数字电压表的设计
数字电压表的设计毕业论文

数字电压表的设计毕业论文数字电压表的设计摘要:本文主要介绍了数字电压表的设计。
首先介绍了数字电压表的基本原理和功能,然后详细讲解了数字电压表的硬件设计和软件设计。
硬件设计包括电路设计和元器件选择,软件设计包括程序设计和界面设计。
最后对数字电压表进行了实验验证,并总结了设计过程中的经验和教训。
1. 引言数字电压表是一种常用的电子测量仪器,广泛应用于工业控制、科研实验和电子维修等领域。
本文将介绍一种基于单片机的数字电压表的设计方案。
2. 基本原理和功能数字电压表的基本原理是通过采集电压信号并将其转换成数字信号,然后通过显示器显示出来。
数字电压表的功能包括测量电压值、显示电压值、单位切换、数据保存等。
3. 硬件设计3.1 电路设计数字电压表的电路设计主要包括信号采集电路、信号转换电路和显示电路。
信号采集电路负责将待测电压信号转换成电压信号,信号转换电路负责将电压信号转换成数字信号,显示电路负责将数字信号显示出来。
3.2 元器件选择在数字电压表的设计中,元器件的选择非常重要。
需要选择合适的电阻、电容、集成电路等元器件,以确保电路的稳定性和精确度。
4. 软件设计4.1 程序设计数字电压表的程序设计主要包括信号采集程序、信号转换程序和显示程序。
信号采集程序负责采集电压信号,信号转换程序负责将电压信号转换成数字信号,显示程序负责将数字信号显示出来。
4.2 界面设计数字电压表的界面设计主要包括显示界面和操作界面。
显示界面负责将数字信号以合适的格式显示出来,操作界面负责提供操作按钮和设置选项。
5. 实验验证为了验证数字电压表的设计方案的准确性和可靠性,进行了一系列实验。
实验结果表明,设计方案能够准确测量电压值并显示出来。
6. 经验总结在数字电压表的设计过程中,我们遇到了一些问题和挑战。
通过实践和总结,我们得出了一些经验和教训。
例如,在硬件设计中,需要注意电路的稳定性和精确度;在软件设计中,需要考虑程序的效率和界面的友好性。
基于单片机的数字电压表设计

基于单片机的数字电压表设计一、引言在电子测量领域中,电压表是一种常用的测量仪器,用于测量电路中的电压值。
传统的模拟电压表由于精度低、读数不便等缺点,逐渐被数字电压表所取代。
数字电压表具有精度高、读数直观、抗干扰能力强等优点,广泛应用于工业自动化、电子设备检测、实验室测量等领域。
本文将介绍一种基于单片机的数字电压表设计方案,详细阐述其硬件电路设计、软件编程实现以及系统性能测试。
二、系统总体设计方案(一)设计要求设计一款基于单片机的数字电压表,能够测量 0 5V 的直流电压,测量精度为 001V,具有实时显示测量结果的功能。
(二)系统组成本数字电压表系统主要由以下几个部分组成:1、传感器模块:用于将输入的电压信号转换为适合单片机处理的电信号。
2、单片机模块:作为系统的核心,负责对传感器采集到的数据进行处理和计算,并控制显示模块显示测量结果。
3、显示模块:用于实时显示测量的电压值。
三、硬件电路设计(一)传感器模块选用 ADC0809 作为模数转换芯片,它具有 8 个模拟输入通道,可以将 0 5V 的模拟电压转换为 8 位数字量输出。
(二)单片机模块选择 AT89C51 单片机作为控制核心,它具有 4K 字节的 Flash 程序存储器和 128 字节的随机存取数据存储器。
(三)显示模块采用液晶显示屏(LCD1602)作为显示器件,它能够清晰地显示数字和字符信息。
四、软件编程实现(一)编程语言选择使用 C 语言进行编程,C 语言具有语法简洁、可移植性强等优点。
(二)主程序流程主程序首先进行系统初始化,包括单片机端口初始化、LCD1602 初始化、ADC0809 初始化等。
然后启动 ADC0809 进行模数转换,读取转换结果并进行数据处理,计算出实际的电压值。
最后将电压值发送到 LCD1602 进行显示。
(三)模数转换子程序ADC0809 的转换过程通过控制其启动转换引脚(START)和读取转换结束引脚(EOC)来实现。
数字电压表的课程设计

数字电压表的课程设计一、课程目标知识目标:1. 理解数字电压表的工作原理,掌握其基本组成部分及功能;2. 学会使用数字电压表进行电压测量,并能正确读取测量数据;3. 了解数字电压表在电子测量领域中的应用。
