运动控制系统课件第1-2章
运动控制系统 (2)

运动控制系统简介运动控制系统是指用于控制运动装置的设备和软件系统。
它的主要功能是监测和控制物理运动过程,以实现精准的位置控制、速度控制和加速度控制。
运动控制系统广泛应用于机械工业、交通运输、航空航天等领域。
组成部分运动控制系统通常由以下几个主要组成部分组成:1.运动控制器:负责接收外部输入信号并生成相应的控制指令,控制运动装置的运动。
2.传感器:用于检测运动装置当前的位置、速度等参数,并将其转换为电信号输入给运动控制器。
3.驱动器:将运动控制器生成的控制指令转换为电流或电压信号,驱动马达或液压系统实现运动。
4.运动装置:通过驱动器进行控制的装置,如马达、液压系统等。
5.人机界面:为用户提供与运动控制系统进行交互的方式,包括显示器、键盘、触摸屏等。
工作原理运动控制系统的工作原理可以概括为以下几个步骤:1.传感器感知:传感器感知运动装置的当前状态,如位置、速度等参数,并将其转换为电信号。
2.控制指令生成:运动控制器接收传感器的电信号,根据预设的控制算法生成相应的控制指令。
3.控制指令传递:运动控制器将控制指令传递给驱动器,驱动器根据指令转换为适当的信号来驱动运动装置。
4.运动实现:驱动器通过输出的信号驱动运动装置实现预设的运动控制,如位置控制、速度控制等。
5.反馈控制:传感器继续感知运动装置的状态,并将其反馈给运动控制器,实现闭环控制。
应用领域运动控制系统广泛应用于各个领域,下面介绍其中几个典型的应用领域。
1.工业自动化:运动控制系统在机械工业中广泛应用,如印刷、包装、机械加工等领域。
它可以实现自动化生产线的高精度运动控制,提高生产效率和产品质量。
2.交通运输:运动控制系统在交通运输领域的应用包括船舶、飞机和汽车等。
它可以实现对交通工具的准确操控,提高运输安全性和效率。
3.医疗器械:运动控制系统在医疗器械领域的应用包括手术机器人、医疗影像设备等。
它可以实现高精度的运动控制,帮助医生进行精确的手术操作和诊断。
《运动控制系统》课件

闭环控制系统包含反馈回路,通过负反馈来自动调节系统的输出量,使其达到预定的目标值。
闭环控制系统的优点是精度高,抗干扰能力强,能够自动修正误差,适用于对精度要求较高的复杂系统。
闭环控制系统的缺点是结构复杂,设计难度较大,需要具备一定的稳定性分析和调整能力。
03
反馈控制原理的实现需要具备一定的传感器和控制器技术,以及对系统的数学建模和仿真分析能力。
01
反馈控制原理是通过比较系统的输入与输出信号,将输出信号的差值用于控制执行机构,以实现系统的自动调节。
02
反馈控制原理广泛应用于各种运动控制系统,能够提高系统的稳定性和精度。
04
运动控制系统的应用
运动控制系统能够精确控制机器人的动作和位置,实现自动化生产线的连续作业,提高生产效率和产品质量。
控制器的种类繁多,根据应用需求可以选择不同的控制器,如单片机、PLC、运动控制卡等。
执行器是运动控制系统的输出部分,负责将驱动器的电压或电流信号转换为机械运动。
执行器的种类也很多,常见的有步进电机、伺服电机、直线电机等。
执行器的选择要根据实际应用需求来决定,如需要高精度定位、快速响应等。
传感器的种类也很多,常见的有光电编码器、旋转变压器、霍尔元件等。
自动化决策
智能化运动控制系统将具备自适应学习能力,能够根据不同环境和工况自动调整控制策略,以适应各种复杂和动态的运动需求。
自适应控制
远程监控与控制
通过网络技术,实现对运动控制系统的远程监控和控制,方便对设备进行远程调试、故障诊断和远程维护。
数据共享与协同工作
通过网络化实现多设备之间的数据共享和协同工作,提高生产效率和设备利用率。
运动控制系统(第4版)第1章 绪论

第1章 绪论
• 信号转换和处理包括电压匹配、极性转换、脉冲整形等,对 于计算机数字控制系统而言,必须将传感器输出的模拟或数 字信号变换为可用于计算机运算的数字量。数据处理的另一 个重要作用是去伪存真,即从带有随机扰动的信号中筛选出 反映被测量的真实信号,去掉随机的扰动信号,以满足控制 系统的需要。 • 常用的数据处理方法是信号滤波,模拟控制系统常采用模拟 器件构成的滤波电路,而计算机数字控制系统往往采用模拟 滤波电路和计算机软件数字滤波相结合的方法。
