静电唯一性定理
边值问题和唯一性定理(静电场)

静电场的边值问题
静电场的唯一性定律
目前可解决的静电场问题
电荷在有限区域内,电荷的分布情况已知,并 且介质为线性各向同性均匀介质中的静电场问 题。对于此类问题,一般可以先求出电位,再 计算场中各点的电场强度和电位移矢量。 电荷、介质分布具有某种对称性的问题。由于 电荷和介质的分布具有对称性,因此电位移矢 量的分布必然也具有对称性。在这种情况下, 可以先用高斯通量定理求解电位移矢量,然后 再求电场强度。 已知电场的分布求电荷分布的问题。在这种情 况下,可直接由公式计算电荷的体密度,导体 上的面电荷密度根据分界面条件确定。
2
静电场边值问题的提出
实际中对于很多电磁场的问题通常并不 知道电荷分布,如静电场中导体表面的 感应电荷分布,介质极化后极化电荷的 分布等。对于此类的问题,必须通过求 解满足给定边界条件的电位微分方程 (泊松方程或拉普拉斯方程)的电位函 数,进而再求场域中的电场强度。我们 把这种在给定边界条件下,求解泊松方 程或拉普拉斯方程的问题称为边值问题。
对于各向同性、线性的非均匀媒质,电位 满足的微分方程又是什么形式呢?
D
D E
E
( )
7
边值问题举例-直接积分法
例 设有电荷均匀分布在半径为a的介质球型区域中,电荷 体密度为 ,试用解微分方程的方法求球体内、外的电位 及电场。(同例2-4) 解:采用球坐标系,分区域建立方程
自学)
10
反设满足场的解答有两个相异的解答1和 2,则差
场u= 1 2 满足拉普拉斯方程
2 2
u 1 2 0 根据矢量恒等式
chapter2-2 静电场的唯一性定理-2015-09-28

(2.2)
至此,对于区域 V 而言,我们还不知道外边界上 的条件。这个问题正是唯一性定理所要解决的:就是 我们还需要知道外边界上的什么条件之后,求能够唯 一确定区域内的静电场。 2)唯一性定理的内容:若
i)区域 V 内给定自由电荷分布 f x ; ii)区域的外边界 S 上给定电势 S , 或者电势的法向导数 n ,
唯一性定理定理也表明, a)唯一性定理对于静电问题的重要性在于:只要我 们得到一个满足泊松方程以及相应的边界条件的
解,那么这个解一定就是该问题的严格解。 b)从方法论上,我们根据物理直觉和物理图像可以 猜测出一些问题的解,此时唯一性定理保证了其 正确性 c)如果我们针对这类边值问题, 找到一个试探的解, 但若我们验证这个试探的解满足上述的几个条件, 包括验证它是否满足微分方程,是否满足内部的 边值关系,以及在外边界上是否满足边值关系, 如果都满足,那这个试探解就是这个问题的解; d)有时,我们在给出一个试探解的时候,可以在一 开始保留 1-2 个未知的系数(但并不影响所满足 的微分方程) , 然后根据边值关系, 来确定这些系 数。 2、有导体存在时的唯一性定理 对于导体存在的静电问题,每个导体上的总电荷 Q 与电势φ实际上是一对共轭量, 通常求解这类问题时不 可能同时预先设定每个导体上的总电荷和电势。 因此,当有导体存在时,为了确定电场,我们可以 根据这一对共轭量,将导体的静电问题设置为以下两 类问题: 第一类问题:给定每个导体上的电势 i ;
f x ;
b)在 V 的外边界 S 上给定 S ,或者电势的法向导数
n S ;
c) 势 i 亦给定, 则 V ' 内的电场唯一确定。
每个导体 i 的电
由于当给定了导体的电势后相当于给定了体系完 备的外边界条件,那么给定导体的唯一性定理就退化 成了一般形式,因此此定理的证明方法同上。 2)第二类问题的唯一性定理:
《电动力学第三版》chapter2_2唯一性定理

E2t E1t
D
2n
D1n
如果我们假设 E仍保持球对称性,即
E1
A r3
r
E2
A r3
r
(左半部) (右半部)
(A为待定常数),分界面两侧电场与界面相切,并有相同数值,因 而边值关系得到满足.
