机械设计公差分析ppt
《公差配合课件》PPT课件

33
a
1. 标准公差系列
(2)公差等级 公差等级系数a(见表2-6) 标准公差的值T= a i
第三节 机械零件的公差与配合
1
a
一、公差与配合的基本概念
加工误差 公差
2
a
一、公差与配合的基本概念
1. 有关“尺寸”的术语和意义 (1)尺寸
尺寸是用特定单位表示长度 的数字。
3
a
1. 有关“尺寸”的术语和意 义
(2)基本尺寸 基本尺寸是由设计者经过计
算或按经验确定后,再按标准 选取的标注在设计图上的尺寸。
IT6 = 10 i = 10×1.56≈16 (mm) IT7 = 16 i = 16×1.56≈24.97≈25
(mm) (mm)
37
a
2. 基本偏差系列
38
a
图2-15 基本偏差系列
2. 基本偏差系列
(1)轴的基本偏差
请看P32 表2-9
40
a
2. 基本偏差系列
(1)轴的基本偏差
有了基本偏差和标准公差,就不难求出轴的 另一个偏差(上偏差或下偏差):
54
a
三、公差与配合的基准制与公差等级
5. 配合的选用
应尽可能选用优先配合和常用配合。
55
a
四、形状公差与位置公差
(一) 形状公差和形状误差
1. 形状公差 构成机械零件形状的几何要素所允 许的变动量称为形状公差。
《零件图的公差标注》课件

上、下偏差的标注
上偏差和下偏差应分别标注在尺寸数 字的上方和下方,并使用适当的符号 或缩写表示。
公差等级的选用
根据零件的功能需求和制造工艺,选 择合适的公差等级,以满足零件的精 度要求。
形状公差的标注方法
形状公差的基本概念
形状公差是指零件表面的微观不平,包括 平面度、圆度、圆柱度等。
符号和代号的选用
形状公差标注实例分析
形状公差标注
形状公差是指零件形状的精度要求, 如平面度、圆度、圆柱度等。通过标 注形状公差,可以控制零件的形状误 差。
实例分析
以轴承盖为例,标注平面度为 0.02mm,表示该轴承盖的平面度误 差不得超过0.02mm。通过这个标注 ,可以确保轴承盖的平面度满足设计 要求。
位置公差标注实例分析
,提高产品质量。
公差标注还有助于在产品设计和生产过程中进行有效的技术交
03
流,确保设计意图的准确传达。
02
零件图公差标注的 规则和方法
尺寸公差的标注规则
尺寸公差标注的基本原则
尺寸公差标注应遵循国家标准和行业规 范,确保图纸的可读性和准确性。
公差单位的标注
公差单位应与基本尺寸的单位保持一 致,并在公差数字后面注明单位。
国际化接轨
与国际标准接轨,推动公差标注 的国际化发展,提升我国制造业 的国际竞争力。
05
总结与展望
公差标注的重要性和意义
确保产品质量
公差标注是机械制造中质量 控制的关键环节,通过明确 零件尺寸和形位的允许变动 范围,确保产品的功能和性
能符合设计要求。
降低生产成本
合理的公差标注有助于减少 生产过程中的废品和次品率 ,降低生产成本和资源浪费
根据不同的形状公差项目,选用相应的符号 和代号进行标注。
机械制图(工程图学)公差及配合

上偏差:55.06-55=0.06 下偏差:55-55=0
2020/12/19
6
例:齿轮轴的基本尺寸为Ø30,在该轴的工作图上,上偏差为+0.023,下偏差为-0.008,试求出其 最大极限尺寸及最小极限尺寸和公差。
最大极限尺寸:30+0.023=30.023
最小极限尺寸: 30-0.008=29.992
m n p r s t u v x y z zazb 零线
c cd d
e
ef
f
fg
g
h
js j
k
轴
0
b
基本尺寸
a
基本偏差系列
2020/12/19
10
(3)公差带代号 公差带代号组成
基本偏差代号,如:H、f。 标准公差等级代号如:8、7。
公差带的位置由基本偏差决定, 公差带的大小由标准公差等级决定。
2020/12/19
26
2020/12/19
图11-34 由配合尺寸查表标注极限偏差实例
4
0Hn
7 6
3 0Hf 78
箱体 轴
轴套
-0.020 -0.041
-0 .0 2 5
3 0 . 0 5 0
+ 0 .0 3 3
4 0+ 0 . 0 1 7
3
0+
0 0
.0
3
9
3
+ 0 .0 2 5
400
零件图的技术要求
2020/12/19
1
(φ50)
一、极限与配合的基本概念
为什么要制定极限 与配合标准?
● 互换性要求: 同一批零件,不经挑选和辅助加工,任取一个就
公差与配合ppt课件