GD2 4gJ ;
n——转子的机械转速(r/min),
60 m n . 2
第1章 绪论
• 运动控制系统的任务就是控制电动机的转速和转角,对于直 线电动机来说就是控制速度和位移。由式(1-1)和式(1-2) 可知,要控制转速和转角,唯一的途径就是控制电动机的电 磁转矩Te,使转速变化率按人们期望的规律变化。因此,转矩 控制是运动控制的根本问题。 • 为了有效地控制电磁转矩,充分利用电机铁心,在一定的电 流作用下进可能产生最大的电磁转矩,以加快系统的过渡过 程,必须在控制转矩的同时也控制磁通(或磁链)。因为当 磁通(或磁链)很小时,即使电枢电流(或交流电机定子电 流的转矩分量)很大,实际转矩仍然很小。何况由于物理条 件限制,电枢电流(或定子电流)总是有限的。因此,磁链 控制与转矩控制同样重要,不可偏废。通常在基速(额定转 速)以下采用恒磁通(或磁链)控制,而在基速以上采用弱 磁控制。
第1章 绪论
• 1.2 运动控制系统的历史与发展
• 直流电动机电力拖动与交流电动机电力拖动在19世纪中叶先后诞 生(1866年德国人西门子制成了自激式的直流发电机;1890年 美国西屋电气公司利用尼古拉· 特斯拉的专利研制出第一台交流 同步电机;1898年第一台异步电动机诞生),在20世纪前半叶, 约占整个电力拖动容量80%的不可调速拖动系统采用交流电动机, 只有20%的高性能可调速拖动系统采用直流电动机。20世纪后半 叶,电力电子技术和微电子技术带动了带动了新一代的交流调速 系统的兴起与发展,逐步打破了直流调速系统一统高性能拖动天 下的格局。进入21世纪后,用交流调速系统取代直流调速系统已 成为不争的事实。 • 直流电动机的数学模型简单,转矩易于控制。其换向器与电刷
电力拖动自动控制系统—运动控制系统第1章绪论

随着环保意识的提高,电力拖动 自动控制系统将更加注重节能减 排和资源循环利用,实现绿色环 保的生产方式。
THANKS
感谢观看
提高产品质量
自动化控制能够减少人为误差,提高 产品加工精度和一致性,从而提高产 品质量。
提升工业安全
自动化控制能够减少人工操作,降低 操作风险,提升工业安全。
电力拖动自动控制系统在工业中的应用案例
数控机床
自动化生产线
电力拖动自动控制系统用于数控机床的进 给轴、主轴等部分,实现高精度、高效率 的加工。
重要性
在现代工业生产中,电力拖动自动控制系统已成为不可或缺的重要技术手段, 它能够提高生产效率、降低能耗、保证产品质量和生产安全,对于实现工业自 动化和智能化具有重要意义。
电力拖动自动控制系统的历史与发展
历史
电力拖动自动控制系统的发展可以追溯到20世纪初,随着电力技术和控制理论的 发展,电力拖动自动控制系统经历了从简单到复杂、从手动到自动的演变过程。
重要性
在现代工业自动化生产中,运动控制 系统扮演着至关重要的角色,它能够 提高生产效率、降低能耗、提升产品 质量,是实现自动化生产的关键技术 之一。
运动控制系统的基本组成
控制器
用于接收输入信号,根据控制 算法计算输出信号,并输出到
执行机构。
执行机构
根据控制器输出的信号,驱动 电动机转动,实现运动控制。
特性。
交流电力拖动系统
采用交流电动机作为动力源,具有 结构简单、价格低廉、维护方便等 优点。
伺服电力拖动系统
采用伺服电动机作为动力源,具有 高精度、高响应速度和高稳定性的 特点,常用于精密控制领域。
电力拖动系统的基本特性
调速性能
运动控制系统课件

在弱磁调速范围内,转速越高,磁通越 弱,容许输出转矩减小,而容许输出转矩 与转速的乘积则不变,即容许功率不变, 为“恒功率调速方式 。 恒功率调速方式” 恒功率调速方式
Shanghai university
两种调速方式: 两种调速方式:
U Te Φ P
ΦN
UN Te U P nN
变电压调速 两种调速方式 弱磁调速
Shanghai university
绪论
一。什么是运动控制系统?
