风机变频节能计算

风机变频节能计算

引言:

随着能源资源的日益紧缺和环境污染的加剧,节能减排已经成为全球

范围内的共同关注的议题。在工业生产中,风机作为一种常见的动力设备,在电力消耗和节能方面具有重要意义。本文将对风机变频节能进行详细探讨,并介绍风机节能计算的相关内容。

一、风机变频节能原理:

理想的风机工作状态应该是按需提供所需风量和风压,但实际情况下,风机的负载变化往往会导致过量供风和能量浪费。风机变频控制技术通过

改变风机驱动电机的频率,实现对风机转速的调节,从而提供所需风量和

风压。这种调节能力可以达到最优风机工作状态,减少不必要的能量消耗,实现节能效果。

二、风机变频节能计算方法:

1.风机性能曲线:

风机性能曲线是风机输出风量和风压之间的关系图。通过测量风机在

不同转速下的输出风量和风压,可以得到风机性能曲线。该曲线可以直观

显示风机的工作状态和性能参数。在风机变频控制中,根据实际需要选择

合适的工作点,从而实现风机的节能运行。

2.节能潜力分析:

风机节能潜力是指在实际运行中,通过风机变频控制技术实现的节能

效果。节能潜力的分析可以从两个方面入手:电能节约和运行成本节约。(1)电能节约:

通过变频控制,可以减少电动机的运行频率,降低电能消耗。具体的

电能节约计算方法是:根据风机的负载率、变频控制前后的平均电能消耗,计算节能百分比。例如,风机原始工作频率为50Hz时,电能消耗为

1000W,变频后降至45Hz时,电能消耗为800W,则节能百分比为(1000-800)/1000*100%=20%。

(2)运行成本节约:

风机的运行成本主要包括电能消耗、维护成本和停机损失。通过风机

变频控制,可以降低电能消耗,减少维护频率,缩短停机时间,从而实现

运行成本的节约。具体的运行成本节约计算方法是:根据风机的负载率、

变频控制前后的运行成本,计算节约的运行成本。例如,风机原始工作频

率为50Hz时,运行成本为100元/小时,变频后降至45Hz时,运行成本

为80元/小时,则节约的运行成本为(100-80)*运行时间。

三、风机变频节能案例:

下面以工厂中的风机为例,进行具体的风机变频节能计算。

工厂中的风机在原始状态下,工作频率为50Hz,平均电能消耗为

1000W,运行成本为100元/小时。通过风机性能测试,得到风机的性能曲

线为:

风量(m³/h)=5000-20×风压(Pa)

在实际工作中,需要风量为4000m³/h,风压为500Pa。通过风机性能

曲线,确定风机运行于27.5Hz时,可以满足工作需求。

根据变频控制前后的电能消耗和运行成本,可以计算节能和运行成本

的节约。

电能节约:

原始电能消耗=1000W,变频后电能消耗=800W

节能百分比=(1000-800)/1000*100%=20%

运行成本节约:

原始运行成本=100元/小时,变频后运行成本=80元/小时

假设变频控制工作时间为8小时,则节约的运行成本=(100-

80)*8=160元

四、结论:

风机变频控制技术是一种有效的节能措施,通过合理选择工作点和控制频率,可以实现风机的最优工作状态,减少能量浪费,达到节能减排的目的。对于工业生产中常用的风机设备,风机变频节能计算对于节约运行成本和保护环境具有重要意义。

变频器节电量计算

1、根据已知风机、泵类在不同控制方式下的流量-负载关系曲线和现场运行的负荷变化情况进行计算。 以一台IS150-125-400型离心泵为例,额定流200.16m3/h,扬程50m;配备Y225M-4型电动机,额定功率45kW。泵在阀门调节和转速调节时的流量-负载曲线。根据运行要求,水泵连续24小时运行,其中每天11小时运行在90%负荷, 13小时运行在50%负荷;全年运行时间在300天。则每年的节电量为: W1=45×11(100%-69%)×300=46035kW·h W2=45×13×(95%-20%)×300 =131625kW·h W = W1+W2=46035+131625=177660kW·h 字串4 每度电按0.5元计算,则每年可节约电费8.883万元。 2、根据风机、泵类平方转矩负载关系式:P / P0=(n / n0)3计算,式中为P0额定转速n0时的功率;P为转速n时的功率。以一台工业锅炉使用的22 kW鼓风机为例。运行工况仍以24小时连续运行,其中每天11小时运行在90%负荷(频率按46Hz计算,挡板调节时电机功耗按98%计算),13小时运行在50%负荷(频率按20Hz计算,挡板调节时电机功耗按70%计算);全年运行时间在300天为计算依据。则变频调速时每年的节电量为:W1=22×11×[1-(46/50)3]×300=16067kW·h W2=22×13×[1-(20/50)3]×300=80309kW·h Wb = W1+W2=16067+80309=96376 kW·h 挡板开度时的节电量为: W1=22×(1-98%)×11×300=1452kW·h W2=22×(1-70%)×11×300=21780kW·h ? Wd = W1+W2=1452+21780=23232 kW·h 相比较节电量为:W= Wb-Wd=96376-23232=73144 kW·h 每度电按0.5元计算,则采用变频调速每年可节约电费3.657万元。 某工厂离心式水泵参数为:离心泵型号6SA-8,额定流量53. 5 L/s,扬程50m;所配电机Y200L2-2型37 kW。对水泵进行阀门节流控制和电机调速控制情况下的实测数据记录如下:字串2 流量L/s 时间(h)消耗电网输出的电能(kW·h)阀门节流调节电机变频调速 47 2 33.2×2=66.4 28.39×2=56.8 40 8 30×8=240 21.16×8=169.3 30 4 27×4=108 13.88×4=55.5 20 10 23.9×10=239 9.67×10=96.7 合计24 653.4 378.3 相比之下,在一天内变频调速可比阀门节流控制节省275.1 kW·h的电量,节电率达42.1%。本文来自: 中国物资采购网详细出处参考:/2009-12-24/-.html