过渡配合
配合松弛,影响零件的稳定性 和功能。
间隙配合
配合间隙过大,可能导致零件 之间的相对位置不稳定。
总结和要点
公差与配合是机械设计中的重要概念,对零件质量和性能至关重要。合理控制公差,选择合适的配合类型,确 保零件的装配和功能。
对零件的形状和相对位置进行控制和限制。
3 配合类型
包括过盈配合、过渡配合和间隙配合等。
公差与配合的应用
装配
通过控制公差和选择合适的配合类型,实现零件的 精确装配。
汽车制造
在汽车工业中,公差与配合的控制尤为重要,确保 汽车零件的质量和可靠性。
公差与配合的常见问题
过盈
配合过于紧密,导致装配困难 或零件损坏。
原理
根据机械设计的要求和实际情况,确定合适的公差, 确保零件的功能和可靠性。
配合的定义和原理
定义
配合是指零件之间的形位关系,包括配合类型和配 合公差。
原理
根据机械零件的功能和运动方式,选择合适的配合 类型和配合公差,保证零件的相互协调性。
公差与配合的分类
1 尺寸公差
2 形位公差
对零件的尺寸进行控制和限制。
公差与配合ppt课件
公差与配合是机械设计中至关重要的概念。通过掌握公差的定义、原理以及 配合的定义、原理,我们可以确保机械部件的质量和性能。
Hale Waihona Puke 公差与配合是什么公差
指针对零件尺寸、形状、位置等方面的允许偏差。
配合
指零件之间相对位置关系的要求,包括配合类型、配合公差等。
公差的定义和原理
定义
公差是指允许的偏差范围,表示零件的制造精度。
机械制造基础第三版电子课件模块六尺寸公差与配合

(四)标准公差系列 标准公差是指在国家标准中用表格列出的用以确定公差带大小的任一公差。
标准公差大小与标准公 差等级和公称尺寸段两个 因素有关。
确定尺寸精确程度的等 级为公差等级。
标准规定:同一公差等 级对所有公称尺寸的公差 被认为具有同等精确程度。
国家标准共设立了20 个公差等级,即IT01、IT0、IT1 ~ IT18,其中IT01 精 度最高,IT18 精度最低。公称尺寸相同时,公差等级高,零件的精度高,则公差 值小,加工难度大,生产成本高;反之,公差等级低,零件精度低,则公差值大, 加工难度小,生产成本低。
孔的上极限偏差是+0.025 mm,下极限偏差是0;而轴φ(56±0.009)mm 的上极限偏差是+0.009 mm,下极限偏差是-0.009 mm。
3.求极限尺寸 极限尺寸是指一个孔或轴允许的尺寸的两个极端,它包括上极限尺寸和下极限 尺寸。 4.求公差 尺寸公差(简称公差)是指允许尺寸的变动量。公差的数值等于上极限尺寸与 下极限尺寸之差,也等于上极限偏差与下极限偏差之差。 5.零件尺寸是否合格的判别
(二)分析及解决问题 1.判断配合性质 (3)过渡配合 可能具有间隙或过盈的配合称为过渡配合。此时孔的尺寸可能大于轴的尺寸, 也可能小于或等于轴的尺寸。其公差带关系为:孔的公差带与轴的公差带相互交 叠,如图6-6 所示为组成过渡配合的孔、轴公差带图。
2.极限间隙和极限过盈的计算 (1)间隙配合 1)最大间隙Xmax。最大间隙等于孔的上极限尺寸与轴的下极限尺寸之差,也 等于孔的上极限偏差减去轴的下极限偏差,它一定大于零。
标准公差数值的大小还与公称尺寸分段有关,即精度等级相同时,公称尺寸段 的尺寸大,则标准公差的数值也大。
(五)一般公差
形位公差之位置度详解课件