运动控制系统(Motion Control System)也可称作电力 拖动控制系统(Control Systems of Electric Drive) 运动控制系统--通过对电动机电压、电流、频率等 输入电量的控制,来改变工作机械的转矩、速度、位 移等机械量,使各种工作机械按人们期望的要求运行, 以满足生产工艺及其他应用的需要。工业生产和科学 技术的发展对运动控制系统提出了日益复杂的要求, 同时也为研制和生产各类新型的控制装置提供了可能。
直流电机 速度控制 位置控制 直流调速系统* 直流调速系统 直流伺服系统 交流电机
(异步电机*、同步电机) 异步电机 、同步电机)
交流调速系统* 交流调速系统 交流伺服系统
直流调速系统--第一篇,运动控制( 直流调速系统--第一篇,运动控制(一) --第一篇 交流调速系统--第二篇,运动控制( 交流调速系统--第二篇,运动控制(二) --第二篇
Shanghai university
电力拖动自动控制系统
第1Biblioteka 篇直流拖动控制系统
Shanghai university
直流调速方法
根据直流电动机转速方程
U − IR n= KeΦ
式中 n — U— I — R— Φ— Ke— (1-1)
运动控制系统课件第1-2章

运动控制的实现与分析、设计
(1)运动控制系统构成 ▪ 以电机为控制对象, ▪ 以控制器为核心(借助计算机和其他电子装置实现) ▪ 以功率变换装置为执行机构, ▪ 以自动控制理论和信息处理理论为理论基础设计组成
的自动控制系统。
+ -
控制器 信号处理
功率执行装置 传感器
电机及拖动对象
图1-2 运动控制系统及其组成
从全球范围看,电动机的用电量平均占世界各国社会 总用电量的一半以上,占工业用电量的70%左右。
运动控制关键-对电能-机械能转换过程进行 有效控制
必须实现: 1.给机电运动系统提供所须形态电能
“电能形态”:电的类型,参数 电能形态变化称“变流”-电力电子技术 2.对机电系统实施控制-所需运动特性 被控制对象为电机-电机理论 控制以闭环、解耦为核心-控制理论 PID控制,模糊控制,矢量控制等等;
算机技术、信号处理等相关理论与技术。
特点:综合性,工程性,理论与实践相结合. 前期课程:电力电子技术,电机拖动基础,控制
理论, 电路原理, 电磁学,系统仿真……
1.3 运动控制系统转矩控制规律
运动控制系统的基本运动方程式
J
d m
dt
Te
TL
Dm
K m
d m
dt
m
1.3 运动控制系统转矩控制规律
晶闸管触发电路和整流电路的特性是非线性的。 在设计调速系统时,只能在一定的工作范围内
近似地看成线性环节, 得到了它的放大系数和传递函数后,用线性控
制理论分析整个调速系统。
放大系数的计算
Ks
U d U c
(2-12)
图2-7 晶闸管触发与整流装置的输入输出特性和Ks的测定
《运动控制系统》课件第1章

第1章 绪论
自从微处理器出现以后,在绕线转子异步电动机串级调 速、无换向器电动机调速、笼型异步电动机的矢量控制以及 PWM技术方面都已经获得了重大突破与发展,并已进入工 业应用阶段。目前,以大功率半导体器件、大规模集成电路 为基础的交流电动机调速系统已具备了较宽的调速范围、较 高的稳态精度、较快的动态响应、较高的工作效率以及可以 四象限运行等优异性能,其静、动态特性均可以与直流电动 机调速系统相媲美。而这时,直流电动机和交流电动机相比 其缺点也日益显露出来。例如,直流电动机存在换向问题, 其最大供电电压受到限制,机械强度也限制了转速的进一步 提高,结构的影响使其不适于腐蚀性、易爆性和含尘气体的 特殊场合。