变频调速节能量的计算方法

变频调速节能量的计算方法 一﹑概述据统计,全世界的用电量中约有60%是通过电动机来消耗的。由于考虑起动、过载、安全系统等原因,高效的电动机经常在低效状态下运行,采用变频器对交流异步电动机进行调速控制,可使电动机重新回到高效的运行状态,这样可节省大量的电能。生产机械中电动机的负载种类千差万别,为便于分析研究,将负载分为平方转矩﹑恒转矩和恒功率等几类机械特性,本文仅对平方转矩﹑恒转矩负载的节能进行估算。所谓估算,即在变频器投运前,对使用了变频器后的节能效果进行的计算预测。变频器一旦投运后,用电工仪表测量系统的节能量更为准确。现假定,电动机系统在使用变频器调速前后的功率因数基本相同,且变频器的效率为95%。在设计过程中过多考虑建设前,后长期工艺要求的差异,使裕量过大。如火电设计规程SDJ-79规定,燃煤锅炉的鼓风机,引风机的风量裕度分别为5%和5~10%,风压裕度为10%和10%~15%,设计过程中很难计算管网的阻力,并考虑长期运行过程中可能发生的各种问题,通常总把系统的最大风量和风压裕量作为选型的依据,但风机的系列是有限的,往往选不到合适的风机型号就往上靠,大20%~30%的比较常见。生产中实际操作时,对于离心风机﹑泵类负载常用阀门、挡板进行节流调节,则增加了管路系统的阻尼,造成电能的浪费;对于恒转矩负载常用电磁调速器﹑液力耦合器进行调节,这两种调速方式效率较低,而且,转速越低,效率也越低。由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能是困难的,在一定程度上影响了变频调速节能的实施。本文介绍用以下的公式来进行节能的估算。 二、节能的估算1﹑风机﹑泵类平方转矩负载的变频调速节能风机﹑泵类通用设备的用电占电动机用电的50%左右,那就意味着占全国用电量的30%。采用电动机变频调速来调节流量,比用挡板﹑阀门之类来调节,可节电20%~50%,如果平均按30%计算,节省的电量为全国总用电量的9%,这将产生巨大的社会效益和经济效益。生产中,对风机﹑水泵常用阀门、挡板进行节流调节,增加了管路的阻尼,电机仍旧以额定速度运行,这时能量消耗较大。如果用变频器对风机﹑泵类设备进行调速控制,不需要再用阀门、挡板进行节流调节,将阀门、挡板开到最大,管路阻尼最小,能耗也大为减少。节能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即:对风机、泵类,采用挡板调节流量对应电机输入功率PL与流量Q的关系 的三次方成正比,即,再与采用挡板调节流量对应电机输入功率PL相减后再除以 节省的功率与系统调速前后的速差成正比,速差越大,节能越显著。恒转矩负载变频调速一般都用于满足工艺需要的调速,不用变频调速就得采用其他方式调速,如调压调速﹑电磁调速﹑绕线式电机转子串电阻调速等。由于这些调速是耗能的低效调速方式,使用高效调速方式的变频调速后,可节省因调速消耗的转差功率,节能率也是很可观的。3、电磁调速系统电磁调速系统由鼠笼异步电机、转差离合器、测速电机和控制装置组成,通过改变转差离合器的激磁电流来实现调速。转差离合器的本身的损耗是由主动部分的风阻?磨擦损耗及从动部分的机械磨擦损所产生的。如果考虑这些损耗与转差离合器的激磁功率相平衡,且忽略不计的话,转差离合器的输入?输出功率可由下式计算:电动机轴输出功率 式中:T2—转差离合器的输出转矩n2 –-转差离合器的输出轴转速电动机的输出功率,即为转差离合器的输入功率。对于恒转矩负载,T= T1 = T2=常数,所以,转差离合器的效率:

变频调速的计算

一、变频调速与节流调节的计算 流量q v 与转速成正比,即q v2/q v1=n 2/n 1;扬程H 与转速的平方成正比,即H 1/H 2=(n 2/n 1)2;功率与转速的立方成正比功率。如(1)式所述。 31 23 1212)()(v v v q q n n p p q P ===存在的关系与流量泵与风机的功率 (1) 根据v q 、H 值可以计算泵与风机的功率,即:η ρ102H q P V = (2) 式中P ─功率,kW ;v q ─流量,m 3/s ;H ─扬程,m ;ρ─密度,kg/m 3;η─使用工况效率%; 泵与风机的变频节能计算 (1) 变频调速调节与节流调节 对风机、水泵常用阀门、挡板进行节流调节,增加了管路的阻尼,电机仍旧以额定速度运行,这时能量消耗较大,如果对风机、泵类设备进行调速控制,不需要再用阀门、挡板进行节流调节,将阀门、挡板开到最大,管路阻尼最小,能耗也大为减少。节能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即对风机、泵类、采用挡板调节流量对应电机输入功率P L 与流量q v 的关系: )(])( 55.045.0[2 kW p q q P e ve V L += (3) 式中 P L ─额定流量时电机输入功率,kW ;q ve ─额定流量,m 3/s ; 若流量的调节范围(0.5~1)q ve ,由上面的公式及下面的公式可得电机调速调节流量相比节流调节流量所要节约的节电率(Ki )为: ] )(55.045.0[)( 1/)( 23 3 ve v b ve v L b ve v e L L q q q q P q q P P p p Ki +- =-=∆= ηη (4) 式中Ki ─节电率;ηb ─调速机构效率。 从上式分析,节流调速时由于q v /q ve <1,平方后更小于1,乘以0.55再加上0.45仍小于1,却节流后电机的负载变小了,消耗的功率也比额定功率小。当挡板或阀门全关时,泵与风景空载运行,消耗的功率最少,等于0.45Pc 。由(1)式可知采用电机变速调节后,电机消耗的功率与实际流量和额定流量比值的三次方成正比,由于变频调速效率高,本身的损耗相比很小,在变频器内部,逆变器功率器件的开关损耗最大,其余是电子元器件的热损耗和风机损耗,变频器的效率一般为95%~98%。采用变频调速,泵与风机的效率几乎不变,其特性近似满足相似定律,即满足(1)式的关系。因此(4)式能较准确地计算泵与风机电机变频调速调节相比节流调节所要节约的节电率。 例5.1 某厂离心风机125kW ,实际用风量为0.7,年工作4800h ,准备投资15万元改造为变频器驱动,变频器的效率为96%,估算节电率和投资回收期。 解:由题意知q v /q ve =0.7,由式(4)得节电率为 5.0) 7.055.045.0(96.07.012 3 =⨯+⨯-=Ki 由式(3)得:P L =(0.45+0.55×0.72 )×125=90(kW)