位置度公差带的计算需要考虑基准体系的选择、公差值的确定以及被 测要素的形状和大小等因素。
03
位置度的实际应用
孔的位置度
01
02
03
孔的位置度定义
孔的位置度是描述孔中心 与基准之间相对位置的形 位公差。
孔的位置度的应用
在机械加工中,孔的位置 度对于保证零件的装配精 度、功能要求和平衡性等 方面具有重要意义。
某传动部件中,轴的位置度标注不符合标准,导致运转过程中出现异常声音和振 动,增加维护成本和缩短设备使用寿命。
案例三:面的位置度标注对产品外观的影响
总结词
标注不准确影响外观质量、导致客户投诉。
详细描述
某产品外壳加工过程中,面的位置度标注不准确,导致产品外观不平整、有明显凸起或凹陷,影响整体美观度, 最终客户投诉。
THANKS
感谢观看
06
参考文献与考文献 • Barber E J W. 机械制造中的几何量公差[M]. 北京:中国计量出版社, 1991. • 吴拓. 互换性与测量技术基础[M]. 北京:机械工业出版社, 2005. • 王伯平. 互换性与测量技术实验指导[M]. 北京:机械工业出版社, 2004.
形位公差之位置度详解课件
目录
• 位置度的基本概念 • 位置度的原理与计算方法 • 位置度的实际应用 • 位置度的案例分析 • 位置度的总结与展望 • 参考文献与资料来源
01
位置度的基本概念
位置度的定义
01
位置度是指一个特定点相对于基 准坐标系的位置的精确度。
02
位置度常用于机械、工程和制造 领域,以确保组件的正确对齐和 定位。
统计分析法
对于复杂的形状和位置,需要采用统 计分析法来确定位置度。这需要对大 量的测量数据进行统计和处理。
公差配合与技术测量第二章PPT课件

28种偏差值;
• 2)基本偏差系列中H(h)其偏差值为0;
• 3)若取JS(js)其偏差与0线对称。
• 即有: ES = EI = IT/2
•
es = ei = IT/2
• 此时的上、下偏差均可作为基本偏差使用。
第二章 尺寸公差与检测
• 4)孔的基本偏差系列中,A~H的基本偏差
为下偏差, J~Z为上偏差。
轴
es ei
dmax
D(d)
第二章 尺寸公差与检测
• 配合
• ——基本尺寸相同的孔与轴结合在一起时公
差带之间的匹配关系。
• 配合的间隙与过盈:
•
0 < D – d 获得间隙;
•
D – d < 0获得过盈。
第二章 尺寸公差与检测
• 间隙配合、过盈配合和过渡配合公差带示意图
+
0
孔
-
轴 孔
孔轴
轴
基本尺寸
公差配合与技术测量第二章
第二章 尺寸公差与检测
第二章 尺寸公差与检测
• 一、尺寸与孔和轴 • 零件的配合均被认为是孔与轴的配合 • 孔与轴的定义: • 1、轴(d) • 狭义——零件的外圆柱表面 • 广义——具有被包容表面的零件(不一定是
圆),被包容面外没有材料。
第二章 尺寸公差与检测
• 2、孔(D) • 狭义——零件的内圆柱表面 • 广义——具有包容表面的零件(不一定是
卸的频数来考虑选用。
• 孔有JS~N ,轴有js~n级基本偏差供选用。 • 受冲击力,负荷较重公差带的选取趋向过
盈(如 K~N );
• 一般受力、负荷较小公差带的选取趋向间
隙(如 js~k );
第二章 尺寸公差与检测
机械设计,制造过程中的公差

