复合函数定义域和值域练习题
复合函数定义域与值域经典习题及答案

复合函数定义域与值域练习题一、 求函数得定义域1、求下列函数得定义域:⑴ ⑵⑶2、设函数f x ()得定义域为[]01,,则函数f x ()2得定义域为_ _ _;函数f x ()-2得定义域为________;3、若函数得定义域为[]-23,,则函数得定义域就是 ;函数得定义域为 。
4、 知函数f x ()得定义域为,且函数得定义域存在,求实数得取值范围。
二、求函数得值域5、求下列函数得值域:⑴ ⑵⑶ ⑷⑸ ⑹⑺ ⑻⑼ ⑽⑾6、已知函数得值域为[1,3],求得值、三、求函数得解析式1、 已知函数,求函数,得解析式。
2、 已知就是二次函数,且,求得解析式。
3、已知函数满足,则= 。
4、设就是R上得奇函数,且当时, ,则当时=____ _在R 上得解析式为5、设与得定义域就是, 就是偶函数,就是奇函数,且,求与 得解析表达式四、求函数得单调区间6、求下列函数得单调区间:⑴⑵⑶7、函数在上就是单调递减函数,则得单调递增区间就是8、函数得递减区间就是 ;函数得递减区间就是五、综合题9、判断下列各组中得两个函数就是同一函数得为 ( )⑴, ;⑵ , ;⑶, ;⑷, ;⑸, 。
A、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ ﻩD 、 ⑶、⑸10、若函数= 得定义域为,则实数得取值范围就是ﻩ( )A 、(-∞,+∞)ﻩB 、(0, C、(,+∞) D 、[0,11、若函数得定义域为,则实数得取值范围就是( )(A) (B) (C) (D)12、对于,不等式恒成立得得取值范围就是( )(A) (B) 或 (C) 或 (D)13、函数得定义域就是( )A 、 ﻩB 、C 、D 、14、函数就是( )A、奇函数,且在(0,1)上就是增函数 B 、奇函数,且在(0,1)上就是减函数C、偶函数,且在(0,1)上就是增函数 D 、偶函数,且在(0,1)上就是减函数15、函数 ,若,则=16、已知函数f x ()得定义域就是(]01,,则g x fx a fx a a ()()()()=+⋅--<≤120得定义域为 。
函数定义域、值域经典习题及答案

复合函数定义域和值域练习题一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y =⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼ y =⑽ 4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间6、求下列函数的单调区间: ⑴ 223y x x =++⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。
复合函数练习题附答案

复合函数练习题附答案21、已知函数f的定义域为[0,1],求函数f的定义域。
析:由已知,x?[0,1],故x?[?1,1]。
所以所求定义域为[?1,1]2、已知函数f的定义域为[?3,3],求f的定义域析:由已知x的范围为[?1,1],那么3?2x的范围为[1,5],从而f 的定义域为[1,5]3、已知函数y?f的定义域为,求f的定义域。
由f 的定义域可知f的定义域为,则求f的定义域应满足析:132x?1?,解得x??224、设f?x??lg2?x?x??2?,则ff??的定义域为?x?2??x?A. ??4,00,4?B. ??4,?11,4?C. ??2,?11,2?D. ??4,?22,4??x?0,即?0,得?2?x?2.那么由题意应有2?x析:?-2?x??4?x?4??2,解得?,综上x??,选B?2x??1或x?12??2x?5.函数y=log1的单调递减区间是2A. B.C. D.析:本题考查复合函数的单调性,根据同增异减。
对于对数型复合函数,应先求定义域,即x2?3x?2?0,得定义域为?.由于外函数是以0?1?1为底,故为减函数。
则求y的减区间,只需要求内函数的增23区间。
内函数为t?x2?3x?2,其对称轴为x?,在函数y的定义域内,t在上2为增函数,所以选择B6.找出下列函数的单调区间.y?a?x2?3x?2;解析:此题为指数型复合函数,考查同增异减。
令t??x2?3x?2,则y?at,t??x2?3x?2。
由于a?1,则外函数为增函数,由同增异减可知,t的增区间即为y的增区间。
而内函数t的333,即t在上位增函数,在上位减函数,从而函22233数y的增区间为,减区间为22对称轴为x?y?2x2?2x?3.解:设t??x2?2x?3,则y?2t.因?x2?2x?3?0,得?1?x?3.由?x2?2x?3对称轴为x?1.即内函数t的增区间为[?1,1],减区间为[1,3]。
求复合函数的定义域

