专题二全等三角形的基本模型选用.ppt
合集下载
全等三角形ppt课件

三、概念剖析
为了方便书写,我们可以用符号表示两个三角形的全等.
例如△ABC与△DEF是全等的,
A
D
可以记作:“△ABC ≌△DEF”,
读作:“△ABC 全等于△DEF”. B
CE
F
注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应位置上.
例如,△ABC与△DEF全等,点A 与点D、点B 与点E、点C 与点F为对应
三、概念剖析
猜想:全等三角形对应边和对应角有什么关系呢? 全等三角形的性质:全等三角形的对应边相等,对应角相等.
应用格式 ∵△ABC≌△DEF,
A
D
∴AB=DE,BC=EF,AC=DF
∠A=∠D,∠B=∠E,∠C=∠F B
CE
F
四、典型例题
例1.如图△OCA≌△OBD,点C和点B,点A和点D是对应点.
在我们的周围,经常可以看到形状、大小完全相同的图形, 这样的图形叫做全等形.研究全等形的性质和判定两个图形全等 的方法,是几何学的一个重要内容,本章将以三角形为例,对这 些问题进行研究.
同一种剪纸
风扇的叶片
上一章我们通过推理论证得到了三角形内角和定理等重要结 论.本章中,推理论证将发挥更大的作用.我们将通过证明三角 形全等来证明线段或角相等,利用全等三角形证明角的平分线的 性质.通过本章学习,你对三角形的认识会更加深入,推理论证 能力会进一步提高.
新知一览
全等三角形
“边边边”
全
等
三角形全等
“边角边”
三
的判定
“角边角”“角角边”
角
“斜边、直角边”
形 角平分线的性质
角平分线的性质
角平分线的判定
第十二章 全等三角形
全等三角形常用模型ppt课件

因为 A∠OA=ODOB=,∠OBC, OD=BC,
所以△AOD≌△OBC(SAS).
(2)若∠ADO=35°,求∠DOC的度数.
解:因为△AOD≌△OBC, 所以∠ADO=∠OCB=35°. 因为OD∥BC, 所以∠DOC=∠OCB=35°.
2.【教材改编题】已知:如图,AD与BE相交于点F,BD
所以AF⊥CD.
4.某产品的商标如图所示,O是线段AC,DB的交点,且A C=BD,AB=DC,小华认为图中的两个三角形全等, 他的思考过程如下: ∵AC=DB,∠AOB=∠DOC,AB=DC, ∴△ABO≌△DCO.
小华的思考过程正确吗?若正确,写出他所用的判定三 角形全等的依据;若不正确,写出你的思考过程.
袁隆平和杂交水稻
• 袁隆平的新型杂交水稻为我们人类 社会带来了什么好处?
• 我们应该学习袁隆平在科学探索中 的什么精神?
生物学在人类生活中的应用
转基因技术
通过生物技术,将某个
基因从一种生物当中分离
出来,然后植入另一种生
物的体内。
世界人口危机
∴BC=DF.
9.【2020·广西河池】(1)如图①,已知CE与AB交于
点E,AC=BC,∠1=∠2.求证:△ACE≌△BCE.
证明:在△ACE和△BCE中, AC=BC,
∵∠1=∠2, CE=CE,
∴△ACE≌△BCE(SAS).
(2)如图②,已知CD的延长线与AB交于点E,AD=BC, ∠3=∠4.探究AE与BE的数量关系,并说明理由. 解:AE=BE. 理由如下:如图,在CE上截取 CF=DE,连接FB.
