直驱风机与双馈风机的主要区别参考文档
(整理)双馈型风机与直驱型风机的比较分析.

双馈型风机与直驱型风机的比较分析学号:姓名:学院(系): 自动化学院专业: 电气工程及其自动化2013 年1 月双馈型风机与直驱型风机的比较分析1、引言1.1风力发电的背景风力发电是电力可持续发展的最佳战略选择。
清洁、高效成为能源生产和消费的主流,世界各国都在加快能源发展多样化的步伐。
从20 世纪90 年代开始,世界能源电力市场发展最为迅速的已经不再是石油、煤和天然气,而是太阳能发电、风力发电等可再生能源。
世界各地都在通过立法或不同的优惠政策积极激励、扶持发展风电技术,而中国是风能资源较丰富的国家,更需要开发利用风电技术。
技术创新使风电技术日益成熟。
目前,在发达国家风电的年装机容量以35.7%高速度增长。
一个重要原因是各国积极以科学的发展观,采取技术创新,使风电技术日益成熟。
目前单机容量500kW、600kW、750kW 的风电机组已达到批量商业化生产的水平,并成为当前世界风力发电的主力机型,兆瓦级的机组也已经开发出来,并投入生产试运行。
同时,在风电机组叶片设计和制造过程中广泛采用了新技术和新材料,风电控制系统和保护系统广泛应用电子技术和计算机技术,有效地提高风力发电总体设计能力和水平,而且新材料和新技术对于增强风电设备的保护功能和控制功能也有重大作用。
风力发电将能迅速缓解我国能源急需和电力短缺的局面,近两年中国出现大面积的缺电,风能发电对于缓解缺电具有非同寻常的意义。
风电的诸多优势中,一个重要特点是风电上马快,不像火电、水电的建设需要按年来计算,风电在有风场数据的前提下其建设只需要以周、月来计算,即风场是可以在短时间内完成的。
世界风电正在以33%甚至在部分国家以60%以上的增速发展,我国完全有可能以迅速发展风电的模式来解决我国燃眉之急的电力短缺。
1.2世界风电技术的发展进入二十一世纪之后,随着现代电力电子技术的不断发展,新材料的涌现以及工艺的不断完善,世界风力发电技术又向前迈进了一大步,主要表现如下:(1)风力发电单机容量继续稳步上升。
直驱和双馈的比较

“直驱VS双馈”风机技术流派大比对随着国家新能源发展线路的明确,风电行业的发展正在被越来越多的人所关注和期待。
在风电技术的选择方面,随着国内风机大型化趋势的升级,业内对于直驱与双馈技术孰优孰劣的讨论也更加激烈。
今天我们就从发展历史、运维情况、发展趋势等方面来比对一下这两种技术的特点。
发展历史现在市场上有一种误解,即直驱技术是一种新兴的技术,而双馈技术是传统的技术。
其实,从诞生时间看,双馈和直驱两种技术几乎是同时出现的,甚至直驱技术的出现要比双馈技术更早些。
但是发展至今,双馈技术因其运行稳定的特性占据了大片的市场份额。
双馈、直驱两种技术路线的本质区别在于双馈型是带“齿轮箱”的,而直驱型是不带“齿轮箱”的。
现在全世界风电机组中,85%以上是带齿轮箱的机型。
尤其在技术、稳定性及可靠性要求更高的海上机组中,无一例外的全部采用了技术成熟且可靠性好的带齿轮箱技术方案,包括2兆瓦、2.3兆瓦、3兆瓦、3.6兆瓦、5兆瓦等各级别机型,厂商包括Vestas,Siemens,Repower,华锐风电等全球所有主要海上风电机组生产厂商。
目前为止,除金风科技的一台1.5兆瓦机组外,全世界范围内还没有更多的直驱机组下海。
从目前国内的情况来看,双馈变桨变速型风机的装机容量最大。
代表厂家包括vestas,GE,GAMESA,华锐,东汽,国电联合动力、明阳、上海电气,北重等;直驱式变桨变速型风机也有一定装机容量,代表厂家包括如金风,湘电,上海万德等;此外还有一种失速型定桨定速风机,多数为小功率机型,目前在大功率机型上基本淘汰。
从市场份额来看,多数业内人士认为,带齿轮箱的风电技术将在今后相当长的时间内继续占据市场主流地位。
