够与铝形成固溶体,增加合金的强度和硬度。

2. 提高耐腐蚀性:铜能够提高铝合金的耐腐蚀性,使其在恶劣环境下具有更好的抗腐蚀性能。

3. 改善热处理性能:铜能够稳定铝合金的相结构,提高其热处理性能。

同时,铜还能够细化铝合金的晶粒,提高其综合性能。

三、镁(Mg)镁是常用的铝合金元素之一,其含量通常在0.2-1.5%之间。

镁的作用主要体现在以下几个方面:1. 提高铝合金的强度和硬度:镁能够与铝形成固溶体,增加合金的强度和硬度。

2. 改善铝合金的耐热性:镁能够稳定铝合金的相结构,提高其耐热性能。

同时,镁还能够细化铝合金的晶粒,提高其综合性能。

3. 改善铝合金的耐蚀性:镁能够提高铝合金的耐腐蚀性,使其在恶劣环境下具有更好的抗腐蚀性能。

四、锌(Zn)锌是常用的铝合金元素之一,其含量通常在0.1-3%之间。

锌的作用主要体现在以下几个方面:1. 提高铝合金的强度和硬度:锌能够与铝形成固溶体,增加合金的强度和硬度。

2. 改善铝合金的耐蚀性:锌能够提高铝合金的耐腐蚀性,使其在恶劣环境下具有更好的抗腐蚀性能。

3. 改善铝合金的耐热性:锌能够稳定铝合金的相结构,提高其耐热性能。

同时,锌还能够细化铝合金的晶粒,提高其综合性能。

五、锡(Sn)锡是常用的铝合金元素之一,其含量通常在0.1-1%之间。

元素在铝合金中的作用

元素在铝合金中的作用

元素在铝合金中的作用铝合金是一种常见的工程材料,具有轻巧、高强度、耐腐蚀等优点,广泛应用于航空航天、汽车制造、建筑等领域。

在铝合金中,添加不同的元素能够改变其特性和性能。

以下是几种常见的元素及其在铝合金中的作用。

1.硅(Si):硅是铝合金中添加量最多的元素之一、添加硅可以提高铝的强度和耐磨性,并增加铝合金的铸造性能。

硅还能够提高铝的耐热性,降低线性膨胀系数,改善铝合金的高温性能。

2.铜(Cu):铜是铝合金中常见的合金元素之一、添加铜可以显著提高铝合金的强度和硬度,并同时提高耐蚀性。

铝合金中含有一定比例的铜会形成固溶体和过饱和固溶体,增加了晶界间的强度,提高铝合金的抗拉强度和硬度。

但是过高的铜含量会降低铝合金的可焊性。

3.锌(Zn):锌是另一个常见的合金元素,与铜一同被添加到铝合金中。

添加锌可以进一步提高铝合金的强度和硬度,并提高耐腐蚀性。

锌还能够提高铝合金的抗热膨胀性能。

4.镁(Mg):镁是一种轻质金属,被广泛添加到铝合金中以提高其强度和硬度。

添加镁能够显著提高铝合金的拉伸强度和硬度,提高铝合金的耐热性和耐蚀性。

但是,高含量的镁会降低铝合金的塑性和可焊性。

5.锰(Mn):锰是一种添加量很小的合金元素,但是它对改善铝合金的强度和硬度起着重要的作用。

添加锰可以显著提高铝合金的抗拉强度和硬度,并改善铝合金的加工性能以及耐蚀性能。

6.钛(Ti)和锆(Zr):钛和锆都是强化剂,添加到铝合金中可以显著提高其强度和硬度。

这两种元素通常用于高强度铝合金的制造。

除了上述常见的合金元素外,还有其他一些元素如镍(Ni)、铬(Cr)、锆(Zr)等也经常被添加到铝合金中,以期望改善铝合金的性能。

这些元素的添加可以进一步提高铝合金的抗腐蚀性、耐磨性、耐高温性、塑性和可焊性。

总之,铝合金中各种元素的添加可以显著改变铝合金的性能和特性。

不同组分的铝合金具有不同的工程应用。

合理选择和控制合金元素的含量,可以实现对铝合金的强度、硬度、耐热性、耐腐蚀性等性能的调节,满足不同应用领域对铝合金的需求。

铸造合金的组成成分与特性解析

铸造合金的组成成分与特性解析

铸造合金的组成成分与特性解析铸造合金是一类具有特殊物性和广泛应用的金属材料。

本文将对铸造合金的组成成分和特性进行详细解析,帮助读者深入了解这一重要材料。

一、组成成分铸造合金通常由两种或多种金属元素以及少量的非金属元素组成。