变频器节能计算

变频器节能计算 变频不是到处可以省电,有不少场合用变频并不一定能省电。作为电子电路,变频器本身也要耗电(约额定功率的3-5%)。一台1.5匹的空调自身耗电算下来也有20-30W,相当于一盏长明灯. 变频器在工频下运行,具有节电功能,是事实。但是他的前提条件是:第一,大功率并且为风机/泵类负载;第二,装置本身具有节电功能(软件支持);第三,长期连续运行。这是体现节电效果的三个条件。除此之外,无所谓节不节电,没有什么意义。 变频节能 什么是变频器 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。 PWM和PAM的不同点是什么 PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调值方式。 PAM是英文Pulse Amplitude Modulation (脉冲幅度调制) 缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。 电压型与电流型有什么不同 变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。 为什么变频器的电压与电流成比例的改变 异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。这种控制方式多用于风机、泵类节能型变频器。 电压下降影响 电动机使用工频电源驱动时,电压下降则电流增加;对于变频器驱动,如果频率下降时电压也下降,那么电流是否增加? 频率下降(低速)时,如果输出相同的功率,则电流增加,但在转矩一定的条件下,电流几乎不变。

风机水泵压缩机变频调速控制节能与应用(含工频节流功率计算公式)

风机水泵负载变频调速节能原理 相似定律:两台风机或水泵流动相似,在任一对应点上的统计和尺寸成比例,比值成相等,各对应角、叶片数相等,排挤系数、各种效率相等。 流量 按照相似定律,由连续运动方程流量公式: φπη η ????? =?? =d D A v m v m v v v q 流速公式: 60 π ??= n D v m 式中: q v ——体积流量, s m 3 ; η v ——容积效率,实际容积效率约为0.95; A ——有效断面积(与轴面速度v m 垂直的断面积),m2; D ——叶轮直径,m ; n ——叶片转速,r/mi n ; b ——叶片宽度,m ; v m ——圆周速度,m/s ; φ——排挤系数,表示叶片厚度使有效面积减少的程度,约为0.75~0.95; 按照电机学的基本原理,交流异步电动机转速公式: p f s n ??-=60)1( 式中: s ——滑差; P ——电机极对数; f ——电机运行频率。 流量、转速和频率关系式: φππφππ ηη????????-?=???????= ?d D p f s D d D n D v v v q 60 60)1(60 f n q v ∞∞? 可见流量和转速的一次方成正比,和频率的一次方成正比。

扬程 按照流体力学定律,扬程公式:2 2 1 v m H ??=ρ 扬程、转速和频率关系式: 2 22 1 2 1 6060)1(602 2 f n H H p f s D n D ∞∞???=??=?? ? ? ?????-?? ? ? ????ππρρ 可见扬程和转速的二次方成正比,和频率的二次方成正比。 式中:H ——水泵或风机的扬程,m ; 功率 风机水泵的有效功率:每秒钟流体经风机水泵获得的能量。 水泵:H g q P v e ???=ρ 或 风机: P q P v e ?= ? ? ? ?????-?? ? ? ????????????????-?? ?=????????????=6060)1(602 2 21 6060)1(21 60πηπηρφππρρφππρp f s D n D P d D p f s D g d D n D g v v e f n P e 3 3 ∞ ∞? 可见有效功率和转速的三次方成正比,和频率的三次方成正比。 式中: P e ——有功功率,w ; ρ——流体质量密度,m Kg 3 ; P ——压力,Pa ;

变频器节能计算的方法,格式

节能计算 1. 离心式风机 1.1 不考虑压力,调节风量时的能耗比较 流量(%) 功 率 % 叶片调节 液力偶合器 变频调速 挡板调节 图1 风机各调节方式的能耗-流量曲线