而直驱技术的市场表现如何,还有待观察。
部件差异在发电机、变频器、齿轮箱等风机主要部件中,双馈和直驱机型都存在一定的差异。
从发电机看:目前双馈机组采用双馈式异步发电机,而直驱机组多采用低速多极发电机,发电机的励磁方式分为永磁和电励磁两类。
直驱式和双馈式风力发电机组介绍

双馈式与直驱式风力发电机组介绍1、双馈式发电机组双馈式风力发电机组的叶轮通过多级齿轮增速箱驱动发电机,主要结构包括风轮、传动装置、发电机、变流器系统、控制系统等。
双馈式风力发电机组系统将齿轮箱传输到发电机主轴的机械能转化为电能,通过发电机定子、转子传送给电网。
发电机定子绕组直接与电网连接,转子绕组与频率、幅值、相位都可以按照要求进行调节的变流器相连。
变流器控制电机在亚同步与超同步转速下都保持发电状态。
在超同步发电时,通过定转子两个通道同时向电网馈送能量,这时变流器将直流侧能量馈送回电网。
在亚同步发电时,通过定子向电网馈送能量、转子吸收能量产生制动力矩使电机工作在发电状态,变流系统双向馈电,故称双馈技术。
双馈风力发电变速恒频机组示意图变流器通过对双馈异步风力发电机的转子进行励磁,使得双馈发电机的定子侧输出电压的幅值、频率与相位与电网相同,并且可根据需要进行有功与无功的独立控制。
变流器控制双馈异步风力发电机实现并网,减小并网冲击电流对电机与电网造成的不利影响。
提供多种通信接口,用户可通过这些接口方便的实现变流器与系统控制器及风场远程监控系统的集成控制。
提供实时监控功能,用户可以实时监控风机变流器运行状态。
变流器采用三相电压型交-直-交双向变流器技术。
在发电机的转子侧变流器实现定子磁场定向矢量控制策略,电网侧变流器实现电网电压定向矢量控制策略;系统具有输入输出功率因数可调、自动软并网与最大功率点跟踪控制功能。
功率模块采用高开关频率的IGBT功率器件,保证良好的输出波形,改善双馈异步发电机的运行状态与输出电能质量。
这种电压型交-直-交变流器的双馈异步发电机励磁控制系统,实现了基于风机最大功率点跟踪的发电机有功与无功的解耦控制,就是目前双馈异步风力发电机组的一个代表方向。
2、直驱式发电机组直驱式风力发电机组的风轮直接驱动发电机,主要由风轮、传动装置、发电机、变流器、控制系统等组成。
为了提高低速发电机效率,直驱式风力发电机组采用大幅度增加极对数(一般极数提高到100左右)来提高风能利用率,采用全功率变流器实现风力发电机的调速。
大型双馈风电机组与永磁直驱机组对比分析

大型双馈风电机组与永磁直驱机组对比分析摘要:目前,在我国所拥有的并网型机组中,水平轴风电机组占据着重要比例,双馈风电机组和永磁直驱机组又是水平轴风电机组中最为典型代表。
本文就对于双馈风电机组和永磁直驱机组进行对比,分析出二者之间存在的差异。
关键词:双馈风电机组;永磁直驱机组;对比分析前言:双馈风电机组和永磁直驱机组两种机组在我国近几年水平轴风电机组采购的主要对象。
我国现在对于双馈风电机组和永磁直驱机组研究主要集中在对于二者之间的性能及定量上面,进而对于双馈风电机组和永磁直驱机组进行对比,从双馈风电机组和永磁直驱机组实际测试数据角度进行对比的研究文献较少。
1、双馈风电机组和永磁直驱机组运行原理对比双馈式变速恒频风力发电系统在实际运行中发电机所使用的转子交流励磁双馈发电机,这种发电机结构与绕线式异步发电机结构基本机制,发电机内部定转子三相对称,发电机在产生电流之后转子跟随电流与滑环相接触。
转子在转动过程中如果速度发生了改变,同时对于功率没有任何需求的情况下,可以通过变频器对于转子电流方向及频率等参数进行调整,进而保证定子实际运行速度能够稳定,不需要功率进行调整。