8.【2019·山西】已知:如图,点B,D在线段AE上,AD= BE,AC∥EF,∠C=∠F.求证:BC=DF. 证明:∵AD=BE, ∴AD-BD=BE-BD. ∴AB=ED. ∵AC∥EF, ∴∠A=∠E. 在△ABC和△EDF中,
全等三角形课件全等三角形课件全等三角形的判定全等三角形PPT课件

全等三角形课件-全等三角形课件《全等三角形的判定》全等三角形PPT课件《全等三角形的判定》全等三角形PPT课件画一画画△ABC,使AB=3cm,AC=4cm。
全等三角形课件这样画出来的三角形与同桌所画的三角形进行比较,它们互相重合吗?若再加一个条件,使∠A=45°,画出△ABC画法:1. 画∠MAN= 45°2. 在射线AM上截取AB= 3cm3. 在射线AN上截取AC=4cm4.连接BC则△ABC就是所求的三角形把你们所画的三角形剪下来与同桌所画的三角形进行比较,它们能互相重合吗?... ... ...由前边两个题目可以看出:因为全等三角形的对应角相等,对应边相等,所以,证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明两个三角形全等来解决。
课堂小结:1. 三角形全等的条件,两边和它们的夹角对应相等的两个三角形全等(边角边或SAS)2. 用尺规作图:已知两边及其夹角的三角形关键词:全等三角形课件,全等三角形的判定课件,新人教版八年级上册数学PPT课件,八年级数学幻灯片课件下载,全等三角形PPT课件下载,全等三角形的判定PPT课件下载,.ppt格式更多关于《全等三角形全等三角形的判定》PPT课件请点击全等三角形全等三角形的判定标签。
全等三角形课件第一PPT素材下载《分式方程》分式PPT课件4《分式方程》分式PPT课件3《分式方程》分式PPT课件2《分式方程》分式PPT课件《分式方程的应用》分式PPT课件2《分式方程的应用》分式PPT课件《分式的混合运算》分式PPT课件《分式的加减》分式PPT课件《分式的乘除》分式PPT课件《分式》PPT课件3《分式》PPT课件2《分式》PPT课件。
《全等三角形》ppt课件

人教版八年级数学上册 第十二章全等三角形
12.1 全等三角形
教学环节
2
导入新课
观察与思考 问题1: 观察思考:每组中的两个图形有什么特点?
问题2: 观察思考:每组中的两个图形有什么特点?
3
知识讲解
全等图形的定义及性质
全等图形的定义: 能够完全重合的两个图形叫做全等图形.
全等图形的性质: 如果两个图形全等,它们的形状和大小一定都相同.
4
找一找
下面哪些图形是全等图形?
大小、形状
完全相同
(1)
(3)
(2)
(5) (9)
(6)
(7)
(10)
(11)
(12)
5
全等三角形的定义及性质
A
B
E
F
像上图一样,把△DEF叠到△ABC上,能够完
全重合的两个三角形,叫作全等三角形,
把两个全等的三角形重叠到 一起时,重合的顶点叫作对 应顶点,重合的边叫作对应 边,重合的角叫作对应角.
“全等”用符号“≌ ”表示,读作“全等于”
A
F
B
CD
E
C≌ FDE
注意: 记两个三角形全等时,通常把表示对应顶点的 字母写在对应的位置上.
9
全等三角形的性质
思考:下图中△ABC≌△DEF , 对应边有什么关系? 对应角呢?
B
D
E
全等三角形的对应边相等; 全等三角形的对应角相等.
10
◆全等三角形的性质的几何语言
∵△ABC ≌△FDE ∴A B=FD,A C=FE,BC=DE
∠A=∠F,∠B=∠D,∠Cபைடு நூலகம்∠E
(全等三角形对应边相等) (全等三角形对应角相等)
12.1 全等三角形
教学环节
2
导入新课
观察与思考 问题1: 观察思考:每组中的两个图形有什么特点?
问题2: 观察思考:每组中的两个图形有什么特点?
3
知识讲解
全等图形的定义及性质
全等图形的定义: 能够完全重合的两个图形叫做全等图形.
全等图形的性质: 如果两个图形全等,它们的形状和大小一定都相同.
4
找一找
下面哪些图形是全等图形?
大小、形状
完全相同
(1)
(3)
(2)
(5) (9)
(6)
(7)
(10)
(11)
(12)
5
全等三角形的定义及性质
A
B
E
F
像上图一样,把△DEF叠到△ABC上,能够完
全重合的两个三角形,叫作全等三角形,
把两个全等的三角形重叠到 一起时,重合的顶点叫作对 应顶点,重合的边叫作对应 边,重合的角叫作对应角.
“全等”用符号“≌ ”表示,读作“全等于”
A
F
B
CD
E
C≌ FDE
注意: 记两个三角形全等时,通常把表示对应顶点的 字母写在对应的位置上.
9
全等三角形的性质
思考:下图中△ABC≌△DEF , 对应边有什么关系? 对应角呢?
B
D
E
全等三角形的对应边相等; 全等三角形的对应角相等.