技能目标:1. 能够正确连接和操作数字电压表,进行电压测量;2. 培养学生观察、分析、解决问题的能力,通过实践操作,提高动手能力;3. 学会对测量数据进行处理,具备初步的数据分析能力。
情感态度价值观目标:1. 培养学生对电子测量的兴趣,激发学习热情;2. 培养学生的合作精神,学会在团队中共同完成任务;3. 增强学生的安全意识,遵守实验室操作规程,爱护实验设备。
分析课程性质、学生特点和教学要求,本课程将目标分解为以下具体学习成果:1. 学生能够明确数字电压表的工作原理,掌握其使用方法;2. 学生能够独立完成电压测量实验,正确读取测量数据,并进行简单的数据处理;3. 学生在课程学习中,表现出积极的合作态度和良好的安全意识,对电子测量产生浓厚兴趣。
二、教学内容根据课程目标,本章节教学内容主要包括以下三个方面:1. 数字电压表基本原理与组成- 电压表的定义及分类- 数字电压表的工作原理- 数字电压表的组成部分及功能2. 数字电压表的使用方法与操作- 数字电压表的选择与连接- 电压测量方法与步骤- 测量数据的读取与处理3. 数字电压表的应用与实践- 数字电压表在电子测量中的应用案例- 实验操作:电压测量实践- 数据分析:处理测量数据,探讨实验现象教学大纲安排如下:1. 引入数字电压表的概念,介绍其工作原理及分类(第1课时)2. 讲解数字电压表的组成部分及功能,进行实物展示(第2课时)3. 指导学生掌握数字电压表的使用方法,进行实践操作(第3-4课时)4. 课堂讨论:数字电压表在电子测量中的应用,分析实验数据(第5课时)教学内容关联教材章节:1. 数字电压表基本原理与组成:教材第X章2. 数字电压表的使用方法与操作:教材第X章3. 数字电压表的应用与实践:教材第X章三、教学方法针对数字电压表的教学内容,选择以下多样化的教学方法,以激发学生的学习兴趣和主动性:1. 讲授法:- 对数字电压表的基本原理、组成部分和功能进行系统讲解,结合教材第X章内容,通过PPT展示,使学生建立完整的理论知识框架。
数字电压表实验报告

简易数字电压表设计报告姓名:***班级:自动化1202学号:****************:***2014年11月26日一.设计题目采用C8051F360单片机最小系统设计一个简易数字电压表,实现对0~3.3V 直流电压的测量。
二.设计原理模拟输入电压通过实验板PR3电位器产生,A/D转换器将模拟电压转换成数字量,并用十进制的形式在LCD上显示。
用一根杜邦实验线将J8口的0~3.3V输出插针与J7口的P2.0插针相连。
注意A/D转换器模拟输入电压的范围取决于其所选择的参考电压,如果A/D 转换器选择内部参考电压源,其模拟电压的范围0~2.4V,如果选择外部电源作为参考电压,则其模拟输入电压范围为0~3.3V。
原理框图如图1所示。
图1 简易数字电压表实验原理框图三.设计方案1.设计流程图如图2所示。
图2 简易数字电压表设计A/D转换和计时流程图2.实验板连接图如图3所示。
图3 简易数字电压表设计实验板接线图3.设计步骤(1)编写C8051F360和LCD初始化程序。
(2)AD转换方式选用逐次逼近型,A/D转换完成后得到10位数据的高低字节分别存放在寄存器ADCOH和ADC0L中,此处选择右对齐,转换时针为2MH Z。
(3)选择内部参考电压2.4V为基准电压(在实际单片机调试中改为3.311V),正端接P2.0,负端接地。
四、测试结果在0V~3.3V中取10组测试数据,每组间隔约为0.3V左右,实验数据如表1所示:显示电压(V)0.206 0.504 0.805 1.054 1.406实际电压(v)0.210 0.510 0.812 1.061 1.414相对误差(%) 1.905 1.176 0.862 0.659 0.565显示电压(V) 2.050 2.383 2.652 2.935 3.246实际电压(v) 2.061 2.391 2.660 2.943 3.253相对误差(%)0.421 0.334 0.301 0.272 0.215表1 简易数字电压表设计实验数据(注:其中显示电压指LCD显示值,实际电压指高精度电压表测量值)五.设计结论1.LCD显示模块的CPLD部分由FPGA充当,芯片本身自带程序,所以这个部分不用再通过quartus软件进行编程。
数字电压表的设计