上述均为百分比,100%流量为风机的额定流量,100%功率为工频额定工况运行时消耗功率(即电机输入功率= 风机额定轴功率/电机效率,电机效率一般为93-96%,额定功率较大者效率较高)。变频调速时的节能量即为两种调节方式的能耗差值(百分比乘额定消耗功率)。 需要了解的参数: 电机:型号、额定功率P N、额定电流I N、额定电压U N、额定功率因数COSΦN、额定转速风机:型号、特性曲线、额定流量Q N、额定全压H N、额定轴功率N N、额定转速 运行工况:现有调节方式、实际需求流量Q、运行电压U、运行电流I(或实际消耗功率P)计算步骤: ●电机额定效率 ηN = P N/(1.732I N U N COSΦN)式(1-1)●额定消耗功率 P IN = N N /ηN 式(1-2)●根据Q/Q N*100%从图1查出变频调速时的节约功率百分比,乘上P IN即为变频运行时 的节约功率△P。 ●△P 乘上运行时间(小时)即为节约电度数。 1.2 不考虑流量,仅调节压力 假设采用变频调速后,不考虑风阻的变化,将压力从工频运行时的H1下调到H2。 需要了解的参数: 电机:型号、额定功率P N、额定电流I N、额定电压U N、额定功率因数COSΦN、额定转速风机:型号、特性曲线、额定流量Q N、额定全压H N、额定轴功率N N、额定转速 运行工况:工频运行压力H1、实际需求压力H2、运行电压U、运行电流I(或实际消耗功率P) 计算: ●计算工频运行时的消耗功率P ●计算变频运行时的消耗功率P1=(H2/H1)1.5 *P/0.96 式(1-3) ●节约功率△P = P – P1 ●△P 乘上运行时间(小时)即为节约电度数。 运行功率的几种计算方式: ●装有功率表:直接查表 ●装有电度表:P = 电度数(度)/记录时间(小时) ●仅知道电流I和电压U: (1-COS2ΦN)I4N P = √3 U ×I2 -———————— √(2I N-I)2 式(1-4)

高温风机变频节能改造项目节能计算

附件一: 一、设备参数和节能分析 1.1电机参数: 名称额定功率 (KW) 额定电压 (KV) 额定转速 r/min 额定电流 (A) 功率因数 运行电流 (A) 阀门开度 % 负载类 型 1号机2800 10 996 201 0.84 154-164 69 高温风 机 风机参数: 风量:900000M3/H 全压:≥7500PA 进口压力:-7000PA 风机转速:960R/MIN 实际使用工况: 运行电流:154A~164A 风门开度使用液力偶合器控制:开度为69% 海拔高度:800M 1.2节能原理及节能计算: 1.2.1高压变频技术说明 从交流异步电动机的转速公式 式中:n为电动机转速r/min; f为电源频率Hz; s为转差率; P为极对数。 我们知道,改变异步电动机的电源频率就可以改变电动机的转速,这是目前最简单、最有效的交流异步电动机调速方法,可以很容易做到无极变速。而且交流变频调速技术是上世纪90年代后期迅速发展起来的一种新型电力传动调速技术,主要用于交流电动机的变频调速,其技术和性能在交流电动机调速控制方面胜过其它任何一种调速方式。变频调速装置以系统效率高、节能效果显著、调速精度高、调速范围宽、机械特性硬、起制动能耗小、电力电子保护功能完善、易于实现自动控制及通信功能,得到了越来越广泛的应用;并且在运行安全可靠性、安装使用、维修维护等方面,也给使用者带来了极大的便利,使之成为企业采用电动机节能方式的首选设备。 1.2.2节能原理说明 从流体力学的原理得知,使用感应电机驱动的风机,轴功率P与风量Q,风压H的关系 为: H Q P?∝

当电动机的转速由n1变化到n2时, Q 、 H 、 P 与转速的关系如下: 1 2 12n n Q Q ? = (1) 2 1 2 12??? ? ???=n n H H (2) 2p =1p 3 12 ??? ? ???n n (3) 可见风量Q 和电机的转速n 是成正比关系的,而所需的轴功率P 与转速的立方成正比关系。所以当需要80%的额定风量时,通过调节电机的转速至额定转速的80%,即调节频率到40赫兹即可,这时所需轴功率将仅为原来的51.2%。 如下图所示,从风机的运行曲线图来分析采用变频调速后的节能效果。 扬程H H2 H1 流量Q HB O 图3-1 风机的运行曲线 当所需风量从Q1减小到Q2时,如果采用调节风门的办法,管网阻力将会增加,管网特性曲线上移,系统的运行工况点从A 点变到新的运行工况点B 点运行,所需轴功率P2与面积H2×Q2成正比;如果采用调速控制方式,风机转速由n1下降到n2,其管网特性并不发生改变,但风机的特性曲线将下移,因此其运行工况点由A 点移至C 点。此时所需轴功率P3与面积HB ×Q2成正比。从理论上分析,所节约的轴功率Delt(P)与(H2-HB )×(C-B )的面积成正比。 考虑减速后效率下降和调速装置的附加损耗,根据实际经验,风机类通过调速控制节电率约为 20%~50%。 1.2.3节能计算 负载率:160/201=0.796; 工频耗电:1.732*160*10*0.8=2217KW 电机的轴功率为额定功率的2800*0.85=2380KW (电机设计余量为15%)。 液偶开度为69%,转速需求为额定的70%,变频需功率为:2380*0.7=1666; 节电率:(2217-1666)/2217=24.8%

变频器节电率的计算

几种典型负载的节电率计算方法 (1)各种风机、泵类因为P∝n的三次方,节电效果显著,应首先应用变频器,具体值见表1。表1 应用变频器节电效果 计算时可用

式中P%——实际消耗功率百分值; s——实际转速百分值; K——系数,K=0.0001。 节电率N%=1-P% 举例,转速n为90%时,相应频率值为45Hz,则P%=0.0001×(90)3=73%。所以N%=1 -73%=27%。一般风机、泵类节电率在30%以上。 (2)空压机、挤出机、搅拌机因为P∝n,所以节电率与允许减速范围成正比,N%=n%。 (3)波动负载如破碎机、粉碎机、冲床、落料机、剪切机等9这种负载具有周期波动性,且波动功率较大,控制方式以闭环为好,相对节电率也大些,功率波动负载如图所示。

(4)阶梯负载如间歇工作有储气罐的空压机、定容积水箱、水池、水塔等,工作时间t1是满负载PH,一定压力后自动卸载,电动机空载Po时间为t1,采用降速降流量,用适当延长工作时间t1、缩短空载时间t2的方法来实现节电。经实际运行,约有15%~20%的节电率。而且t2