机械设计,制造过程中的公差零件在加工过程中,不可避免地会产生各种误差,想把同一规格的一批零件的几何参数做得完全一致是不可能的,也是不必要的,实际上,只要把几何参数的误差控制在一定范围内,就能满足互换性的要求。
1、有关尺寸的术语及定义以特定单位表示线性尺寸的数值称为尺寸。
由设计给定的尺寸,称为基本尺寸。
通过测量获得的某一孔、轴的尺寸,称为实际尺寸。
允许尺寸变化的两个极限值,称为极限尺寸。
两个极限尺寸中,较大的一个称为最大极限尺寸,较小的一个称为最小极限尺寸。
图1所示。
图1极限尺寸2、有关偏差和公差的术语及定义尺寸偏差(简称偏差)某一尺寸(实际尺寸、极限尺寸)减其基本尺寸所得的代数差,简称偏差。
极限偏差极限偏差包括上偏差和下偏差。
孔的上、下偏差代号用大写字母ES、EI表示,轴的上、下偏差代号用小写字母es、ei表示,如图2所示。
最大极限尺寸减其基本尺寸的代数差称为上偏差(ES、es),最小极限尺寸减其基本尺寸的代数差称为下偏差(EI、ei)。
实际偏差实际尺寸减其基本尺寸的代数差,称为实际偏差。
合格零件的实际偏差应在规定的极限偏差范围内。
由于极限尺寸可以大于、等于或小于基本尺寸,所以偏差可以为正值、零或负值。
偏差值除零外,应标上相应的“+”号或“-”号,极限偏差用于控制实际偏差。
尺寸公差(简称公差)最大极限尺寸与最小极限尺寸的代数差,称为尺寸公差,也等于上偏差与下偏差的代数差的绝对值。
它是允许尺寸的变化量,尺寸公差是个没有符号的绝对值。
(a) (b)图2尺寸、偏差和公差公差与偏差是两个不同的概念:公差代表制造精度的要求,是指上下尺寸的变动范围,反映加工难易的程度,当基本尺寸相同时,公差越大,制造难度越低加工越容易,不同尺寸不同公差值时,可用相对尺寸精度来测量其制造难易程度;而偏差是表示偏离基本尺寸的多少与加工的难易程度无关。
公差是不为零的绝对值;而偏差可以为正、负或零。
公差影响配合的精度。
而偏差影响配合的松紧程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配合分類
• 間隙配合
特點:孔的公差帶總是在軸的公差帶之上.
• 過盈配合
特點:孔的公差帶總是在軸的公差帶之下.
• 過渡配合
特點:孔的公差帶與軸的公差帶交疊.
-
配合分類
間隙配合
過渡配合
-
過盈配合
基本概念---尺寸練
• C=A-B • C:封閉環,A:增環,B:減環
-
尺寸練計算
• Amax=61.1+30.05+44.15=135.3 • Amin=60.9+29.95+43.85=134.7 • A=135±0.3
公差分析
作成:王棚 2005年4月25日
-
基本概念
• 基本尺寸 • 公差 • 极限尺寸 • 配合 • 尺寸練
-
基本概念—基本尺寸,公差
公差 基本尺寸
-
基本概念—极限尺寸
上限尺寸=基本尺寸+上公差 下限尺寸=基本尺寸-下公差
-
基本概念---配合
配合是基本尺寸 相同的互相結合 的孔軸公差帶之 間的關系
-
• 谢谢大家!
结束
-
A
[(120±0.15)-(60 ± 0.15)]-(59.6 ±0.15) =0.4 ±0.45=0.85max/-0.05min
• 結論:A會干涉0.05,不能順利放入. • WORSE CASE:條件最差-時的狀況.
案例一:分析產品可否導板
• [(11.7 ±0.05)-(0.7 ± 0.05)]-[(11.7 ±0.05)-2*(0.4±0.02)]=(0.1 ± 0.19)=0.29max/-0.09min
B=(25±0.05)-(4.1± 0.05)=(20.9 ± 0.1) =21max.
• D1min=(29-21.13)/2=3.935, D2min=(28.67-21)/2=3.835取Dmin=3.835
• 鉚釘:3.8±0.05
• 配合間隙: 3.835-(3.8 ±0.05)=0.035 ±0孔
鐵殼
膠芯
• 膠芯: A=(24.9±0.1)+(3.92± 0.05)=(28.82 ± 0.15) =28.67min.
B=(24.9±0.1)-(3.92± 0.05)=(20.98 ± 0.15) =21.13max.
• 鐵殼:A=(25 ±0.05)+(4.1 ±0.05)=(29.1 ±0.1)=29min
• 結論:有可能干涉0.015.
-
案例四:核算PCI端子與膠芯配合狀況
偏公差轉為對 稱公差帶后再 計算
• 膠芯: 0.82+0.04/-0轉化為0.84 ±0.02. • (0.84 ±0.02)-(0.8 ±0.02)=0.04 ±0.04>=0 OK • (0.86 ±0.02)-(0.84 ±0.02)=0.02 ±0.04 過渡配合 • (0.9 ±0.03)-(1 ± 0.02)=-0.1 ±0.05<0 恒干涉
-
A=(61±0.1)+(30±0.0 5)+(44±0.15)=135±
0.3
尺寸練計算
公差 累加
• Amax=120.15-59.85=60.3 • Amin=119.85-60.15=59.7 • A=60±0.3
A=(120±0.15)(60±0.15) =60±0.3
-
分析A能否順利放入
• 有可能干涉0.09,不能順利導板.
-
案例二:核算PCI端子間距离是否在0.55~0.85間
• A=(3.7 ±0.05)-2*(1.5 ± 0.05)=(0.7 ± 0.15) =0.85max/0.55min in spec.
-
案例三:核算D-SUB鉚釘能否順利插入鉚釘孔
公差0.0: +/-0.10 0.00: +/-0.05