目录一、设计方案 (2)(一)、设计要求 (2)(二)、设计方案 (2)1、由数字电路及芯片构建 (2)2、由单片机系统及A/D转换芯片构建 (2)(三)、系统设计的组成框图 (3)二、单元电路器件的选择 (3)(一)、单片机AT89C51 (3)(二)、A/D芯片的选择 (5)(三)、LED显示器件简介 (6)三、硬件电路系统的设计 (7)(一)、硬件电路系统的接口设计 (7)1、 AT89C51单片机和数码管显示电路的接口设计 (7)2、 A/D转换电路的接口设计 (7)(二)、硬件电路系统模块的设计 (7)1、单片机系统 (7)2、时钟电路 (8)3、复位电路 (8)4、显示电路设计 (9)(三)、总电路图 (10)四、系统软件程序的设计 (10)五、系统调试 (13)六、心得体会 (15)参考文献: (15)数字电压表的设计(电子信息工程技术专业电信09(1)班,xxx)摘要:设计采用AT89C51单片机、A/D转换器ADC0808和共阳极数码管为主要硬件,分析了数字压表Proteus软件仿真电路设计及编程方法。
将单片机应用于测量技术中,采用ADC0808将模拟信号转化为数字信号,用AT89C51实现数据的处理,通过数码管以扫描的方式完成显示。
设计的数字电压表可以测量0~5 V的电压值,AT89C51为8位单片机,当ADC0808的输入电压为5 V时,输出数字量值为+4.99 V。
本设计电路简单、成本低、性能稳定。
关键字:AT89C51单片机;A/D转换器ADC0808;数字电压表;Proteus仿真软件一、设计方案(一)、设计要求利用单片机AT89C51与ADC0808设计一个数字电压表,将模拟信号0~5 V之间的电压值转换成数字量信号,以两位数码管显示,并通过虚拟电压表观察ADC0808模拟量输入信号的电压值,LED数码管实时显示相应的数值量。
(二)、设计方案设计数字电压表有多种的设计方法,方案是多种多样的,由于大规模集成电路数字芯片的高速发展,各种数字芯片品种多样,导致对模拟数据的采集部分的不一致性,进而又使对数据的处理及显示的方式的多样性。
基于单片机的数字电压表设计

基于单片机的数字电压表设计数字电压表在电子技术中使用非常广泛,可以用来测量电路中的直流电压、交流电压以及各种信号的幅度等等。
基于单片机的数字电压表实现了数字电压的读取和显示,具有精确、稳定、易操作等特点,下面将介绍基于单片机的数字电压表的设计原理及实现方法。
一、系统结构基于单片机的数字电压表主要是由程序控制模块、模数转换模块和数字显示模块组成。
程序控制模块主要用来完成开机、校准、测试、功能选择等功能;模数转换模块主要将电压信号转换成数字量,供数字显示模块使用;数字显示模块主要将转换后的数字量显示在LCD液晶屏上。
二、硬件设计1.电源电路电源电路主要用来为电路提供稳定的电压和电流,本电路采用稳压电源芯片LM7805实现,稳压芯片输入端连接外部DC12V/1A电源,输出端连接电路板上的整个电路。
2.输入电路输入电路主要用来将被测电源的电压传递给单片机,常规情况下采用分压电路实现。
在本电路中,电阻R1和电容C1为RC滤波电路,起到滤波作用,防止干扰信号的影响;电阻R2是分压电路中的电阻,它根据电压值的不同设置不同的值,以保证被测电压在单片机内部转换过程中不会对单片机产生影响。
3.单片机模块单片机模块是系统的核心部分,本电路中选用STM32F103C8T6单片机实现模数转换和数码管控制,使用C 语言编写程序,通过模拟输入端口读取电压并进行模数转换,将得到的数字使用查表法将其转换为数码管控制脉冲,控制数码管的亮灭实现数字显示。
4.数字显示模块数字显示模块主要由七段数码管、LCD液晶屏幕、导线和电容等器组成,七段数码管用于展示测量到的电压大小,LCD 液晶屏用于展示功能选项、单位等信息。
导线是电路板内部连接线路,电容等器用来平滑电压波动。
三、软件设计1.引脚定义在程序中首先定义STM32F103C8T6单片机内存地址、输入输出引脚和电平状态,其中A0口用来读取被测电压;B0-B7口用来控制七段数码管的亮灭;C0口用来输出PWM,控制风扇的旋转速度;D0口用来控制蜂鸣器的开启和关闭。
数字电压表的设计方案

数字电压表的设计方案1. 引言数字电压表(Digital Voltmeter,简称DVM)是一种能够直接显示电压值的测量仪器。