(5)间歇负载如高位水箱、水池、水塔等。工作时间t1为满负载,不工作时间为t2,且t2≥t1,现采用降速降流量,延长工作时间t1,缩短不工作时间t2,这样改变后节电效果也明显,约有20%~30%的节电率。间歇工作负载的功率变化情况(Po=0)如图所示。

(6)人为的负载转移来实现节电这种情况往往发生在中央空调系统的冷却泵、冷冻泵或其他同类地方。平常开一台泵,电动机处于满负载或超负载,而且压力、流量也无富余度,使用变频器后没办法实现节电。但各用泵较多,一般是1:1(五星级宾馆大都如此),这时只有采用人为的负载转移方法来实现节电,见表2。

风机变频节能方法

风机变频节能方法 风机是一种依靠输入机械能来提高气体压力并排送气体的从动流体机械。气体压缩与气体输送机械是将旋转的机械能转换为气体压力能及动能,并将气体输送出去的机械。我国所述的风机是对气体压缩与气体输送机械的简称,风机可以按照多种分类方式分为许多种不同的类型,鼓风机、通风机、风力发电机等都是常说的风机。 由流体力学原理可知,风机的风量和电机的转速功率有很大的关联:风机的风量和风机的转速成正比,风机的风压和风机的转速平方成正比,而风机的轴功率等于风量和风压之间的乘积,所以风机的轴功率与风机的转速三次方也成正比。随着近些年来变频技术不断的完善、发展及进步。风机的变频调速性能越来越发达,在很大程度上节约了能源,已经被广泛的应用于多种领域。风机变频节能方法所获得的节能效益为各行各业的企业带来了不少的经济效益,极大的推动了社会工业生产的自动化发展进程。 一、风机的变频节能原理 目前情况下的风机设备大多数是采用异步电动机进行直接驱动的方式来实现风机的节能的,此种方式存在着一定的缺陷和问题,例如电气保护的特性较差、所启动的电流过大、产生机械冲击等。在电机的负载过大的情况下,会在一定程度上影响、减少设备的使用寿命,还会导致出现一些机械故障,经常发生出现电机发烫被烧毁等不良故障。 变频风机图 风机变频调速器是现代社会上的一种新型的节能产品,在管路性能的曲线不变的情况下,变速调节用变速来改变风机的性能曲线,进而改变其工作点。风机变频调速器具有容易操作、控制精度较高、性能较高、不用进行维护等等多个优点。在其他条件没有发生改变的情况下,对异步电动机定进行改变,子端输入电源频率进而改变电动机的转速是风机变频调速技术基本的工作原理。电机转速和工作电源输入频率成正比的关系:n=60(f-s)/p,公式中,n用来表

风机水泵压缩机变频调速节能技术讲座(八)第三讲 水泵变频调速节能效果的计算方法

风机水泵压缩机变频调速节能技术讲座(八)/第三讲水泵变频调速节能效果的计算方法 作者:国家电力公司热工研究院自动化所徐甫荣 3.1相似抛物线的求法 水泵与风机不同,由于静扬程的存在,阻力曲线不是相似曲线,因此图2-12中转速变化前后的运行工况点m与m不是相似工况点,故其流量、扬程(或全压)与转速的关系不符合比例定律,不能直接用比例定律求得。但当管路性能曲线的静扬程(或静压)等于零时,即 hst=0(或pst=0)时,管路性能曲线是一条通过坐标原点的二次抛物线,它与过m点的变转 速时的相拟抛物线重合,因此,m与m又都是相似工况点(比如风机),故可用比例定律直接由m点的参数求出m点的参数。 例2-1:某锅炉给水泵的性能曲线如图2-12所示,其在额定转速下运行时的运行工况点为m,相应的qm =380m3/h。现欲通过变速调节,使新运行工况点m的流量减为190m3/h?,试问其转速应为多少(额定转速为2950r/min)? 解:变速调节时管路性能曲线不变,而泵的运行工况点必在管路性能曲线上,故m点可由qm’ =190m3/h处向上作垂直线与管路性能曲线相交得出,由图可读出m点的扬程hm1=1670m。m/与m不是相似工况点,需在额定转速时的h-q曲线上找出m的相似工况点a,以便求出m 的转速。过m/点作相似抛物线,由比例定律得:h=hm’/q2.m’=1670/(190)2·q2=0.046q2。为了把相似抛物线作到图2-12上,上式(h=0.046q2)中h与q的关系列表如下: q(m3/h) 0 100 200 220 240 h(m) 0 460 1840 2226 2650 把列表中数值作到图2-12上,此过m'点的相似抛物线与额定转速下h-q特性曲线相交于a 点。用同样的方法可以作出过m1、m2点的相似抛物线与额定转速下h-q特性曲线相交于b 点和c点。 由图可读出qa=227m3/h,ha=2360m,故得:n’= qm’/qa·n=190/227·2950=2469(r/min) 或n’√(hm’/ha)·n=√(1670/2360)·2950=2481(r/min)。 上述两式得出的结果略有不同是因作图及读数误差引起的。 从计算结果知,此泵装置因管路静扬程hst很高(60%),故当流量减少到原流量的50%时, 其转速只降到原转速的2469/2950 =83.7%,而不是50%;其节能率约为1-(0.8373/0.81 /0.96) = 24.6%,而不是1-(50%)3=87.5%!水泵系统管路性能曲线中静扬程(静压)所占比例的大小,与调速装置节能效果的大小相关。当静扬程所占比例很大时,即使泵系统的工作流量变化很大,但调速装置的转速变化范围并不大,结果变速调节的节能效果也不大。这是因为静扬程(静压)不等于零时,管路性能曲线与变转速时的相似抛物线不重合,故变速前后各工作点间的关系并不符合比例定律,即流量比不等于转速比。当静扬程(静压)为正值时,流量比恒大于转速比。 例如dg500-180型锅炉给水泵,其最高转速n=2950r/min,相应q=500m3/h,he=1800m,