球对称的E在球面上处处与球面垂直,保证导体球面为等
势面. 为了满足内导体总电荷等于Q,我们计算内导体球面上
对于第一类边界条件,只要把导体存在的空间扣除,将导 体看成是区域边界之一,即可证明电场被唯一确定.
对于第二类边界条件,在导体外,电荷分布给定,大区域表 面上电势或电势的法向导数给定;每个导体上的总电荷给定.
设区域V 内有一些导体,给定导体之外的电荷分布x 给定
各导体上的总电荷Qi以及V的边界S上的或/n值,则V内的电
有球对称性. 试解释之.
子区域 2
子区域 4
子区域 3
i ( S i i )d S i V i i d V(1)
i
V ii( )2dVV i(i 2)dV
i
i 2dV
Vi
i S i(i )d S i S i(i n i)d S 0 (2)(3)
i S i i d S i V i i 2 d V 0
场唯一地确定. 存在唯一的解,它在导体以外满足泊松方程
2/
在第i个导体上满足总电荷条件和等势面条件
Si ndSQ i, |Sii 常量
以及在V的边界S上具有给定的|s 或/n|s值.
证明: 设有 和 同时满足上述条件. 令 '''
2 0
|si 0,
dS 0 Si n
|s 0 或
第二章 静电场
2.6 静电场边值问题 唯一性定理

V/m
CQU
2.6.3 唯一性定理
1、唯一性定理 在静电场中满足给定边界条件的电位微分方程 满足给定边界条件的电位微分方程( 在静电场中满足给定边界条件的电位微分方程(泊松方 程或拉普拉斯方程)的解是唯一的, 程或拉普拉斯方程)的解是唯一的,称之为静电场的唯一性定 理。 2. 唯一性定理的重要意义 可判断静电场问题的解的正确性 解的正确性: • 可判断静电场问题的解的正确性: 唯一性定理为静电场问题的多种解法(试探解、数值解、 • 唯一性定理为静电场问题的多种解法(试探解、数值解、 解析解等)提供了思路及理论根据。 解析解等)提供了思路及理论根据。
S
第三类 边界条件
(ϕ + β ∂ϕ ) = f3 ( s) ∂n S
第四类 边界条件
ϕ S = f1 ( s)
求解边值问题注意事项: 求解边值问题注意事项:
CQU
点电荷的场
1.根据求解场域内是否有 ρ 存在,决定电位满足泊松方程还是拉氏 .根据求解场域 求解场域内是否有 存在,决定电位满足泊松方程还是拉氏 泊松方程还是 方程,然后判断场域是否具有对称性,以便选择适当的坐标系。 方程,然后判断场域是否具有对称性,以便选择适当的坐标系。 2.正确表达边界条件,并利用它们确定通解的待定常数。 正确表达边界条件,并利用它们确定通解的待定常数。 3.若所求解的场域内有两个(或以上)的均匀介质区域,应分区求 若所求解的场域内有两个(或以上)的均匀介质区域, 分区求 场域内有两个 不能用一个电位函数表达两个区域的情况。这时会出现4 解。不能用一个电位函数表达两个区域的情况。这时会出现4个积分 常数,还需考虑介质分界面上的衔接条件来确定积分常数。 分界面上的衔接条件来确定积分常数 常数,还需考虑介质分界面上的衔接条件来确定积分常数。 4.对于开域问题,还需给出无限远处的自然边界条件。 4.对于开域问题,还需给出无限远处的自然边界条件。当场域有 对于开域问题 限分布时,应有: 限分布时,应有:
静电场边值问题唯一性定理

场分布。