求复合函数的定义域一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ⊇B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.二、例题剖析:(1)、已知f x ()的定义域,求[]f g x ()的定义域思路:设函数f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。
例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。
解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1)又f 对lnx 作用,作用范围不变,所以01<<ln x解得x e ∈()1,,故函数f x (ln )的定义域为(1,e )例2. 若函数f x x ()=+11,则函数[]f f x ()的定义域为______________。
解析:先求f 的作用范围,由f x x ()=+11,知x ≠-1 即f 的作用范围为{}x R x ∈≠-|1,又f 对f(x)作用所以f x R f x ()()∈≠-且1,即[]f f x ()中x 应满足x f x ≠-≠-⎧⎨⎩11() 即x x ≠-+≠-⎧⎨⎪⎩⎪1111,解得x x ≠-≠-12且 故函数[]f f x ()的定义域为{}x R x x ∈≠-≠-|12且(2)、已知[]f g x ()的定义域,求f x ()的定义域思路:设[]f g x ()的定义域为D ,即x D ∈,由此得g x E ()∈,所以f 的作用范围为E ,又f 对x 作用,作用范围不变,所以x E E ∈,为f x ()的定义域。
例3. 已知f x ()32-的定义域为[]x ∈-12,,则函数f x ()的定义域为_________。
复合函数(习题)

复合函数(习题)1. 若函数2()2f x x =+,21()1x x g x x x -+<⎧=⎨⎩≥,,,则函数(())g f x 的解析式是_______________________.2. 已知2(1)45f x x x -=+-,则(1)f x +=_______________.3. (1)若函数(3)f x +的定义域为[52]--,,则()(1)(1)F x f x f x =++-的定义域为_______________.(2)已知2()4x y f =的定义域为,则1()2x y f += 的定义域为_______________.4. (1)函数()432301x x f x x =-+<⋅≤()的值域是_______.(2)函数3()1log f x x =+的定义域是(19],,则函数22()[()]()g x f x f x =+的值域是_______________.5. (1)函数2431()3x x y -+-=的单调递增区间为______________.(2)函数22log (231)y x x =-+的单调递减区间为________.(3)函数4287y x x =--的单调递减区间是_____________.(4)函数222(log )2log 314y x x x =--≤≤()的单调递增区间是______________.(5)函数1421x x y +=-+-的单调递增区间是____________.6. (1)函数34()24x f x x -=-的单调递增区间是______________.(2)函数()f x =的单调递增区间是____________.(3)函数y =____________.7. 函数y =的单调递减区间是____________.8. 已知函数1()log (2)a f x x =-在其定义域上单调递减,则函数2()log (1)a g x x =-的单调递减区间是( ) A .(10)-,B .[0)+∞,C .(0]-∞,D .[01),9. 若函数22(1)1()2xa x f x --+=在区间[5)+∞,上是增函数,则实数a 的取值范围是( ) A .(6)+∞,B .[6)+∞,C .(6)-∞,D .(6]-∞,10. 已知函数()log (2)x a f x a =-在区间(1]-∞,上单调递减,则实数a的取值范围是()A.(12),B.(01),C.(01)(12),,D.(01)(2)+∞,,【参考答案】1.2(())2g f x x=+2.x2+8x+73.(1)[-1,0];(2)[0,3]4.(1)3[1]4,;(2)(2,7]5.(1)(2,+∞);(2)1 ()2-∞,;(3)(0,2),(-∞,-2);(4)(2,4);(5)(-∞,0)6.(1)(-∞,2),(2,+∞);(2)3(2)4,;(3)(-∞,1)7.(3,+∞)8. A9. D10.A。
(完整版)复合函数定义域与值域经典习题及答案