10
◆全等三角形的性质的几何语言
∵△ABC ≌△FDE ∴A B=FD,A C=FE,BC=DE
∠A=∠F,∠B=∠D,∠Cபைடு நூலகம்∠E
(全等三角形对应边相等) (全等三角形对应角相等)
全等三角形PPT课件

❖ 数学活动、小结 2课时
❖ 机动
1课时
❖ 本章知识结构框图:
对应边相等,对应角相等
全等形 定义
性 质
全等三角形
应用 解决问题
判 定
SSS,SAS,ASA,A AS,HL
本章的地位和作用
❖ 学生已学过线段、角、相交线、平行线以及三角 形的有关知识,七年级两册教科书中安排了一些说理 的内容,这些为学习全等三角形的有关内容作好了准 备.通过本章的学习,可以丰富和加深学生对已学图 形的认识,同时为学习其他图形知识打好基础.全等 三角形是研究图形的重要工具,学生只有掌握好全等 三角形的内容,并且能灵活地运用它们,才能学好后 面的四边形、圆等内容.
❖ 从本章开始,要使学生理解证明的基本过程,掌握用 综合法证明的格式.这既是本章的重点,也是教学的 难点.
第八章的教材分析我是按照:
❖ 一、教学目标,重点、难点 ❖ 二、新课设计 ❖ 三、例题讲解 ❖ 四、随堂练习 ❖ 五、课后作业 逐节进行分析的
8.1全等三角形
❖ 教学目标 1、知道什么是全等形、全等三角形及全等三角形的对应元素;
新课设计
❖ 1.本节先通过形状、大小相同的图形引出全 等形,进而引出全等三角形及其对应元素这些 核心概念,然后直观演示图形的平移、翻折、 旋转,从中体会图形变换的思想,逐步培养学生 动态研究几何的意识,进而理解本节课的重点 全等三角形的性质;
❖ 2.向学生介绍全等符号,全等符号 ≌,中∽表示 符号相同即相似 ,=表示大小相等,合起来就是 符号相同,大小相等,也就是全等.
D
A
E
F
C
B
结论:两个角和其中一个角的对边对应相 等的两个三角形全等.角角边或AAS
补充
全等三角形ppt课件

动学生的学习积极性,使学生勇于提出问题,乐于探索问题,同时 注重培养学生善于合作交流的良好情感和积极向上的学习态度. 学习重难点
1、重点:全等三角形的概念、性质及对应元素的确定. 2、难点:全等三角形对应元素的确定.
活动一:
1、观察:下列各组图形的形状与大小有什么特点?
2、小结:
能够完全重合的两个图形称为全等形。
第十二章 全等三角形
人教版八年级数学(上)
12.1 全等三角形
学习目标 1、了解全等三角形的概念,通过动手操作,体会平移、翻折、
旋转是考察两三角形全等的主要方法. 2、能准确确定全等三角形的对应元素,掌握全等三角形的性
质. 3、通过找出全等三角形的对应元素,培养学生的识图能力. 4、通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调
A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED
4、下列说法正确的是( ) A. 两个周长相等的圆是全等图形。 B. 两个面积相等的三角形是全等图形。 C. 两个长方形是全等图形。 D. 两个正方形是全等图形。
5、一个三角形的三边为2、7、x,另一个三角形的三边为y、2、6, 若这两个三角形全等,则x+y=______ .
D A图形经过平移、旋转或翻折等变换后,所得
到的新图形一定与原图形全等.
A
(2)全等三角形的性质: 全等三角形的对应边相等。
全等三角形的对应角相等。 B
CE
(3)推论: 全等三角形的面积相等。 全等三角形的周长相等。
D F
3、思考:把一个三角形平移、旋转、翻折,变换前后的两个三角形 全等吗?若全等,找出全等图形的对应元素。
(2)∠NAB、∠NMC、∠MNC的度数。
1、重点:全等三角形的概念、性质及对应元素的确定. 2、难点:全等三角形对应元素的确定.
活动一:
1、观察:下列各组图形的形状与大小有什么特点?
2、小结:
能够完全重合的两个图形称为全等形。
第十二章 全等三角形
人教版八年级数学(上)
12.1 全等三角形
学习目标 1、了解全等三角形的概念,通过动手操作,体会平移、翻折、
旋转是考察两三角形全等的主要方法. 2、能准确确定全等三角形的对应元素,掌握全等三角形的性
质. 3、通过找出全等三角形的对应元素,培养学生的识图能力. 4、通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调
A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED
4、下列说法正确的是( ) A. 两个周长相等的圆是全等图形。 B. 两个面积相等的三角形是全等图形。 C. 两个长方形是全等图形。 D. 两个正方形是全等图形。
5、一个三角形的三边为2、7、x,另一个三角形的三边为y、2、6, 若这两个三角形全等,则x+y=______ .