不同的金属元素组合可以赋予合金不同的特性和用途。

1. 主要金属元素主要金属元素是构成铸造合金的主要组成部分。

常见的主要金属元素包括铁、铜、铝、镁、锌等。

不同的元素组合形成独特的合金体系,如铝合金、铜合金等。

以铝合金为例,其主要成分是铝。

铝合金通常还含有其他元素,如铜、锌、镁等。

这些元素的添加可以改善铝的物理和化学性能,提高合金的强度、耐腐蚀性等。

2. 铁素体元素铁素体元素是指铁及其固溶体元素。

铸造合金中的铁素体元素主要是铁、镍、铬等。

铁与其他元素的配比和固溶度的限制决定了合金的晶体结构和力学性能。

以不锈钢为例,其主要成分是铁和铬。

铬的添加可以提高钢的耐腐蚀性和耐磨性,形成致密的氧化膜。

此外,锰、镍等元素的添加也可以改善不锈钢的性能。

3. 碳素元素碳素是铸造合金中的重要元素,对合金的性能有着重要影响。

碳的含量决定了合金的硬度、强度和耐磨性。

以铸铁为例,其含碳量较高,通常在2%以上。

高碳铸铁具有优异的耐磨性,但韧性相对较低。

而低碳铸铁则具有较好的可塑性和韧性。

二、特性分析铸造合金的特性取决于其组成成分及加工工艺。

以下将从物理特性、力学特性和耐蚀性三个方面进行分析。

1. 物理特性铸造合金在物理上具有一些独特的特性,如熔点、导热性和导电性。

这些特性直接影响合金的加工性能和应用领域。

以铝合金为例,由于铝的低密度和良好的导热性,铝合金在航空、汽车等行业中得到广泛应用。

另外,一些铸造合金还具有特殊的磁性、形状记忆特性等。

2. 力学特性力学特性是评价铸造合金性能的重要指标之一。

强度、延展性、硬度等是常用的力学性能参数。

以钢铁材料为例,其力学性能取决于铁素体的相结构、碳含量和其他合金元素的添加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铜合金在浇铸时各元素的作用
微量元素进入铜是不可避免的,由于元素特性的不同,可以不固溶于铜、微量固溶、大量固溶、无限互溶,固溶度随温度下降而激烈降低、固相下有复杂相变等,因此对铜性能的影响千差万别.现对各元素对铜性能的影响分别加以介绍。

氢在铜中的行为是人们正在研究的课题,氢与铜不形成氢化物,氢在液态和固态铜中的溶解度随着温度升高而增大,特别是在液态铜中有很大的溶解度,在凝固时,会在铜中形成气孔,从而导致铜制品的脆性和表面起皮;在固态铜中,氢以质子状态存在,氢的电子填充铜原子的S层轨道,形成质子型固溶体,氢对铜的性能虽然影响甚微,但氢对铜及铜合金来说是有害的,含氧铜在氢气中退火时会产生裂纹,即“氢病”,原因是发生Cu2O+H2、2Cu+H2O反应,产生的水蒸气会造成气孔和裂纹;各种元素对氢在铜中的溶解度影响不一,其中N i、Mn等元素引起溶解度增加,P、Si等元素减少氢在铜中的溶解度,可以通过减少熔炼时间,调整成分,控制炉料中氢气含量,熔体表面采用木炭覆盖等办法减少铜中氢的含量。

氧在铜的生产过程中是不可避免的,其影响也非常重要,氧很少固溶于铜,10 65℃时为0.06%,600℃时为0.002%(重量比);氧在铜中除极少易固溶外,均以Cu2O形式存在,铜的氧化物不固溶于铜,呈现Cu+Cu2O共晶组织,分布于晶界,共晶反应为:L含氧0.39%1065℃α含氧0.01%+Cu2O,亚共晶铜中的含氧量与共晶量成正比,可在显微镜下与标准图片比较来精确测定铜中的含氧量。

氧对铜及合金性能的影响是复杂的,微量氧对铜的导电率和机械性能影响甚微,工业铜具有很高的导电率,其原因是氧作为清洁剂,可以从铜中清除掉许多有害杂质,以氧化物形式进入炉渣,特别是能够清除砷、锑、铋等元素,含有少量氧的铜其导电率可以达到100-103%±ACS,高纯铜如6N铜在深冷条件下电阻值是相当低的。