02
指导数值计算
在数值计算中,唯一性定理为我们提供了判断计算结果正确性的依据。
如果计算结果不满足唯一性定理,则说明计算过程中存在错误或近似方
法不够精确。
03
简化问题求解
在某些情况下,唯一性定理可以帮助我们简化问题的求解过程。例如,
在某些对称性问题中,我们可以利用唯一性定理直接得出部分解或特殊
01 02 03
深入研究复杂边界条件下的静电场边值问题
目前的研究主要集中在简单边界条件下的问题,对于复杂 边界条件的研究相对较少。未来可以进一步探讨复杂边界 条件下的静电场边值问题,为实际应用提供更广泛的理论 支持。
发展高效稳定的数值计算方法
尽管现有的数值计算方法已经取得了显著的进展,但在处 理大规模、高维度问题时仍面临挑战。未来可以致力于发 展更高效稳定的数值计算方法,以应对日益复杂的实际问 题。
导体表面的电荷分布
导体表面电荷分布的特点
在静电平衡状态下,导体表面电荷分布是不 均匀的,电荷密度与导体表面的曲率有关, 曲率越大电荷密度越大。
导体表面电荷与电场的关系
导体表面电荷产生的电场与导体内部电荷产生的电 场相互抵消,使得导体内部电场为零。
导体表面电荷分布的求解 方法
可以通过求解泊松方程或拉普拉斯方程得到 导体表面的电荷分布。
数值计算方法的改进
针对静电场边值问题的求解,提出了一系列高效的数值计算方法,如有限元法、有限差分法等,这些方法在保持计算 精度的同时,显著提高了计算效率。
实际应用领域的拓展
将静电场边值问题唯一性定理应用于多个实际领域,如电子工程、生物医学等,成功解决了一系列具有 挑战性的实际问题。
对未来研究的展望
解,从而简化计算过程。
电动力学uniquenesstheorem唯一性定理完全解读

引入标量函数Φ ,令Φ = '- ″
2 , 2 , 2 0
i
i
在区域边界面S 上
S
S
0 S
(给定第一类边界条件)
或 ,
n S n S
0
n S
(给定第二类边界条件)
下面需要证明旳是,满足以上方程和边界条件旳'和
1) 绝缘介质静电问题旳唯一性定理及证明 在有限旳边界区域V 内有几种均匀旳绝缘介质Vi 、εi
(i = 1、2、3 …) ,V 中旳自由电荷分布(ρ或σ) 为已知,那
么,当V 旳边界面S 上旳电势 给 定(或电势旳法向导数边
界条件) ,则V 内旳电场有唯一拟定旳解。
数学表述如下:
2 i
i
(在每个小区Vi)
V′旳全部内、外表面上都有一定旳值或 值,应用有关绝缘介
质旳唯一性定理,则V′内旳电场必有唯一解. n
b)区域V 内有若干导体,假设除导体以外旳区域V′内旳自由电荷分
布ρ已知,V′旳外表面S 上有已知旳值或 值,另外,若每个导
n 体所带旳总电量Qi 为已知,则区域V′内旳电场有唯一解。
数学表达为:
场有唯一解。这么,有导体存在时静电问题旳唯一性定理 也得到证明。
最终需要强调一点,尽管唯一性定理并不给出求解泊松方程旳详细措 施与环节,但它对于处理实际旳边值问题有着主要旳意义. 首先,它明 确了在哪些条件下能够唯一地拟定一种静电场,即给出了求解静电场 旳根据;其次,它使我们能够灵活地选用最简朴、最合适旳解题措施, 甚至能够猜一种解(即提出尝试解) . 只要这个解确实满足了问题中 旳场方程和全部定解条件,那么,根据唯一性定理我们就能够肯 定地说,它就是该问题中旳唯一正确旳解.