正是由于这种变速恒频控制形式在发电机内应用,转子在发电机中运行功率主要是发电机转速范围内控制,转子运输转差也由发电机所决定,转差功率也是转子额定功率中的主要组成部分,因此发电机中的双向变频器仅仅是一个小部分,运行所需要的功率仅仅占据发电机四分之一左右。
交流励磁双馈发电机这种控制措施在实际应用中,不仅仅能够对于转子进行变速恒频控制,还能够降低变频器对于功率需要,保证在任何功率状态下都能够灵活运行控制,对于电网稳定运行具有重要作用。
双馈风电机组具体结构示意图如图一所示。
永磁直驱机组中将增速齿轮箱取消了,风轮轴直接就与发电机进行连接,进而发电机通过永磁式结构让转子转动速度与发电机一致,转子在实际运行中并不需要额外提供励磁电源。
转子转动速度会受到风速的影响,根据风速的改变进行改变,进而发电机交流电频率也会发生改变。
双馈式-直驱式风力发电机的对比

双馈式\直驱式风力发电机的对比【摘要】双馈式风力发电机与直驱式风力发电机是两种各有优势的机型,二者属于相互竞争的关系,同时它们也是相互促进的,这就是常说的有竞争就有进步,最终形成优势互补。
本文对这两种机型分别进行了描述、比较,为这两种大型风力发电机的应用奠定一定的理论基础。
【关键词】齿轮箱;永磁电机;变速箱前言本文通过对直驱式和双馈式两种不同的风力发电机进行描述,并从二者的主要结构特性对其各自不同的优缺点进行分析阐述,以增进人们的了解,使其得到更好的应用充分发挥其自身机能和作用。
1、双馈式异步发电机双馈式异步发电机实际是异步感应电机的一种变异,这种发电机始于上世纪80年代,日本日立公司、东芝公司和前苏联在这种发电机的研制和开发中都作出了显著的贡献。
目前美国GE能源、EMD;德国VEM Sachsenwerk GmbH,LDW;瑞士ABB等公司的很多风力发电机产品,采用变速双馈风力发电的技术方案。
目前,市场占有率最高的双馈变速恒频风力发电机组,其风轮桨距角可以调节,同时发电机可以变速,并输出恒频恒压电能,效率较高。
在低于额定风速时,它通过改变转速和桨距角使机组在最佳尖速比下运行,输出最大的功率,而在高风速时通过改变桨距角使机组功率输出稳定在额定功率。
这种形式的性价比和效率均较高,逆变器功率较小。
调速范围达到30%额定转速,变流的容量只有系统容量的30%左右,变速恒频驱动和MPPT控制,有功、无功功率可独立进行控制。
双馈异步发电机在结构上与绕线式异步电机相似,定子、转子均为三相对称绕组,转子绕组电流由滑环导入,定子接入电网,电网通过四象限AC-DC-AC 变频器向发电机的转子供电,提供交流励磁。
但存在滑环和变速箱的问题,对电网的冲击较大。
由于风能的不稳定性和捕获最大风能的要求,发电机转速是在不断的变化,而且经常在同步转速上、下波动,为了实现风力机组的最大能量的追踪和捕获,满足电网对输入电力的要求,风力发电机必须变速恒频运行。
最新双馈型风机与直驱型风机的比较分析

双馈型风机与直驱型风机的比较分析双馈型风机与直驱型风机的比较分析学号:姓名:学院(系): 自动化学院专业: 电气工程及其自动化2013 年 1 月双馈型风机与直驱型风机的比较分析1、引言1.1风力发电的背景风力发电是电力可持续发展的最佳战略选择。
清洁、高效成为能源生产和消费的主流,世界各国都在加快能源发展多样化的步伐。
从 20 世纪 90 年代开始,世界能源电力市场发展最为迅速的已经不再是石油、煤和天然气,而是太阳能发电、风力发电等可再生能源。
世界各地都在通过立法或不同的优惠政策积极激励、扶持发展风电技术,而中国是风能资源较丰富的国家,更需要开发利用风电技术。
技术创新使风电技术日益成熟。
目前,在发达国家风电的年装机容量以 35.7% 高速度增长。
一个重要原因是各国积极以科学的发展观,采取技术创新,使风电技术日益成熟。
目前单机容量 500kW、600kW、750kW 的风电机组已达到批量商业化生产的水平,并成为当前世界风力发电的主力机型,兆瓦级的机组也已经开发出来,并投入生产试运行。