它与传统的模拟电压表相比,具有精确度高、稳定性好、便于读取等优势。
本文将介绍一种基于集成电路的数字电压表的设计方案。
2. 设计原理数字电压表的设计基于模数转换技术,通过将输入的模拟电压信号转换为数字形式,并经过一系列处理后显示在数码管上。
通常的设计流程包括采样、量化、编码和显示四个步骤。
2.1 采样采样是将连续的模拟信号转换为离散的数字信号的过程。
在数字电压表中,采样过程通过使用一个模拟-数字转换器(ADC)来完成。
常见的ADC电路有逐次逼近型和闩锁型等,根据需求选择合适的ADC器件。
2.2 量化量化是将采样得到的模拟信号分为若干个不同电平的过程。
量化过程中,转换器将模拟信号映射到一个有限数量的离散值,通常为二进制数。
量化级别的选择会影响数字电压表的精度和分辨率。
2.3 编码编码是将量化后的模拟信号转换为与数码管对应的数字形式的过程。
常用的编码方式有二进制编码、格雷码等。
编码器可以是硬件电路,也可以是通过程序实现的软件算法。
2.4 显示显示是将编码后的数字信号以可读的形式呈现出来的过程。
在数字电压表中,常用的显示器件是七段数码管。
数码管的控制可以通过驱动电路来实现,同时需要考虑亮度控制和多位数显示的问题。
3. 系统组成数字电压表的系统组成主要包括模拟前端、模数转换、显示部分等。
3.1 模拟前端模拟前端是将待测电压信号处理成可以输入到模数转换器的范围内。
模拟前端通常包括电阻分压器、跨导放大器、滤波器等模块,其目的是将输入信号的幅度范围缩放到ADC的输入电压范围内。
3.2 模数转换模数转换是将模拟电压信号转换为数字信号的过程。
在数字电压表中,常用的模数转换器有逐次逼近型和闩锁型。
模数转换器的选择要考虑精度、速度、功耗等因素。
3.3 显示部分显示部分是将数字信号以可读的形式显示出来。
数字电压表设计002

接口技术学生姓名:学号:学院:专业: 电子科学与技术题目: 数字电压表设计指导教师:数字电压表的设计一、设计概念资料1.数字电压表基本概念数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。
传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。
目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统智能化测量领域,示出强大的生命力。
与此同时,由DVM 扩展而成各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。
2.数字电压表优缺点⑴显示清晰直观,读数准确,缩短读数和记录的时间。
新型数字电压表还增加了标志符显示功能,包括测量项目符号、单位符号和特殊符号。
⑵显示位数显示位数通常为3位~8位判定数字仪表的位数有两条原则:①能显示从0~9所有数字的位是整数值;②分数位的数值是以最大显示值中最高位数字为分子,用满量程时最高位数字做分母。
⑶准确度高。
准确度愈高,测量误差愈小。
数字电压表的准确度远优于模拟式电压表。
⑷分辨率高。
从设计DVM的角度看,分辨力应受准确度的制约,并与之相适应。
⑸测量范围宽。
多量程DVM一般可测0~1000V直流电压,配上高压探头还可测量上万伏的高压。
(6扩展能力强。
在数字电压表的基础上、还可扩展成各种通用及专用数字仪表、数字多用表(DMM)和智能仪器,以满足不同的需要。
⑺测量速率快。
数字电压表在每秒钟内对被测电压的测量次数叫测量速率,单位是“次/秒”。
它主要取决于A/D 转换器的转换速率,其倒数是测量周期。
⑻输入阻抗高。
数字电压表具有很高的输入阻抗,通常为10MΩ~10000MΩ,最高1TΩ。
在测量时从被测电路上吸取的电流极小,不会影响被测信号源的工作状态,减小由信号源内阻引起的测量误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 课程设计项目的选题要符合本课程设计教学大纲的要求,该项目应能突出学生实践能力、设计能力和创新能力的培养;该项目有一定的实用性,且学生通过努力在规定的时间内是可以完成的。课程设计项目名称、目的及技术要求记录于课程设计报告书一、二项中,课程设计项目的选题考核成绩占10%左右。