关于静电场的唯一性定理

关于静电场的唯一性定理静电场的唯一性定理被称为静电学中的一颗明珠。
说说静电场唯一性定理的重大意义。
静电场的唯一性定理是以库仑定律为基础推导出来的一个极为重要和有用的定理,它是静电学中极有品位和令人赞叹的定理。
静电场的唯一性定理有许多种表述。
其中一种常见的表述是:若区域V 内给定电介质分布和自由电荷分布()r ρ ,在V 的边界面S 上给定电位S ϕ或者电位的法向空间变化率Sn ϕ∂∂,若区域内有导体存在,如果还给定各导体的电位或者各导体所带的自由电量,则V 内的静电场就唯一地确定了。
静电场的唯一性定理表明,一定的空间区域外界的电荷对该区域内静电场的影响,完全体现在该区域的边界面上。
只要一定的空间区域内的电介质的分布和自由电荷的分布给定了,同时该区域边界面上的电位或者电位沿边界面的法线方向的空间变化率的分布给定了,那么不论外界的电荷分布怎样改变,该区域内的静电场都是唯一确定的。
因此,静电场的唯一性定理给出了确定静电场的条件,为求电场强度以及设计静电场指明了方向。
(镜像法就是建立在唯一性定理的基础之上的。
)更重要的是它具有十分重要的实用价值。
无论采用什么方法得到解,只要该解满足泊松方程、边值关系和给定的边界条件,则该解就是唯一的正确解。
因此对于许多具有对称性的问题,可以不必用繁杂的数学去求解泊松方程,而是通过提出尝试解,然后验证是否满足泊松方程、边值关系和边界条件。
满足即为唯一解,若不满足,可以加以修改。
如果有人精于设计和求解静电场,那么他已经是一个有名望的专家学者了,并且享有丰厚的报酬。
因此,虽然静电学是电磁场理论中相对比较简单的一门学问,请同学也不要小看它。
一个外行人,有谁会相信上述有名望的专家学者的工作基础就是高中生都明白的库仑定律呢?大理大学工程学院教授罗凌霄2020年3月20日。
唯一性定理

静电场的基本问题:
求出在每个均匀区域内满足泊松方程,在所有分界面 上满足边值关系,在所研究的整个区域边界上满足边 界条件的电势的解
2 i
i
Sij
j
Sij
i
i
n
Sij
j
j
n
Sij
V
j S
i
Sij evn
除此之外,要完全确定V内静电场的解,还必须给出 整个区域边界S上的一些条件。
1
到底需要给定哪些条件,才能求得静电场的解,并且 解是唯一的?
Ra
(2) 介质内无自由电荷分布; (3) R=a处导体球带总电量Qf 该定解问题有唯一解。
9
1. 给出边值关系和边界条件 设左、右介质的电势分别为 1 和 2
Ñ dS Qi
Si n
根据唯一性定理,只要能找到一个满足上面定解条件 的特解,那该解就一定是该问题的唯一解。
10
2. 提出尝试解
C与 0为待定系数,且 0与外球壳半径a’有关 3. 由边值关系和边界条件确定待定系数
2 0 Qf 2 1 2 a2
相同
v
2
0Q f
1 2 a2
(, 右半球)
P1
v P2
15
所以,由于有束缚电荷的存在,在内导体球壳两半球 面上束缚电荷与自由电荷之和是球对称的,所以电场 强度E是球对称的。
首先判断该问题是否满足唯一性定理。 1. 给出边值关系和边界条件 2. 提出尝试解 3. 由边值关系和边界条件确定待定系数 4. 求电场和球壳上的电荷分布
Ñ i
Vi
i
2dV
v
Si i dS i
2 0
Vi i 2 dV
积分区域包括沿区域V的边界S上的面积分和沿各分区的分界面Sij的面积4分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静电唯一性定理
我们将证明,如果我们得到了满足给定边界条件的泊松方程的解,那么,这个解是唯一的。
这就是静电唯一性定理。
下面我们证明这一定理并初步介绍它的应用。
在由边界面s 包围的求解区域V 内,若:
1) 区域V 内的电荷分布给定;
2) 在边界面s 上各点,给定了电势s ϕ,或给定了电势法向偏导数
s n ϕ∂∂, 则V 内的电势唯一确定。