电真空构件用铜应严格控制其中氧的含量,其原因是电真空器件需要在氢气中密封,铜中氧的存在会导致氢病发生,引起器件高真空环境破坏,因此电真空用铜应该是无氧铜,中国国家标准中规定无氧铜中含氧量小于20ppm,美国AS TM标准中规定为3ppm,为控制氧含量,在无氧铜生产中都应选择优质电解铜原料,在熔炼工艺中采取还原性气氛,加强熔池表面覆盖,一般使用木炭保护;
铜及铜合金熔炼时,一般均应进行脱氧,脱氧剂有磷、硼、镁等,以中间合金方式加入,磷是最有效的脱氧剂,不过应严格控制磷的残留量,因其能够强烈降低铜及合金的导电率。

锑、铋、硫、碲、硒
这些元素在铜中固溶度极小,室温下基本不溶于铜,它们以金属化合物形式存在,分布于晶界,对铜的的导电、导热影响不大,但是都严重的恶化了铜及合金的塑性加工性能,应该严格控制其含量,各国标准中规定不应超出0.005%;由于含有这些元素的铜,具有良好的切削性能,在工程技术界也有应用,比如铋钼,可以作为真空开关中断路器的触头,在断路时,防止开关触头的沾结,铋铜中含铋量可高达0.5%-1.0%;含碲0.15-0.5%的碲铜合金,可作为高导电、易切削无氧铜使用,能够加工成精密的电子原器件;作为特殊用途的铜合金,可以加入这些元素,但其加工工艺是特殊的,可采用包套挤压、冷挤、铸造、粉末冶金等方法。

砷在铜中有很大的固溶度,在α固溶体中的可达6.8-7.0%,砷在铜中存在强烈的降低其导电率和导热性能,一般作为变质剂加入,特别是对黄铜冷凝器合金来说更为宝贵,近一百年来火电和舰船冷凝器管材使用实践表明,含砷0.1-0. 15%的黄铜,能够防止黄铜脱锌腐蚀,解决了黄铜冷凝管早期泄漏的致命问题,所以各国材料标准中都规定必须加入砷,经验表明,不含砷的HSn70-1冷凝管,经常在使用初期的2-3年内发生泄漏事故,而加入砷之后,寿命可增至15-20年,被称为铜合金研究中重大的技术进步;砷之所以能够防止黄铜脱锌腐蚀,许多研究表明,砷能够降低铜的电极电位,从而降低了电化学腐蚀倾向;由于砷的氧化物污染环境,对人体有害,所以熔炼合金的工厂都应有专门的环保和防护措施;砷应以中间合金方式加入,砷铜中间合金中砷含量可达15-20%,一般由熔炼工厂自己制作。

硼在铜中固溶度不大,一般作为脱氧剂使用,残余的硼可以细化晶粒,人们发现硼的变质作用十分显著,在加砷黄铜合金中同时加入0.01-0.04%硼,具有更好的防止黄铜脱锌腐蚀;硼的氧化物是铜合金熔炼时优良覆盖剂,已经被广泛的使用;在铜的焊接材料中也普遍的加入硼,可防止焊接金属的氧化。

铜磷二元相固表明,在714℃时存在着共晶反应:L8.4%→α1.75%+Cu3P,随着温度降低,磷在铜中的固溶量迅速减少,300℃时为0.6%,200℃时为0.4%;固溶于铜中的磷显著的降低其导电率,含P0.014%的软带导电率为94%IACS,含P0.14%的导电率仅为45.2%;磷是最有效、成本最低的脱氧剂,微量磷的存
在,可以提高熔体的流动性,改善铜及合金的焊接性能、耐蚀性能、提高抗软化程度,所以磷又是铜及合金的宝贵添加元素,含P0.015-0.04%的磷铜合金,广泛用于生产建筑用水道管、制冷和空调器散热管、舰船海水管路;低磷铜合金板、带材在电子和化工工业中广泛应用,集成电路引线框架铜带也大量使用低磷铜合金;共晶成份的磷铜合金,是优良的焊接材料,高磷铜合金在580-6 20℃之间具有超塑性,可以热挤成φ3-φ5毫米焊丝,是焊接铜及铜合金、钢和铜零件的重要材料。