第1章 绪论
1.4 自动控制系统仿真基本概念
系统仿真作为一种特殊的试验技术,在20世纪30年代到 90年代的半个多世纪中经历了飞速发展,到今天已经发展成 为一种真正的、系统的试验科学。伴随着第一台电子管电子 计算机的诞生和以相似理论为基础的模拟技术的应用,仿真 作为一种研究和发展新产品、新技术的科学手段,在航空、 航天、造船、兵器等与国防科研相关的行业中首先发展起来, 并显示了巨大的社会效益和经济效益。
第1章 绪论
因此,交流电动机越来越受到人们的重视,可以说,交 流调速逐步取代直流调速已成为明显的发展趋势。特别是节 能型交流调速技术,已得到很快发展。在过去大量应用的所 谓不变速拖动系统中,有相当一部分是风机、水泵等拖动系 统,这类负载约占工业电力拖动总量的一半。其中有些并不 是真的不需要变速,只是由于过去的交流电动机不能调速, 因而不得不依赖挡板和阀门来调节流量,同时也消耗掉大量 的电能。如。从各方面来看,改造恒速电动机为交流调 速电动机,每台月节能20%以上,总体的节能效益是可观的。
运动控制系统ppt课件

ud
ua
ub
uc
ud
O
ud
ua
ub
uc
ud
Ud E
t O
id ic O
ia
ib
ic
id
a)电流连续
ic
t O
ia
ib
ic
b)电流断续
图1-9 V-M系统的电流波形
Ud E
t
t
1.2.3 抑制电流脉动的措施
在V-M系统中,脉动电流会产生脉动的 转矩,对生产机械不利,同时也增加电机 的发热。为了避免或减轻这种影响,须采 用抑制电流脉动的措施,主要是:
• 瞬时电压平衡方程
ud0
E
id R
L
did dt
(1-3)
式中
E — 电动机反电动势;
id — 整流电流瞬时值; L — 主电路总电感;
R — 主电路等效电阻;
且有 R = Rrec + Ra + RL;
对ud0进行积分,即得理想空载整流电压 平均值Ud0 。
用触发脉冲的相位角 控制整流电压的
序言
课程的内容、目的
以电动机为控制对象、以实现既定(旋转) 运动规律和特性为目标、以电力能量变换技 术(电力电子应用技术)和自动控制理论及 相关控制技术为手段,探讨如何构成运动控 制系统。
序言
课程的地位、意义
• 自动化学科及自动控制领域背景知识 • 自动化专业的内涵及专业特征 • 本课程的专业地位及重要性
O
TL
2 3
Te
曲线变软。
调磁调速特性曲线
▪ 三种调速方法的性能与比较
对于要求在一定范围内无级平滑调速 的系统来说,以调节电枢供电电压的方式 为最好。改变电阻只能有级调速;减弱磁 通虽然能够平滑调速,但调速范围不大, 往往只是配合调压方案,在基速(即电机 额定转速)以上作小范围的弱磁升速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2-14)
传递函数的近似处理
按泰勒级数展开,可得
依据工程近似处理的原则,可忽略高 Ws( s ) KseTss
Ks e Ts s
Ks
1
Ts
s
1 2!
Ts2
s2
1 3!