(3)ADC0804的简介
ADADC0804引脚图如下:
芯片参数:
工作电压:+5V,即VCC=+5V。
模拟输入电压范围:0~+5V,即0≤Vin≤+5V。
分辨率:8位,即分辨率为1/2=1/256,转换值介于0~255之间。
转换时间:100us(fCK=640KHz时)。
转换误差:±1LSB。
参考电压:2.5V,即Vref=2.5V。
方案一
对A/D(模数转换)芯片采集后将外侧电压信号转换为数字信号,MSP430F2274进行数据处理,他有多路调制的BCD码输出端,采用动态扫描显示,便于实现制动控制。
方案二
对A/D(模数转换)芯片采集后将采集后的模拟信号转换为数字信号,然后将数字信号送入单片机进行处理最后将信号由显示器显示出来。
由于方案二设计简单便于操作故采用方案二
主要特性:
与MCS-52兼容
4K字节可编程闪烁存储器
寿命:1000写/擦循环
数据保留时间:10年
全静态工作:0Hz-24MHz
三级程序存储器锁定
128×8位内部RAM
32可编程I/O线
两个16位定时器计数器
5个中断源
可编程串行通道
低功的闲置和掉电模式
片内振荡器和时钟电路
引脚描述
VCC:电源电压
GND:地
P1口:P1口一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动4个TTL电路。对端口写“1”,通过内部的电阻把端口拉到高电平,此时可作为输入口。因为内部有电阻,某个引脚被外部信号拉低时输出一个电流。闪烁编程时和程序校验时,P1口接收低8位地址。
P2口:P2口是一个内部带有上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动4个TTL电路。对端口写“1”,通过内部的电阻把端口拉到高电平,此时,可作为输入口。因为内部有电阻,某个引脚被外部信号拉低时会输出一个电流。在访问外部程序存储器或16位地址的外部数据存储器时,P2口送出高8位地址数据。在访问8位地址的外部数据存储器时,P2口线上的内容在整个运行期间不变。闪烁编程或校验时,P2口接收高位地址和其它控制信号。
sbit wr=P2^5;/*写信号*/
sbit rd=P2^6;/*读信号*/
sbit cs=P2^7;/*片选信号*/
uchar temp,k0,k1,k2,k3;
long num;
/*延迟函数*/
void delay(uint z)
引脚说明
D0-D7:八位数字量输出端;
CLK:为芯片工作提供工作脉冲。
CS:片选信号;
WR:写信号输入端;
RD:读信号输入端;
INTR:转换完毕中断提供端;
ADC0804转换器的工作时序如图所示
AD转换器的设计接口电路图:
图中,ADC0804 数据输出线与AT89C51 的数据总线直接相连,AT89C51 的RD 、WR 和INT1直接连到ADC0804,由于用P1.0 线来产生片选信号,故无需地址译码器。当AT89C51 向ADC0804 发WR (启动转换)、RD (读取结果)信号时,只要虚拟一个系统不占用的数据存储器。
P3口:P3口是一组带有内部电阻的8位双向I/O口,P3口输出缓冲故可驱动4个TTL电路。对P3口写如“1”时,它们被内部电阻拉到高电平并可作为输入端时,被外部拉低的P3口将用电阻输出电流。
2.数字电压表的程序设计
(1)程序框图
(2)程序如下:
#include<reg52.h>
#define uchar unsigned char
II.逐次逼近式A/D转换器。它的转换速度更快,而且精度更高,比如ADC0804、,它们通常具有8路模拟选通开关及地址译码、锁存电路等,它们可以与单片机系统连接,将数字量送单片机进行分析和显示。这样电路设计简单,电路板布线不复杂,便于焊接、调试。这里采用这种方案。
显示部分可以采用各类数码管或用LCD显示器显示。在此简化采用4位八段共阴极数码管对A/D转换变换后的结果加以显示
数字电压表的设计
———————————————————————————————— 作者:
———————————————————————————————— 日期:
课程设计基本要求