同时,在风电机组叶片设计和制造过程中广泛采用了新技术和新材料,风电控制系统和保护系统广泛应用电子技术和计算机技术,有效地提高风力发电总体设计能力和水平,而且新材料和新技术对于增强风电设备的保护功能和控制功能也有重大作用。
风力发电将能迅速缓解我国能源急需和电力短缺的局面,近两年中国出现大面积的缺电,风能发电对于缓解缺电具有非同寻常的意义。
风电的诸多优势中,一个重要特点是风电上马快,不像火电、水电的建设需要按年来计算,风电在有风场数据的前提下其建设只需要以周、月来计算,即风场是可以在短时间内完成的。
世界风电正在以 33%甚至在部分国家以 60%以上的增速发展,我国完全有可能以迅速发展风电的模式来解决我国燃眉之急的电力短缺。
1.2世界风电技术的发展进入二十一世纪之后,随着现代电力电子技术的不断发展,新材料的涌现以及工艺的不断完善,世界风力发电技术又向前迈进了一大步,主要表现如下:(1)风力发电单机容量继续稳步上升。
永磁直驱发电机和双馈异步发电机的比较

永磁直驱发电机与双馈异步发电机的比较永磁直驱电动机的组成部分:定子、永久磁钢转子、位置传感器、电子换向开关等。
永磁直驱电动机的特点:结构简单,体积小、重量轻、损耗小、效率高、功率因数高等优点,主要用于要求响应快速、调速范围宽、定位准确的高性能伺服传动系统和直流电机的更新替代电机。
永磁直驱发电机按照永磁体结构分类:表面永磁同步电动机(SPMSM)、内置式永磁同步电动机(IPMSM);按照定子绕组感应电势波形分类:正弦波永磁同步电动机、无刷永磁直流电动机永磁直驱发电机的原理:永磁同步电动机是正弦波永磁同步电动机,同一般同步电动机一样,正弦波PMSM的定子绕组通常采用三相对称的正弦分布绕组,或转子采用特殊形状的永磁体以确保气隙磁密沿空间呈正弦分布。
这样,当电动机恒速运行时,定子三相绕组所感应的电势则为正弦波,正弦波永磁同步电动机由此而得名。
正弦波PMSM是一种典型的机电一体化电机。
它不仅包括电机本身,而且还涉及位置传感器、电力电子变流器以及驱动电路等。
内置式永磁直驱电机无位置传感器(interior permanent magnet synchronous motor,IPMSM)矢量控制系统,通过将滑模观测器和高频电压信号注入法相结合,在无位置传感器IPMSM闭环矢量控制方式下平稳启动运行,并能在低速和高速运行场合获得较准确的转子位置观察信息。
永磁直驱电机的工作原理:同步发电机为了实现能量的转换,需要有一个直流磁场。
而产生这个磁场的直流电流,称为发电机的励磁电流。
根据励磁电流的供给方式,凡是从其它电源获得励磁电流的发电机,称为他励发电机,从发电机本身获得励磁电源的,则称为自励发电机。
永磁直驱电机的工作方式一:发电机获得励磁电流的几种方式1直流发电机供电的励磁方式2交流励磁机供电的励磁方式3无励磁机的励磁方式二:永磁直驱发电机的特性1、电压的调节2、无功功率的调节:3、无功负荷的分配:获得励磁电流的方法称为励磁方式。
双馈风电机组与永磁直驱机组对比

双馈风电机组与永磁直驱机组对比摘要:清洁能源在电力系统中的大规模利用,使得风电机组在电网中的占比日益扩大,其运行特性极大地影响电力系统的运行稳定性.本文分析了双馈变速与直驱同步风电机组的结构特点。
关键词:电力系统;风力机组;永磁直驱机风力发电机组主要包括变频器、控制器、齿轮箱,发电机、主轴承、叶片等部件,在这些部件中发电机目前国产化程度最高,它的价格约占机组的10%左右。
发电机主要包括两种机型:永磁同步发电机和异步发电机。
永磁同步发电机低速运行时,不需要庞大的齿轮箱,但机组体积和重量都很大,1.5MW的用词直驱发电机机舱会达到5米,整个重量达80吨。
同时,永磁直驱发电机的单价较贵,技术复杂,制造困难,但是这种机型的优点是少了个齿轮箱,也就少了个故障点。