高压变频器节能计算

风机水泵类负载使用高压变频器节能计算■风机水泵工作特性 风机水泵特性:H=H0-(H0-1)*Q² H-扬程 Q-流量 H0-流量为0 时的扬程 管网阻力:R=KQ² R-管网阻力 K-管网阻尼系数 Q-流量 注:上述变量均采用标么值,以额定值为基准,数值为1 表示实际值即是额定值 风机水泵轴功率P:P= KpQH/ηb P-轴功率 Q-流量; H-压力; ηb-风机水泵效率; Kp-计算常数; 流量、压力、功率与转速的关系: Q1/Q2 = n1/n2; H1/H2 =(n1/n2)²; P1/P2 =(n1/n2)³ ■变阀控制 变阀调节就是利用改变管道阀门的开度,来调节泵与风机的流量。变阀调节时,泵或风机的功率基本不变,泵或风机的性能曲线不变,而管道阻力特性曲线发生变化,泵或风机的性能曲线与新的管道阻力特性曲线的交点处就是新的工作点。 ■变频控制 变频调节就是利用改变性能曲线方法来改变工作点,变速调节中没有附加阻力,是比较理想的一种调节方法。通过变频器改变电源的工作频率,从而实现对交流 电机的无级调速。泵和风机采用变速调节时,其效率几乎不变,流量随转速按一次方规律变化,而轴功率按三次方规律变化。同时采用变频调节,可以降低泵和风机的噪声,减轻磨损,延长使用寿命。 ■节能计算 电动机的效率=a 高压变频器的效率=97%(含变压器) 额定风量时的风机轴功力:bkW 风机特性:风量Q 为0 时,扬程H 为1.4p.u(标么值,以额定值为基准);设曲线特性为H=1.4-0.4Q² 年运行时间为:c小时 风机的运行模式为:

风量100%,年运行时间的20% 风量70%,年运行时间的50% 风量50%,年运行时间的30% 变阀调节控制风量时 假设P100 为100%风量的功耗,P70 为70%风量的功耗,P50 为50%风量的功耗 P100=b/akW P70=0.7x(1.4-0.4x0.7²)b/akW P50=0.5x(1.4-0.4x0.5²)b/akW 年耗电量为:P1=0.2cP100+0.5cP70+0.3cP50KWH 变频调节控制风量时 假设P100 为100%风量的功耗,P70 为70%风量的功耗,P50 为50%风量的功耗 P100 = b/a /0.97kW P70 = 0.7³b/a/0.97kW P50 = 0.5³b/a/0.97kW 年耗电量为:P2=0.2cP100+0.5cP70+0.3cP50KWH 节电率为 P2/P1

变频器的节能计算方法

现有一台250KW风机,现采用星--三角起动运行,工作电流太约在360A左右, 如果改成变频器,一个小时能节多少电,太概多长时间能收回成本. 变频器节能计算方法 例如:当从50Hz降至45Hz得 公式:P45/P50=45(3次方)/50(3次方) P45=0.729P50 (2)当从50Hz降至45Hz得 已知:单台冷却器在工频耗电功率为250KW/h。 (3)∵P45=0.729P50=0.729×250=182.28 KW/h (4)单台电机节能:250-182.25=67.75 KW/h;为原耗电量节约为67.75/250×100%=27.1% (5)年节能:250kw×24h×30d×12m×27.1%=585360KW;按1KW/h电费0.45元计算年节约共计585360×0.45=263412元。 2. 公式:P45/P50=45(3次方)/50(3次方) P45=0.729P50 我想知道这个叫什么公式,这个公式怎么来的? 公式:P45/P50=45(3次方)/50(3次方) 这个公式是由风机工作特性决定的,由于风机是二次方负载,轴功率与转速的三次方成正比。 风机水泵类负载使用高压变频器节能计算 风机水泵工作特性 风机水泵特性:H=H0-(H0-1)*Q2 H-扬程 Q-流量 H0-流量为0 时的扬程 管网阻力:R=KQ2 R-管网阻力 K-管网阻尼系数 Q-流量 注:上述变量均采用标么值,以额定值为基准,数值为1 表示实际值等于额定值 风机水泵轴功率P:P= KpQH/ηb P-轴功率 Q-流量; H-压力; ηb-风机水泵效率; Kp-计算常数; 流量、压力、功率与转速的关系: Q1/Q2 = n1/n2; H1/H2 =(n1/n2)2; P1/P2 =(n1/n2)3

风机设备的节能量计算方法(含公式)

风机设备的节能量计算方法(含公式) 根据风机系统节能技术改造特征,选择合适的计算方法计算风机系统节能量。 1、输送物料类风机系统节能量计算 1.1输送物料类风机系统恒定负荷节能量计算 本计算适用于但不仅限于以下情况: ——采用高效电机更换现有电动机; ——采用高效风机更换现有风机; ——管网改造; ——选用在高效区工作的风机。(包括更换风机,更换叶轮) 1.1.1基准期风机系统输送单位物料电耗按式(1)计算: 111W P /F (1) 式中: W 1——基准期风机系统输送单位物料电耗,单位为千瓦时每标 准立方米(kWh/Nm 3)或千瓦时每吨(kWh/t ); P 1——基准期风机系统电动机输入平均功率,单位为千瓦 (kW );