复合函数定义域和值域练习题一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y = ⑹ 225941x x y x +=-+⑺31y x x =-++ ⑻2y x x =-⑼ y = ⑽ 4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间: ⑴ 223y x x =++⑵y =⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ;⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ;⑷x x f =)(, ()g x =;⑸21)52()(-=x x f , 52)(2-=x x f 。
函数定义域、值域经典习题及答案

复合函数定义域和值域练习题一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为 ;函数f x ()-2的定义域为 ;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y =⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼y =⑽4y =⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x = ()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间: ⑴ 223y x x =++⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x = ⑸21)52()(-=x x f , 52)(2-=x x f 。
复合函数专题训练

f g 1 1,满足条件的x=2
3、常见的无外层函数的复合函数形式:
1: f x 1、f x 1
1 1 2: f 、f 2 x 1 x 1 x 1 内层函数是分式的,还有f 2 等 2x 1 3: f x 1 、f 2 x2 1
x
0,
g f x g x2 x x2 x
,0 1,
f f x f x x x x x 2 x x 4 2x3 x
R
练习:
1 2 1、已知f x x 1 , g x x 2. 1求f 2 和g a , 1 x 2求g f 2 , 3求f g x 以及函数定义域.
例2:设函数f x 的定义域为 0,1 ,求 f x f x m f x m m 0 的定义域.
2、复合函数解析式与定义域求法:
例1:若f x x 2 x, g x x , 求f g x 、g f x 、f f x .
解:由题意得 f g x f
x x x x
2
2 2 2
如:f t t A 0,
2
2 2
内层函数,y f t 叫做外层函数.
g x x 1 D R C 1,
f g x f x 1 x 1 要求:x 2 1 0
C只取 0, + ,此时D' , 1 1,
内层函数是整式的,还有f 1 、f x 、f 3x 3 2 x 2 等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0920作业复合函数定义域和值域练习题
一、 求函数的定义域
1、求下列函数的定义域:
⑴y =
⑵y
⑶01(21)1
11y x x =+-+-
2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ ;函数f x ()-2的定义域为______;
3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x
+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
二、求函数的值域
5、求下列函数的值域:⑴
223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311
x y x -=+
(5)x ≥ ⑸
y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼
y ⑽
4y =
⑾y x =6、已知函数222()1
x ax b f x x ++=+的值域为[1,3],求,a b 的值。
三、求函数的解析式
1、 已知函数
2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设
()f x 是R 上的奇函数,且当[0,)x ∈+∞时,
()(1f x x =,则当(,0)x ∈-∞时()f x =____ ()f x 在R 上的解析式为 5、判断下列各组中的两个函数是同一函数的为 ( )A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;
⑶
x x f =)(, 2
)(x x g = ; ⑷x x f =)(,
()g x = ⑸21)52()(-=x x f , 52)(2-=x x f 。
6、若函数()f x = 3442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4
3) 7
、若函数()f x =的定义域为R ,则实数m 的取值范围是( )
(A)0m << (B) 4≤ (C) 4m ≥ (D) 04m <≤
8、对于11a -≤≤,不等式2(2)10x a x a +-+->恒成立的x 的取值范围是( )
(A) 02x << (B) 0x <或2x > (C) 1x <或3x > (D) 11x -<<
9.
函数()f x = )A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞ D 、{2,2}-
10、函数22(1)
()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩
,若()3f x =,则x = 11、已知函数
f x ()的定义域是(]01,,则
g x f x a f x a a ()()()()=+⋅--<≤120的定义域为 。
12、已知函数
21mx n y x +=+的最大值为4,最小值为 —1 ,则m = ,n = 13、把函数
11y x =+的图象沿x 轴向左平移一个单位后,得到图象C ,则C 关于原点对称的图象的解析式为 14、求函数
12)(2--=ax x x f 在区间[ 0 , 2 ]上的最值 15、若函数
2()22,[,1]f x x x x t t =-+∈+当时的最小值为()g t ,求函数()g t 当∈t [-3,-2]时的最值。