异步发电机是由风机拖动齿轮箱,在带动异步发电机运行,因为叶片速度很低,齿轮箱可以变速100倍,以让风机在额定转速下运行,目前流行的是双馈异步发电机,主要有1.25MW\1.5MW\2MW三种机型,异步发电机组的机组单价低,技术成熟,国产化高。
一、双馈风力发电系统双馈风力发电机组的控制核心是通过变流器对双馈发电机转子电流(频率、幅值、相位)的控制,以达到与风电机组机械部分运行特性匹配、提高风能的利用效率及改善供电质量的目的。
1、双馈变速恒频型风力发电机组的风轮叶片桨距角可以调节,同时发电机可以变速,并输出恒频恒压电能;2、在低于额定风速时,他通过改变转速和叶片桨距角使风力发电机组在最佳叶尖速比下运行,输出最大的功率;3、在高风速时通过改变叶片桨距角使风力发电机组功率输出稳定在额定功率。
双馈风力发电系统主要由叶片、增速齿轮箱、双馈发电机、双向变流器和控制器组成。
双馈式风力发电机组将风轮吸收的机械能通过增速机构传递到发电机,发电机将机械能转化为电能,通过发电机定子、转子传送给电网。
发电机定子绕组直接和电网连接,转子绕组和变频器相连。
变频器控制电机在亚同步和超同步转速下都保持发电状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向 转 子 输 入 功 率 输入直流电
风机在同步状态运行时
三、发电结构的区别
发电机定子绕组输出50Hz交流电
向 电 网 输 出 功 率 输入反相序10Hz交流电
风机在超同步状态运行时
三、发电结构的区别
不同频率、幅值的电流整流成直流电
逆变为与电网相位幅值频率一样的交流电
四、变频器的区别
• 变频器一般使用交直交这种形式,两边 各有一个PWM变流器,和电网连接的一般称 为网侧变流器,和发电机连接的一般称为 机侧变流器,中间使用直流环节将两边连 接起来。变流器可以实现整流和逆变这两 种基本的功能。中间回路使用电容建立直 流环节
时,即将三相电源中任意两相绕组接线互换,旋转磁场就会改变方向。
ωt=0 º时
ωt=60º时
ωt=120º时
ωt=180º时
三、发电结构的区别
发电机定子绕组输出50Hz交流电
向 转 子 输 入 功 率 输入同相序20Hz交流电
风机在亚同步状态运行时
三、发电结构的区别
发电机定子绕组输出50Hz交流电
一、传动结构的区别
风电机组常用齿轮箱结构:一级行星加两级平行轴、两级行星加一级平行轴
一级行星二级平行轴
二级行星一级平行轴
一、传动结构的区别
齿轮箱不仅仅指发电机增速箱 偏航电机、变桨电机的减速器 都是齿轮箱
二级行星轮齿轮箱.avi
二、发电机的区别
双馈异步发电机: 双馈异步发电机的定子绕组直接与电网相连,转子绕组通过变流器与电网连 接,转子绕组电源的频率、电压、幅值和相位按运行要求由变频器自动调节, 机组可以在不同的转速下实现恒频发电,满足用电负载和并网的要求。由于 采用了交流励磁,发电机和电力系统构成了"柔性连接",即可以根据电网电 压、电流和发电机的转速来调节励磁电流,精确的调节发电机输出电压,使 其能满足要求。
四、变频器的区别
全功率风力发电机一般采用永磁发电机(也可以是其它类型的,但目前多用的是 永磁同步发电机),成本高一些,但这时发电机与电网全隔离,发电机受的冲击小, 寿命长,故障率低,特别是对电网波动的敏感度小,可不增加任何设备实现低电压 穿越功能,在电网故障时,可以发出无功,以维持电网电压。
大功率交-直-交变流器的价格非常昂贵,在双馈风力发电机组中的交-直-交变流 器仅向转子绕组提供励磁电源,功率为发电机的25%已够用,相对全功率变流器价格 便宜多了,这也是双馈风力发电机组的主要优点之一。
简单介绍
直驱风机与双馈风机
的区别
什么是风力发电机组?