D A图形经过平移、旋转或翻折等变换后,所得
到的新图形一定与原图形全等.
A
(2)全等三角形的性质: 全等三角形的对应边相等。
全等三角形的对应角相等。 B
CE
(3)推论: 全等三角形的面积相等。 全等三角形的周长相等。
D F
3、思考:把一个三角形平移、旋转、翻折,变换前后的两个三角形 全等吗?若全等,找出全等图形的对应元素。
(2)∠NAB、∠NMC、∠MNC的度数。
全等三角形ppt课件免费

线的垂足之间的距离。
分类
总结词
全等三角形可以根据不同的分类标准进行分类,如按照边长是否相等可分为SSS、SAS、ASA、AAS 等类型。
详细描述
全等三角形可以根据不同的分类标准进行分类。根据边长是否相等,可以分为SSS(三边相等)、 SAS(两边和夹角相等)、ASA(两角和夹边相等)、AAS(两角和非夹边相等)等类型。此外,还 可以根据其他标准如角度大小、位置关系等进行分类。
例如,如果两个直角三角形中,一个直角边和斜边分别等于 另一个三角形的直角边和斜边,那么这两个直角三角形是全 等的。
与四边形的关联
四边形是由四条边和四个角组成的几何图形。全等三角形 与四边形在概念上也有一定的联系。例如,在证明两个四 边形是否全等时,有时需要将它们分解为多个三角形来证 明。
在证明两个四边形是否相似时,也可以利用相似三角形的 性质来推导。例如,如果一个四边形可以被分解为多个相 似三角形,那么这个四边形是相似的。
在证明全等三角形时,有时需要利用相似三角形的性质来推导。例如,如果两个 三角形是相似的,那么它们的对应边长成比例,这可以用于证明两个三角形是否 全等。
与勾股定理的关联
勾股定理是指在直角三角形中,直角边的平方和等于斜边的 平方。全等三角形与勾股定理有一定的关联。在证明两个三 角形全等时,有时需要利用勾股定理来推导。
ASA判定
总结词
两角及பைடு நூலகம்夹边对应相等的两个三角形全等。
详细描述
如果两个三角形有两个角相等,并且这两个角所夹的一边长度也相等,则这两个 三角形全等。
AAS判定
总结词
两角及其中一角的对边对应相等的两 个三角形全等。
详细描述
如果两个三角形有两个角相等,并且 其中一个角的对边长度也相等,则这 两个三角形全等。
分类
总结词
全等三角形可以根据不同的分类标准进行分类,如按照边长是否相等可分为SSS、SAS、ASA、AAS 等类型。
详细描述
全等三角形可以根据不同的分类标准进行分类。根据边长是否相等,可以分为SSS(三边相等)、 SAS(两边和夹角相等)、ASA(两角和夹边相等)、AAS(两角和非夹边相等)等类型。此外,还 可以根据其他标准如角度大小、位置关系等进行分类。
例如,如果两个直角三角形中,一个直角边和斜边分别等于 另一个三角形的直角边和斜边,那么这两个直角三角形是全 等的。
与四边形的关联
四边形是由四条边和四个角组成的几何图形。全等三角形 与四边形在概念上也有一定的联系。例如,在证明两个四 边形是否全等时,有时需要将它们分解为多个三角形来证 明。
在证明两个四边形是否相似时,也可以利用相似三角形的 性质来推导。例如,如果一个四边形可以被分解为多个相 似三角形,那么这个四边形是相似的。
在证明全等三角形时,有时需要利用相似三角形的性质来推导。例如,如果两个 三角形是相似的,那么它们的对应边长成比例,这可以用于证明两个三角形是否 全等。
与勾股定理的关联
勾股定理是指在直角三角形中,直角边的平方和等于斜边的 平方。全等三角形与勾股定理有一定的关联。在证明两个三 角形全等时,有时需要利用勾股定理来推导。
ASA判定
总结词
两角及பைடு நூலகம்夹边对应相等的两个三角形全等。
详细描述
如果两个三角形有两个角相等,并且这两个角所夹的一边长度也相等,则这两个 三角形全等。
AAS判定
总结词
两角及其中一角的对边对应相等的两 个三角形全等。
详细描述
如果两个三角形有两个角相等,并且 其中一个角的对边长度也相等,则这 两个三角形全等。
全等三角形的判定PPT课件共34张

24
2024/1/30
06
判定全等三角形的注意事项
25
准确理解全等三角形的定义和性质
2024/1/30
全等三角形的定义
两个三角形如果三边及三角分别对应 相等,则称这两个三角形全等。
全等三角形的性质
全等三角形的对应边相等,对应角相 等;全等三角形的周长、面积相等; 全等三角形的对应边上的中线、高线 、角平分线分别相等。