Ts3
s
3
次项,把整流装置近似看作一阶惯性
环节
Ws
(
s
从全球范围看,电动机的用电量平均占世界各国社会 总用电量的一半以上,占工业用电量的70%左右。
运动控制关键-对电能-机械能转换过程进行 有效控制
必须实现: 1.给机电运动系统提供所须形态电能
“电能形态”:电的类型,参数 电能形态变化称“变流”-电力电子技术 2.对机电系统实施控制-所需运动特性 被控制对象为电机-电机理论 控制以闭环、解耦为核心-控制理论 PID控制,模糊控制,矢量控制等等;
运动控制系统
第一章 绪论
1.1 什么是 “运动控制系统” 1.2 运动控制系统应用及其发展 1.3 课程的特点、要求及教学安排
1.1 什么是运动控制系统
1) 认识运动控制系统
运动控制系统(motion control system):控制 机械运动(速度,加速度,位移等机械量)的自动控 制系统。(解决“电能机械能”中的控制问 题)
U
m
sin
cos
m
(2-3)
式中,α——从自然换相点算起的触发脉冲控制角;
Um——α=0时的整流电压波形峰值;
m——交流电源一周内的整流电压脉波数。
表2-1不同整流电路的整流电压波峰值、 脉冲数及平均整流电压
整流电路
单相全波
三相半波
三相桥式 (全波)
Um
2U 2
2U 2
6U 2
m
2
3
6
Ud0
0.9U 2 cos 1.17U 2 cos 2.34U2 cos
3.晶闸管整流器-电动机系统的机械特性
当电流波形连续时,V-M系统的机械特性方程式
为
1 n Ce (Ud0 IdR )
(2-7)
式中,Ce——电动机在额定磁通下的电动势 系数
C e K eN
n
Uc1 > Uc2 > Uc3
α
n
1 Ce
Id R
Uc1
Uc2
Uc3
0
Id
Id
图2-5 电流连续时V-M系统的机械特性
机器人 工业:机械加工,冶金,造纸,机械手,机械运输
等。 军事装备:随动系统(兵器,雷达) 交通工具:电力机车,电动汽车,舰船的电驱动系统 民用:电梯,医疗设备,娱乐,家电
3 运动控制系统发展的助推器
微处理器, SOC (System on Chip) 的发展 电力电子器件的发展 控制理论的发展 ➢ 经典控制方法:反馈控制,PID ➢ 现代控制理论:多变量,状态观测 电机控制理论的发展(矢量控制等)
忽略阻尼转矩和扭转弹性转矩,运 动控制系统的简化运动方程式
J
d m
dt
Te
TL
d m
dt
m
1.3 运动控制系统转矩控制规律
转矩控制是运动控制的根本问 题
要控制转速和转角,唯一的途径就 是控制电动机的电磁转矩,使转速 变化率按人们期望的规律变化。
1.3 运动控制系统转矩控制规律
磁链控制同样重要
1 历史 十九世纪末,交流电机出现,经济实用的鼠笼机,
功率因数高的同步机; 二十世纪中,形成直流调速,交流不调速的格局; 二十世纪八十年代以前,只有直流传动; 二十世纪后期,交流调速兴起,原来格局打破。 二十一世纪,交流调速系统应用范围不断扩大,伺
服系统应用越来越多
2 运动控制的主要应用领域
2)运动控制的必要性-体现在运动系统调速 与控制上
满足生产过程与工艺要求 例一:车床 ➢ 粗加工(毛坯件):速度低,吃刀深=》控制电
机工作在低速、大力矩状态 ➢ 精加工:速度高,吃刀浅=》控制电机工作在
高速、小转矩状态 ➢ 结论:对电机转速、转矩控制要求
例二:电气牵引(轻轨),电动汽车, 磁悬浮等 ➢ 上坡:低速、大转矩 ➢ 平路:高速、恒转矩 ➢ 下坡:再生(动能回馈)制动(非机械抱闸)
晶闸管触发电路和整流电路的特性是非线性的。 在设计调速系统时,只能在一定的工作范围内
近似地看成线性环节, 得到了它的放大系数和传递函数后,用线性控
制理论分析整个调速系统。
放大系数的计算
Ks
U d U c
(2-12)
图2-7 晶闸管触发与整流装置的输入输出特性和Ks的测定
晶闸管触发和整流装置的输入量 是ΔUc,输出量是ΔUd,晶闸管 触发和整流装置的放大系数Ks可 由工作范围内的特性斜率决定 。
10
5
三相半波
6.67
3.33
三相桥式
3.33
1.67
晶闸管触发电路与整流装置的传递函数
滞后环节的输入为阶跃信号1(t),输出 要隔一定时间后才出现响应1(t-Ts)。