铅不固溶于铜,在铜合金中固溶度也很小,与铜形成易溶共晶组织,38。

0-。

%范围的铅,液态下与铜液互不混熔,凝固时形成偏晶组织;固态下,铅在铜中以单质状态分布,可以分布在晶内和晶介,含铅的铜合金,在发生相变或再结晶时,晶介的铅可以转移到晶内;铅对铜及合金导电和导热性能无显著影响,但可以改善切削性能,铅质点又是固相,正是轴承材料所希望的,所以含铅铜及合金是宝贵的易切削材料与轴承材料,因其成本低廉更为市场所欢迎,含铅黄铜使用极为广泛,铅的质点越细小,分布越均匀,性能越优良,含铅铜及合金可以铸态使用,也可以压力加工,铅黄铜在高温(500℃以上)为单相β,热加工性能优良,可以承受大的热变形,而在常温下F为α相和α+β相区,冷变形时变形抗力大,塑性较差,过大的加工率会使合金材料产生裂纹;随着科学技术的发展,常规使用的铅黄铜中含铅量已由0.8-2.5%增加至5%以上,新型的含铅紫铜、黄铜、青铜、白铜正不断地被开发出来;特别应该指出的是,含铅铜合金对原料的适应性极强,可以直接使用再生铜生产含铅铜合金,这对铜加工企业非常重要。

随着技术进步发现,含铅铜及合金在使用中,有铅的溶出,对环境造成污染,因此具有优良切屑性能的无铅铜合金研究正在展开,特别是广泛使用的铅黄铜材料的代用问题已经提到日程,其中可以考虑的替代元素是铋、硫、硅等。

铁、锆、铬、硅、银、铍、镉
这七种金属元素的共同特点是:它们有限固溶于铜,固溶度随着温度变化而激烈的变化,当温度从合金结晶完成之后开始下降时,它们在铜中的固溶度也开始降低,以金属化合物或单质形态从固相中析出,当这些元素固溶于铜中,能够明显地提高其强度,具有固溶强化效应,当它们从固相中析出时,又产生了弥散强化效果,导电和导热性能得到了恢复,它们是典型的时效热处理型铜合金,通过淬火(950℃—980℃、淬水)和时效(450℃—550℃、2-4小时),可以获得高强导电性能;其中微量银,对铜的导电率、导热率降低不大,并能
显著提高再结晶温度、抗蠕变性能和耐磨性能,广泛用于电机整流子,近来又普遍用于制造高速列车的接触导线,镉铜具有冲击时不发生火花特性,是重要的航空仪表材料,由于镉具有毒性,污染环境,用途日益缩小;铍铜是著名的弹性材料,铍对铜的强化最为显著,热处理后的铍铜强度,可达纯铜的4-5倍;铁可以细化晶粒,改善铜及合金性能,在要求抗磁的环境下,应严格控制铁的含量,一般应控制在0.003%以下;锆、铬铜合金具有很高的导电率,在航天发动机中有重要的应用;硅青铜具有高的强度和耐磨性能,铁、锆、铬青铜是著名的高强高导铜合金,在电极制造中有重要应用;铁、硅、锆、铬铜合金成了集成电路引线框架铜合金的基础,其合金成分、性能的研究非常活跃。

锌、锡、铝、镍
这四个元素的共同特点是在铜中固溶度很大,分别为39.9%、15.8%9.4%,镍则无限互溶,它们与铜形成连续固溶体,具有宽阔的单相区,它们能够明显地提高铜的机械性能、耐蚀性能,但都使铜的导电、导热性能降低,与其它金属材料相比较,仍属于优良的导电和导热材料,它们与铜形成宝贵的合金,可分为黄铜、青铜、白铜合金,构筑了庞大合金系的基础,这些合金具有优秀的综合性能,比如,黄铜具有高强、耐磨、耐蚀、高导热、低成本;青铜具有高强、耐磨、耐蚀;白铜具有极为优秀的耐恶劣水质和海水腐蚀性能,所有这些优点都是其它金属材料不能代替的。

难熔金属钨、钼、钽、铌不固溶于铜,微量存在可以作为结晶核心细化晶粒、提高再结晶温度,粉末法生产的钨铜、钼铜具有很高的耐热性能,比容很大,导热性优于难熔合金,是重要的热沉材料,用于电子工业中的固体器件。

稀贵金属中金、钯、铂、铑与铜无限互溶,是宝贵的焊料合金,用于电子元器件的封装和各种触点;其它稀有、稀散和阿系元素微量存在于铜中,或与铜形成合金,在特殊环境中有着重要应用,许多元素在铜中行为的研究正不断深化。

其它金属元素对铜的影响
镁、锂、钙有限固溶于铜,锰与铜无限互溶,这四个元素都可作为铜的脱氧剂;锰可以提高铜的强度,低锰铜合金具有高强和耐蚀性能,在化学工程中有所应用,锰铜电阻温度系很少,是优良的电阻合金;由于有同素异晶转变,使铜锰合金固态下相变十分复杂,固相下具有调幅分解,变晶转变等过程,具有减振降噪性能,是著名的阻尼合材料。

相关文档
最新文档