结论
三边分别相等的两个三角 形全等,简称“SSS”。
16
SAS判定法的证明
已知条件
两边和它们的夹角分别相 等的两个三角形。
2024/1/30
证明过程
将其中一个三角形旋转至 与另一个三角形两边重合 ,由于夹角相等,因此两 个三角形全等。
结论
两边和它们的夹角分别相 等的两个三角形全等,简 称“SAS”。
示例
若三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E ,BC=EF,则三角形ABC全等于三角形DEF。
2024/1/30
14
2024/1/30
04
判定方法的证明与推导
15
SSS判定法的证明
01
02
03
已知条件
三边分别相等的两个三角 形。
2024/1/30
证明过程
通过平移或旋转其中一个 三角形,使得两个三角形 的三边分别重合,从而证 明两个三角形全等。
2024/1/30
在计算三角形面积时,如果知道两个三角形全等,那么可以直接得出它们的面积相 等。
9
2024/1/30
03
全等三角形的判定方法
10
边边边判定法(SSS)
定义
三边分别相等的两个三角形全等 。
2024/1/30
06
判定全等三角形的注意事项
25
准确理解全等三角形的定义和性质
2024/1/30
全等三角形的定义
两个三角形如果三边及三角分别对应 相等,则称这两个三角形全等。
全等三角形的性质
全等三角形的对应边相等,对应角相 等;全等三角形的周长、面积相等; 全等三角形的对应边上的中线、高线 、角平分线分别相等。
结论
三边分别相等的两个三角 形全等,简称“SSS”。
16
SAS判定法的证明
已知条件
两边和它们的夹角分别相 等的两个三角形。
2024/1/30
证明过程
将其中一个三角形旋转至 与另一个三角形两边重合 ,由于夹角相等,因此两 个三角形全等。
结论
两边和它们的夹角分别相 等的两个三角形全等,简 称“SAS”。
示例
若三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E ,BC=EF,则三角形ABC全等于三角形DEF。
2024/1/30
14
2024/1/30
04
判定方法的证明与推导
15
SSS判定法的证明
01
02
03
已知条件
三边分别相等的两个三角 形。
2024/1/30
证明过程
通过平移或旋转其中一个 三角形,使得两个三角形 的三边分别重合,从而证 明两个三角形全等。
2024/1/30
在计算三角形面积时,如果知道两个三角形全等,那么可以直接得出它们的面积相 等。
9
2024/1/30
03
全等三角形的判定方法
10
边边边判定法(SSS)
定义
三边分别相等的两个三角形全等 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DF,∴∠B=∠DEF,∠ACB=∠F,在△ABC 与△DEF 中,∠ BCB==E∠F,DEF, ∠ACB=∠F,
∴△ABC≌△DEF(ASA),∴AB=DE
模型二 翻折型 模型解读:将原图形沿着某一条直线折叠后,直线两边的部分能够完全重 合,这两个三角形称之为翻折型全等三角形.此类图形中要注意其隐含条 件,即公共边或公共角相等.
与△BEC 中,∠∠AD==∠∠BEC,B,∴△ACD≌△BEC(AAS),∴AC=BE,CB= DC=CE,
AD,∴AB=AC+CB=AD+BE
模型四 一线三等角型 模型解读:基本图形如下:此类图形 CE⊥DE,那么一定有∠B=∠CAE.
通常告诉
BD⊥DE,AB⊥AC,
4.如图,AD⊥AB于A,BE⊥AB于B,点C在AB上,且CD⊥CE,CD= CE.求证:AB=AD+BE.
解:∵AD⊥AB,BE⊥AB,CD⊥CE,∴∠DAC=∠CBE=∠DCE=90 °,又∵∠DCB=∠D+∠DAC=∠DCE+∠ECB,∴∠D=∠ECB.在△ACD
模型三 旋转型 模型解读:将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全 重合,则称这两个三角形为旋转型三角形.识别旋转型三角形时,如图①, 涉及对顶角相等;如图②,涉及等角加(减)公共角的条件.
3.如图,AB⊥CD于B,CF交AB于E,CE=AD,BE=BD.求证:CF⊥AD.