课程设计是工科学生十分重要的实践教学环节,通过课程设计,培养学生综合运用先修课程的理论知识和专业技能,解决工程领域某一方面实际问题的能力。课程设计报告是科学论文写作的基础,不仅可以培养和训练学生的逻辑归纳能力、综合分析能力和文字表达能力,也是规范课程设计教学要求、反映课程设计教学水平的重要依据。为了加强课程设计教学管理,提高课程设计教学质量,特拟定如下基本要求。
8. 课程设计报告书是实践教学水平评估的重要资料,应按课程、班级集成存档交实验室统一管理。
一、课程设计项目名称
数字电压表的设计
二、项目设计目的及技术要求
利用实验室可以提供的设备平台、仪器仪表、常见芯片,设计一个数字电压表,能够测量0-5V之间的直流电压值,四位数码显示或液晶显示。
要求完成的主要任务:
7.学生应在课程设计周内认真参加项目设计的各个环节,按时完成课程设计报告书交给课程设计指导教师评阅。课程设计指导教师应认真指导学生课程设计全过程,认真评阅学生的每一份课程设计报告,给出课程设计综合评阅意见和每一个环节的评分成绩(百分制),最后将百分制评分成绩转换为五级分制(优秀、良好、中等、及格、不及格)总评成绩。
#define uint unsigned int
#define K 5.00 /*输入信号的幅值*/
uchar code table1[]=
{0xbf,0x86,0xdb,0xcf,0xe6,0xed,0x7d,0x07,0x7f,0x6f};
uchar code table[]=
{0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};
3. 项目设计方案论证主要包括可行性设计方案论证、从可行性方案中确定最佳方案,实施最佳方案的软件程序、硬件电路原理图和PCB图。项目设计方案论证内容记录于课程设计报告书第三项中,项目设计方案论证主要考核设计方案的正确性、可行性和创新性,考核成绩占30%左右。
4. 项目设计结果分析主要包括项目设计与制作结果的工艺水平,项目测试性能指标的正确性和完整性,项目测试中出现故障或错误原因的分析和处理方法。项目设计结果分析记录于课程设计报告书第四项中,考核成绩占25%左右。
P0口:P0口是一组8位漏极开路双向I/O口,即地址/数据总线复用口。作为输出口时,每一个管脚都能够驱动8个TTL电路。当“1”被写入P0口时,每个管脚都能够作为高阻抗输入端。P0口还能够在访问外部数据存储器或程序存储器时,转换地址和数据总线复用,并在这时激活内部的上拉电阻。P0口在闪烁编程时,P0口接收指令,在程序校验时,输出指令,需要接电阻。
1.硬件设计及其组成部分
输入信号经过AD转换器件输出为数字信号,然后送给单片机进行处理送给数码管显示4位电压。
(1)系统框图
(2)AD转换器的对比选择
I.采用双积分A/D转换器MC14433,它有多路调制的BCD码输出端和超量程输出端,采用动态扫描显示,便于实现自动控制。但芯片只能完成A/D转换功能,要实现显示功能还需配合其它驱动芯片等,使得整部分硬件电路板布线复杂,加重了电路设计和实际焊接的工作。
5. 学生在课程设计过程中应认真阅读与本课程设计项目相关的文献,培养自己的阅读兴趣和习惯,借以启发自己的思维,提高综合分和理解能力。文献阅读摘要记录于课程设计报告书第五项中,考核成绩占10%左右。
6. 答辩是课程设计中十分重要的环节,由课程设计指导教师向答辩学生提出2~3个问题,通过答辩可进一步了解学生对课程设计中理论知识和实际技能掌握的程度,以及对问题的理解、分析和判断能力。答辩考核成绩占25%左右。
(4)89C52单片机的简介
描述:AT89C52是一个低电压,高性能CMOS8位单片机带有4K字节的可反复擦写的程序存储器(PENROM)。和128字节的存取数据存储器(RAM),这种器件采用ATMEL公司的高密度、不容易丢失存储技术生产,并且能够与MCS-52系列的单片机兼容。片内含有8位中央处理器和闪烁存储单元,有较强的功能的AT89C52单片机能够被应用到控制领域中。
1.A/D 器件及其与微控制器接口电路设计。
2. 显示电路的软、硬件设计:通过 LED、LCD 显示器及接口电路实现。
3. 利用已有设备进行安装调试。
三、项目设计方案论证(可行性方案、最佳方案、软件程序、硬件电路原理图和PCB图)
数字电压表的设计即将连续的模拟电压信号经过A/D转换器转换成二进制数值,再经由单片机软件编程转换成十进制数值并通过显示屏显示。