• 风力发电机组是将叶轮吸收的风能转化为机械能, 再由发电机将机械能转化为电能,最终输出交流电 的电气设备。(广义地说,风能也是太阳能的一种 形式,所以也可以说风力发电机,是一种以太阳为 热源,以大气为工作介质的热能利用发电机。)
风力发电机组的分类二、Fra bibliotek电机的区别频率: 交流电机转速与频率的关系可用如下公式:
n=60f/p
n:电机转速,转/分钟 f:电源频率
p:电机磁极对数
我国规定标准电源频率为f=50周/秒,所以旋转磁场的转速的大小只与磁极对数有关, 磁极对数多,旋转磁场的转数就低。当电动机的绕组为一对N,S极时,其旋转磁场和电源 同步,也是3000r/min。当绕组极对数为2时,旋转磁场为1500r/min。极对数为3,旋转 磁场为1000r/min,余类推。但是电动机转子的转速总是落后于磁场同步转速的,如2对 极的电动机实际转速约为1450r/min
二、发电机的区别
直驱同步发电机: 直驱同步发电机又叫低转速发电机,都是多极结构,有多极内转子结构与多极外 转子结构等,只是要求在结构上更轻巧一些。近些年高磁能永磁体技术发展很快, 在直驱式发电机中得到广泛应用。采用永磁体技术的直驱式发电机结构简单、效 率高。磁直驱式发电机在结构上主要有轴式结构与盘式结构两种,轴式结构的磁 场方向为径向气隙磁通,又分为内转子、外转子等;盘式结构的磁场方向为轴向 气隙磁通,又分为中间转子、中间定子、多盘式等。
1、
•
按照桨叶数量分类可分为“单叶片”、“双叶片”、“三 叶片”和“多叶片”型风机
2、
• 按照风机接受风的方向分类,可分为:“上风 向型”、“下风向型”
3、
• 依据风机旋转主轴的方向分类,可分为:“水平轴 式风机”、“垂直轴式风机”
4、
• 按照功率传递的机械连接方式的不同,可分为“双 馈风机”、“直驱型风机”
一、传动结构的区别
分流式
同轴分流式
同轴式
一、传动结构的区别
• 行星齿结构 • 它们的转动轴线是不固定的,而是安装在一
个可以转动的支架(蓝色)上(图中黑色部 分是壳体,黄色表示轴承)。行星齿轮(绿 色)除了能像定轴齿轮那样围绕着自己的转 动轴(B-B)转动之外,它们的转动轴还随着 蓝色的支架(称为行星架)绕其它齿轮的轴 线(A-A)转动。绕自己轴线的转动称为"自 转",绕其它齿轮轴线的转动称为"公转",就 象太阳系中的行星那样,因此得名“行星齿 轮”。
这就是为什么直驱的发电机级数高的原因
三、发电结构的区别
风速是不稳定的,风力机的风轮转速是在不停的波动中,经 过增速箱增速的发电机转子转速也跟随不断变化,采用普通 交流发电机发出电的频率也是不断变化的。要想交流发电机 输出频率稳定的电压,就必须保持转子转速稳定,也就是保 证发电机内旋转磁场转速的稳定。交流同步发电机转子产生 的磁场相对转子是不变的,发电机转速变,输出电压的频率 也跟着变。如果转子产生的磁场相对转子可以旋转变化,也 就是说必须要转子转速变化不影响旋转磁场的转速。
4、变流器
3、发电结构
全功
率
同步
2、发电机
/
双馈
1、传动系统
级数
齿轮 箱
一、传动结构的区别
• 双馈风力发电机组的传动系统 风机的传动系统一般包括风轮、
主轴承、低速轴、高速轴、齿轮箱、 联轴节和制动器等 。但不是每一 种风力机都必须具备所有这些环 节。有些风力机的轮毂直接连接到 齿轮箱上, 不需要低速传动轴。 • 直驱风力发电机组的传动系统
二、发电机的区别
三相交流发电机发电原理: 假设三相交流发电机,定子铁芯的内圆均匀分布着6