以上的表述就是静电唯一性定理。
下面,我们用反证法证明静电唯一性定理。
证: 假定在区域V 内的电荷密度分布为ρ(x ),且有两个不同的解φ1和φ2满足泊松方程及给定边界条件(给定的电势值s ϕ或电势法向偏导数
s n ϕ∂∂)。
即: 2212,ρρϕϕεε
∇=-∇=- 并有
12s s s ϕϕϕ==
或
12
s
s s n n n ϕϕϕ∂∂∂==∂∂∂ 式中s ϕ和s
n ϕ∂∂为给定的边界条件。
令φ = φ1 – φ2,则在区域V 内各点: 2212()0φϕϕ∇=∇-= (2-2-1)
及在边界s 上各点:
120s s s φϕϕ=-= (2-2-2)
或
12
0s s s
n n n ϕϕφ∂∂∂=-=∂∂∂ (2-2-3) 利用公式
22d d ()d V V s
V V φφφφφ∇+∇=∇⎰⎰⎰s 将式(2-2-1)带入上式得:
2d ()d d V s
s V s n φφφφφ∇=∇∂=∂⎰⎰⎰s (2-2-4)
若在边界s 上各点无论是给定了电势或给定了电势法向偏导数均有:
2
d 0V V φ∇=⎰ (2-2-5)
因|∇φ|2 ≥ 0,满足上式的条件只能是在求解区域V 内各点∇φ = 0。
因此,
φ1 - φ2= 常数
如果在边界上(或部分边界上)给定了电势φ|s ,则因φ1|s = φ2|s ,此常数为零;若全部边界条件给出的不是电势,而是(∂φ/∂n )|s ,此常数不一定为零。
但由式E = -∇φ,区域V 内的电场唯一确定,一个常数并不改变电场的基本特性,通常为了方便,此常数可选择为零。
由此,我们最初假定φ1和φ2是两个不同的电势解是不成立的。
这样我们就证明了静电唯一性定理。
在边界上各点给定电势值φ|s 的条件通常我们称为第一类边界条件;而给定法向偏导数条件(∂φ/∂n )|s 则称为第二类边界条件。
从式(2-2-4)来看,若部分边界上给出第一类边界条件,部分边界上给出第二类边界条件,并不改变我们的结论。
若空间存在不同的介质,显然这种情况并没有影响我们的证明过程。
因此也不改变我们的结论。
但在实际中,我们通常是将每一种介质作为一个子区域来求解电势问题。
子区域之间的电势通过电势的边值关系连接(衔接)起来而得到整个空间的电势解。
因此,在这种情况下,还必须给出介质分界面的电荷密度,这仍然是“给出求解区域内的电荷分布”情况。
若空间存在导体,导体区域不是我们的求解区域,而导体表面则是求解区域的边界。
因此,若空间存在导体,则必须给出导体上的电势或导体所带电荷量,否则不能得到唯一解。
给出了导体上的电势,这是属于第一类边界条件。
对于给出了导体所带的电量Q ,因导体电荷分布在表面上,面电荷密度0fs n ϕρε∂=-∂,而s d fs s Q ρ=⎰,因此这种情况仍属于第二类边界条件问题,其中s 为包围导体的封闭面。
在应用静电唯一性定理时,要注意的是,有时边界面在无穷远处。
静电唯一性定理有两个重要的意义:
(1) 它指明了确定电势解的条件是什么。
这些条件是:
i) 求解区域内的电荷分布情况必须给出(包含ρf = 0);
ii) 求解区域边界上各点必须给定电势值φ|s ,或电势法向偏导数s
n ϕ∂∂。
(2) 因满足给定边界条件的泊松方程的解是唯一的,因此我们可以尝试解。
只要尝试解满足区域内电荷分布,满足边界条件,此尝试解就是唯一解。
从实际的观点来看,静电唯一性定理的意义在于:无论我们用什么方法,一旦得到了满足给定边界条件的泊松方程的解,则此解是唯一的,而不用担心有其它的解。
这个“无论什么方法”,指的是系统的分析方法、或机灵的猜测、或幸运的猜测、或简单的记住了过去的类似解而给出符合问题的变形等等方法。
需要指出的是:“满足泊松方程的解”意味着解满足了求解区域内的电荷分布。
或者说给定电荷分布既是给定了泊松方程的具体形式。
因此,根据静电唯一性定理,确定电势解的全部条件(简称定解条件)为泊松方程的具体形式和所有边界条件。