解:∵AB⊥CD,∴∠EBC=∠DBA=90°.在 Rt△CEB 与 Rt△ADB 中 CBEE= =ABDD,,∴Rt△CEB≌Rt△ADB(HL),∴∠C=∠A,又∵∠C+∠CEB= 90°,∠CEB=∠AEF,∴∠A+∠AEF=90°,∴CF⊥AD
八年级上册人教版数学 第十二章 全等三角形
专题(二) 全等三角形的基本模型(选用)
模型一 平移型 模型解读:把△ABC沿着某一条直线l平行移动,所得到△DEF与△ABC称为 平移型全等三角形.图①,图②是常见的平移型全等三角形.
1.如图,AB∥DE,AC∥DF,BE=CF,求证:AB=DE.
解:∵BE=CF,∴BE+EC=CF+EC,即 BC=EF,∵AB∥DE,AC∥
2.如图,AB=AC,BE⊥AC于E,CD⊥AB于D,BE,CD交于点O.求证: OB=OC.
解:∵BE⊥AC,CD⊥AB,∴∠ADC=∠AEB=∠BDO=∠CEO=90°, 在△ABE与△ACD中,∠BEA=∠CDA,∠A=∠A,AB=AC, ∴△ABE≌△ACD(AAS),∴AD=AE,∴BD=EC,∠B=∠C,在△BDO与 △CEO中,∠BDO=∠CEO,DB=EC,∠B=∠C, ∴△BDO≌△CEO(ASA),∴OB=OC
∴△ABC≌△DEF(ASA),∴AB=DE
模型二 翻折型 模型解读:将原图形沿着某一条直线折叠后,直线两边的部分能够完全重 合,这两个三角形称之为翻折型全等三角形.此类图形中要注意其隐含条 件,即公共边或公共角相等.
与△BEC 中,∠∠AD==∠∠BEC,B,∴△ACD≌△BEC(AAS),∴AC=BE,CB= DC=CE,
AD,∴AB=AC+CB=AD+BE
模型四 一线三等角型 模型解读:基本图形如下:此类图形 CE⊥DE,那么一定有∠B=∠CAE.
通常告诉
BD⊥DE,AB⊥AC,
4.如图,AD⊥AB于A,BE⊥AB于B,点C在AB上,且CD⊥CE,CD= CE.求证:AB=AD+BE.
解:∵AD⊥AB,BE⊥AB,CD⊥CE,∴∠DAC=∠CBE=∠DCE=90 °,又∵∠DCB=∠D+∠DAC=∠DCE+∠ECB,∴∠D=∠ECB.在△ACD
模型三 旋转型 模型解读:将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全 重合,则称这两个三角形为旋转型三角形.识别旋转型三角形时,如图①, 涉及对顶角相等;如图②,涉及等角加(减)公共角的条件.
3.如图,AB⊥CD于B,CF交AB于E,CE=AD,BE=BD.求证:CF⊥AD.
解:∵AB⊥CD,∴∠EBC=∠DBA=90°.在 Rt△CEB 与 Rt△ADB 中 CBEE= =ABDD,,∴Rt△CEB≌Rt△ADB(HL),∴∠C=∠A,又∵∠C+∠CEB= 90°,∠CEB=∠AEF,∴∠A+∠AEF=90°,∴CF⊥AD
八年级上册人教版数学 第十二章 全等三角形
专题(二) 全等三角形的基本模型(选用)
模型一 平移型 模型解读:把△ABC沿着某一条直线l平行移动,所得到△DEF与△ABC称为 平移型全等三角形.图①,图②是常见的平移型全等三角形.
1.如图,AB∥DE,AC∥DF,BE=CF,求证:AB=DE.
解:∵BE=CF,∴BE+EC=CF+EC,即 BC=EF,∵AB∥DE,AC∥
2.如图,AB=AC,BE⊥AC于E,CD⊥AB于D,BE,CD交于点O.求证: OB=OC.
解:∵BE⊥AC,CD⊥AB,∴∠ADC=∠AEB=∠BDO=∠CEO=90°, 在△ABE与△ACD中,∠BEA=∠CDA,∠A=∠A,AB=AC, ∴△ABE≌△ACD(AAS),∴AD=AE,∴BD=EC,∠B=∠C,在△BDO与 △CEO中,∠BDO=∠CEO,DB=EC,∠B=∠C, ∴△BDO≌△CEO(ASA),∴OB=OC