个槽,嵌装着三个相互间隔120度的同样线圈,分别称之 为A相线圈、B相线圈、C相线圈。当转子匀速旋转时三个 线圈顺序切割磁力线,都会感生交流电动势,其幅度与 频率相同。实际的三相交流发电机定子铁芯上有多个槽 多个三相绕组按规律均匀的分布在槽中。
转子旋转磁场.flv
三、发电结构的区别
旋转磁场:
旋转磁场就是一种极性和大小不变,且以一定转速旋转的磁场。当三相对称电流通入三相对称绕 组,必然会产生一个大小不变,且在空间以一定的转速不断旋转的旋转磁场旋转磁场的旋转方向 由通入三相绕组中的电流的相序决定的。即当通入三相对称绕组的对称三相电流的相序发生改变
二、发电机的区别
• 发电机依靠转子对定子的相对运动来 发电,在定子与转子之间的间隙称为 气隙。
• 径向磁通:磁力线垂直于气隙面,与 所在点直径方向平行,称为径向气隙 磁通。
• 轴向磁通:磁力线垂直于气隙面,与 转轴方向平行,称为轴向气隙磁通。
二、发电机的区别
内转子发电机
外转子发电机
盘式发电机
不管内转子还是外转子,转动的部分永远是磁极,定子为绕组,直驱风机没有集电环。
三、发电结构的区别
• 举个例子,对于单极发电机输出电压频率为50Hz时,其内 部旋转磁场的转速是50转/秒,如果转子也是50转/秒,则旋 转磁场相对转子是静止的;当转子转速变为30转/秒时,让转 子产生20转/秒的旋转磁场,两者转速加起来就能产生50转/ 秒的旋转磁场,就能发出50Hz的交流电;当转子转速变为60 转/秒时,让转子产生10转/秒的反方向旋转磁场,两者转速 加起来也能产生50转/秒的旋转磁场,就能发出50Hz的交流电 来。
双馈风机
双馈风力发电机组主要由风轮、增速箱、 双馈异步发电机、交-直-交变流器、变 压器等组成,风轮经过增速后带动发电 机,发电机定子绕组线端是发电机电力 输出端,通过开关箱连接到交流电网; 发电机转子绕组通过集电环连接到交-直 -交变流器,变流器另一端连接变压器, 变压器另一端通过开关箱连接到交流电 网,这样组成的系统,可在发电机转速 低于同步转速40%与高于同步转速15%内 正常运行。
直驱风机
• 直驱式风力发电机,是一种由风力直 接驱动的发电机,亦称无齿轮风力发 动机,这种发电机采用多极电机与叶 轮直接连接进行驱动的方式,免去齿 轮箱这一传统部件。主要由风轮、永 磁同步发电机、交-直-交变流器、变 压器等组成。
直驱式风力发电机组示意图
直驱风机 与
双馈风机 的
主要区别 有
哪几点?
二、发电机的区别
比如转子有3对磁极,旋转一周磁场将循环3个周期,每旋转120度磁场变化1个 周期。在定子铁芯内园周有18个嵌线槽。 在120度机械角度里有6个槽,均匀 分布A相、B相、C相3个线圈;另外两个120度里同样各自分布3个线圈。3个A相 线圈串联起来即为整机的A相绕组,3个B相线圈串联起来即为整机的B相绕组, 3个C相线圈串联起来即为整机的C相绕组,3个绕组的引出端为相线当转子匀速 旋转时A、B、C相线圈顺序切割磁力线,都会感生交流电动势,其幅度与频率 相同。
四、变频器的区别
• “双馈”其本意是能量的双向反馈,双馈风机发电的能量流动有两种形式,一种是 电网给变频器供电,变频器对转子绕组进行励磁,对转子绕组进行馈电。能量的流向 是从电网流向转子。另外的一种形式是发电机转子处于发电状态,向双馈变频器输出 能量,此时转子侧变流器处于整流状态,中间直流环节不变,网侧变流器处于逆变状 态,将中间直流母线电压逆变为和电网电压幅值和频率一致的交流电,将能量反馈给 电网。 • 双馈的优点是变频器的功率可以只的风机功率的三分之一,这样可以降低成本,但 这也使使风机对电网的波动比较敏感,在电网电压波动时,比较容易跳闸脱网。