输入输出关系为:
U d 0 K sU c 1(t Ts )
传递函数为
Ws (s)
U d0 (s) Uc (s)
K s e Tss
在电流连续区, 显示出较硬的机 械特性;
图2-6 V-M系统机械特性
在电流断续区, 机械特性很软, 理想空载转速翘 得很高。
当电流断续时,由于非线性因素, 机械特性方程要复杂得多。
电流断续区与电流连续区的分界线
是 2 的曲线,当 开始连3 续了。
2
3
时,电流便
——一个电流脉波的导通角。
4.晶闸管触发和整流装置的放大系数 和传递函数
ud0
E
id R
L
did dt
(2-2)
式中 E——电动机反电动势(V); id——整流电流瞬时值(A);
L——主电路总电感(H); R——主电路总电阻(Ω), ;
图2-2 V-M系统主电路的等效电路图
对于一般的全控整流电路,当电流波形连续时, 可用下式表示
U d 0 f ( )
Ud0
m
4 现代的运动控制系统
驱动的交流化和超高速、超大型化、超 小型化
系统实现集成化 控制数字化、智能化和网络化
(2)课程的核心内容:
一个主题:运动控制系统(直流=》交流); 主线:不断改进系统以提高系统性能,从提高静态
性能到追求动态性能
研究控制系统时要关注: 稳定性,动静态特性; 系统的分析方法、控制方法和设计方法; 与系统的实现相关的电力电子技术、控制理论、计
2)知识体系
电机学、 电力电子技术 微电子技术、 计算机控制技术、 控制理论、 信号检测与处理技术
图1-1运动控制及其相关学科
3 运动控制系统的分类
按电机分:直流系统,交流系统; 按被控量分:调速系统,位置随动系统,转矩 控制系统; 按控制器的类型分:模拟型,数字型; 按控制原理分:PID控制,模糊控制,矢量控 制等等; 按闭环数分:单环,双环,多环系统,可交 叉:如数字式双闭环直流调速系统
最大失控时间
Ts max
1 mf
(2-13)
平均失控时间
Ts
1 2 Ts max
式中,f ——交流电源频率(Hz), m —— 一周内整流电压的脉 波数。
表2-2 晶闸管整流器的失控时间 (f=50Hz)
整流电路形式
最大失控时间 平均失控时间
Tsmax(ms) Ts(ms)
单相半波
20
10
单相桥式(全波)
2.电流脉动及其波形的连续与断续
在整流变压器二次侧额定相电压u2的瞬时值大 于反电动势E时,晶闸管才可能被触发导通。
导通后如果u2降低到E以下,靠电感作用可以 维持电流id继续流通。
由于电压波形的脉动,造成了电流波形的脉动。
图2-3 带负载单相全控桥式整流电路的输出 电压和电流波形
图2-4 V-M系统的电流波形 (a) 电流连续
节能调结方式:取消挡板,阀门,调节转速
调节流量
节能率达20%-30%
调速节能-风机水泵类负载-体量非常大!!
风机主要应用于冶金、石化、电力、城市轨道交通、 纺织、船舶等国民经济各领域以及各种场所的通风换 气
在我国,风机、泵类、压缩机和空调制冷机的用电量 分别占全国用电量的10.4%、20.9%、9.4%和6%。
算机技术、信号处理等相关理论与技术。
特点:综合性,工程性,理论与实践相结合. 前期课程:电力电子技术,电机拖动基础,控制
理论, 电路原理, 电磁学,系统仿真……
1.3 运动控制系统转矩控制规律
运动控制系统的基本运动方程式
J
d m
dt
Te
TL
Dm
K m
d m
dt
m
1.3 运动控制系统转矩控制规律
为了有效地控制电磁转矩,充分利 用电机铁芯,在一定的电流作用下 尽可能产生最大的电磁转矩,必须 在控制转矩的同时也控制磁通(或 磁链)。
1.4 生产机械的负载转矩特性
生产机械的负载转矩是一个必然存 在的不可控扰动输入。
归纳出几种典型的生产机械负载转 矩特性,实际负载可能是多个典型 负载的组合,应根据实际负载的具 体情况加以分析。
恒转矩负载
负载转矩的大小恒定, 称作恒转矩负载
a)位能性恒转矩负载 b) 反抗性恒转矩负载
TL 常数
图1-3 恒转矩负载
恒功率负载
负载转矩与转速 成反比,而功率 为常数,称作恒 功率负载
TL
PL
m
常数
m
图1-4 恒功率转矩负载
风机、泵类负载
负载转矩与转速的平 方成正比,称作风机、 泵类负载