F 1——基准期风机系统平均物料输送量,单位为标准立方米每 小时(Nm 3/h )或吨每小时(t/h )。 1.1.2统计报告期风机系统输送单位物料电耗按式(2)计算: 222W P /F = (2) 式中: W 2——统计报告期风机系统输送单位物料电耗,单位为千瓦时 每标准立方米(kWh/ Nm 3)或千瓦时每吨(kWh/t ); P 2——统计报告期风机系统电动机输入平均功率,单位为千瓦 (kW ); F 2——统计报告期风机系统平均物料输送量,单位为标准立方 米每小时(Nm 3/h )或吨每小时(t/h )。 1.1.3改造后风机系统节能率按式(3)计算: %100/)(1211⨯-=W W W ξ………………………………………(3) 式中: 1ξ——节能技改后风机系统节能率 。 1.1.4统计期风机系统节能量按式(4)计算: k T P Q ⨯⨯⨯=111ξ……………………………………………(4) 式中:

变频调速节能量的计算方法

变频调速节能量的计算方法 引言 变频调速在工业领域中被广泛应用,它通过调整电机的转速来控制负载的运行速度。相较于传统的固定转速控制方式,变频调速可以提供更大的灵活性和节能效果。 在工业生产中,电机通常是耗电最多的设备之一。通过使用变频调速技术,可以有效地降低电机的运行功率,从而实现节能的目的。本文将介绍变频调速节能量的计算方法。 变频调速节能量的计算方法 变频调速节能量的计算方法主要分为以下几个步骤: 1. 收集数据 首先,需要收集有关电机的运行数据。这些数据包括电机的额定功率(P0),电机的额定转速(N0),以及使用变频调速后的功率(P1)和转速(N1)。 2. 计算效率 根据电机的额定功率和转速,可以计算出电机的额定效率(η0)。同时,使用变频调速后的功率和转速,也可以计算出变频调速运行时的效率(η1)。 3. 计算节能量 节能量的计算公式如下: 节能量 = (P0 - P1) / P0 * 100% 其中,P0为电机的额定功率,P1为使用变频调速后的功率。 4. 计算节能百分比 节能百分比可以用来衡量采用变频调速技术后,实际节省的能源占总能源消耗的比例。计算公式如下: 节能百分比 = (P0 - P1) / P0 * 100% 其中,P0为电机的额定功率,P1为使用变频调速后的功率。

5. 实际应用举例 下面以一个具体的实际应用为例来说明节能量的计算方法。假设一台电机的额定功率为10 kW,额定转速为1500 rpm。通过变频调速技术,将电机的功率降低至8 kW,转速降低至1200 rpm。根据上述的计算方法,我们可以得出以下结果: •电机的额定效率(η0)= 0.9 •变频调速运行时的效率(η1)= 0.87 •节能量 = (10 - 8) / 10 * 100% = 20% •节能百分比 = (10 - 8) / 10 * 100% = 20% 根据以上计算结果,使用变频调速技术后,该电机的节能量为20%,节能百分比也为20%。 结论 变频调速技术在工业生产中具有很大的节能潜力。通过计算变频调速节能量,可以直观地评估采用该技术后的节能效果。在实际应用中,我们可以根据电机的额定功率和转速,以及使用变频调速技术后的功率和转速,通过简单的计算方法来得出节能量和节能百分比。这样的计算方法可以为企业和工厂提供重要的参考信息,帮助他们评估和优化电机运行效率,从而实现节能减排的目标。 参考文献 •[1] 张三, 变频调速技术在工业生产中的应用研究, 电机技术, 2018. •[2] 李四, 变频调速节能量计算及应用, 节能技术导刊, 2019. •[3] 王五, 变频调速技术综述, 电气工程学报, 2017. 以上内容介绍了变频调速节能量的计算方法,并给出了实际应用举例。通过采用变频调速技术,工业生产中的电机可以实现节能的目的,减少能源浪费。希望本文的内容能为读者理解和应用变频调速节能技术提供参考。

变频器节能计算方法

变频调速节能量的计算方法 一﹑概述 据统计,全世界的用电量中约有60%是通过电动机来消耗的。由于考虑起动、过载、安全系统等原因,高效的电动机经常在低效状态下运行,采用变频器对交流异步电动机进行调速控制,可使电动机重新回到高效的运行状态,这样可节省大量的电能。生产机械中电动机的负载种类千差万别,为便于分析研究,将负载分为平方转矩﹑恒转矩和恒功率等几类机械特性,本文仅对平方转矩﹑恒转矩负载的节能进行估算。所谓估算,即在变频器投运前,对使用了变频器后的节能效果进行的计算预测。变频器一旦投运后,用电工仪表测量系统的节能量更为准确。现假定,电动机系统在使用变频器调速前后的功率因数基本相同,且变频器的效率为95%。 在设计过程中过多考虑建设前,后长期工艺要求的差异,使裕量过大。如火电设计规程SDJ-79规定,燃煤锅炉的鼓风机,引风机的风量裕度分别为5%和5~10%,风压裕度为10%和10%~15%,设计过程中很难计算管网的阻力,并考虑长期运行过程中可能发生的各种问题,通常总把系统的最大风量和风压裕量作为选型的依据,但风机的系列是有限的,往往选不到合适的风机型号就往上靠,大20%~30%的比较常见。生产中实际操作时,对于离心风机﹑泵类负载常用阀门、挡板进行节流调节,则增加了管路系统的阻尼,造成电能的浪费;对于恒转矩负载常用电磁调速器﹑液力耦合器进行调节,这两种调速方式效率较低,而且,转速越低,效率也越低。由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能是困难的,在一定程度上影响了变频调速节能的实施。本文介绍用以下的公式来进行节能的估算。 二、节能的估算 1﹑风机﹑泵类平方转矩负载的变频调速节能风机﹑泵类通用设备的用电占电动机用电的50%左右,那就意味着占全国用电量的30%。采用电动机变频调速来调节流量,比用挡板﹑阀门之类来调节,可节电 20%~50%,如果平均按30%计算,节省的电量为全国总用电量的9%,这将产生巨大的社会效益和经济效益。生产中,对风机﹑水泵常用阀门、挡板进行节流调节,增加了管路的阻尼,电机仍旧以额定速度运行,这时能量消耗较大。如果用变频器对风机﹑泵类设备进行调速控制,不需要再用阀门、挡板进行节流调节,将阀门、挡板开到最大,管路阻尼最小,能耗也大为减少。节能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即: 能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即:

变频器节能效率计算

概述 在许多情况下, 使用变频器的目的是调速, 尤其是对于在工业中大量使用的风扇、鼓风机和泵类负载来说, 设计选型往往以最大工况来选.与实际的工况存在较大的可调整空间.在运行中根据实际运行需要,按照流量、杨程等调节电动机的转速,从而改变电动机的输出转矩和输出功率,以代替传统上利用挡板和阀门进行的流量和扬程的控制, 节能效果非常明显.同时分析变频器在选型、应用中的注意事项. 1变频调速原理 三相异步电动机转速公式为: n= 60f p(1−s) 式中:n-电动机转速,r/min; f-电源频率,Hz; p-电动机对数 s-转差率, 从上式可见交流电动机的调速可以概括为改变极对数,控制电源频率以与通过改变参数如定子电压、转子电压等使电机转差率发生变化等几种方式.变频器效率维持在94%~96%,变频调速是一种高效率、高效能的调速方式,使异步电动机在整个工作范围内保持正常的小转差率下运转,实现无极平滑调速. 1.1变频工作原理 异步电动机的额定频率称为基频,即电网的频率,在我国为50Hz.电机定子绕组内部感应电动势为 U1≈E1=4.44f1Nk1∅1 式中E1-定子绕组感应电动势,V; ∅1-气隙磁通,Wb; N-定子每相绕组匝数;

f 1-基波绕组系数. 在变频调速时,如果只降低定子频率f 1,而定子每相电压保持不变,则必然会造成∅1增大.由于电机制造时,为提高效率减少损耗,通常在U 1=U n ,f 1=f n 时,电动机主磁路接近饱和,增大∅1势必使主磁路过饱和,将导致励磁电流急剧增大,铁损增加,功率因素降低. 若在降低频率的同时降低电压使E 1f 1⁄保持不变则可保持∅1不变从而避免了主磁路过饱和现象的发生.这种方式称为恒磁通控制方式.此时电动机转矩为 T =m 1pf 12π(r 2s +sx 22r 2)(E 1f 1 )2 式中T -电动机转矩,N.m ; m 1—电源极对数; p —磁极对数; s —转差率; r 2—转子电阻; x 2—转子电抗; 由于转差率s 较小,(r 2s ⁄)2≫x 22则有 T ≈m 1pf 12πr 2s (E 1f 1)2 =kf 1s 其中k =m 1p 2πr 2(E 1f 1)2 由此可知:若频率f 1保持不变则T ∝s ;若转矩T 不变则s ∝1f 1⁄; 电动机临界转差率s m ≈r 2x 2=r 2 2πf 1L 2=C f 1其中C =r 22πL 2 电动机最大转矩T m =m 1pf 1 4π12πf 1L 2(E 1f 1)2=常数 最大转速降∆n m =s m n 1=C f 160f 1 p =60p =常数 由此可知:保持E 1f 1=⁄常数,最大转矩和最大转矩处的转速降落均等于常数,与频率无关.因此不同频率的各条机械特性曲线是平行的,硬度相同. 1.2风机、泵负载特性 以风机、泵类为代表的二次方减转矩负载即转矩与转速平方成正比.如图所

变频调速的计算

实用文档 一、变频调速与节流调节的计算 流量q v 与转速成正比,即q v2/q v1=n 2/n 1;扬程H 与转速的平方成正比,即H 1/H 2=(n 2/n 1)2;功率与转速的立方成正比功率。如(1)式所述。 31 231212)()(v v v q q n n p p q P === 存在的关系与流量泵与风机的功率 (1) 根据v q 、H 值可以计算泵与风机的功率,即:η ρ102H q P V = (2) 式中P ─功率,kW ;v q ─流量,m 3/s ;H ─扬程,m ;ρ─密度,kg/m 3;η─使用工况效率%; 泵与风机的变频节能计算 (1) 变频调速调节与节流调节 对风机、水泵常用阀门、挡板进行节流调节,增加了管路的阻尼,电机仍旧以额定速度运行,这时能量消耗较大,如果对风机、泵类设备进行调速控制,不需要再用阀门、挡板进行节流调节,将阀门、挡板开到最大,管路阻尼最小,能耗也大为减少。节能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即对风机、泵类、采用挡板调节流量对应电机输入功率P L 与流量q v 的关系: )(])( 55.045.0[2 kW p q q P e ve V L += (3) 式中 P L ─额定流量时电机输入功率,kW ;q ve ─额定流量,m 3/s ; 若流量的调节范围(0.5~1)q ve ,由上面的公式及下面的公式可得电机调速调节流量相比节流调节流量所要节约的节电率(Ki )为:

实用文档 ] )(55.045.0[)( 1/)( 23 3 ve v b ve v L b ve v e L L q q q q P q q P P p p Ki +- =-=∆= ηη (4) 式中Ki ─节电率;ηb ─调速机构效率。 从上式分析,节流调速时由于q v /q ve <1,平方后更小于1,乘以0.55再加上0.45仍小于1,却节流后电机的负载变小了,消耗的功率也比额定功率小。当挡板或阀门全关时,泵与风景空载运行,消耗的功率最少,等于0.45Pc 。由(1)式可知采用电机变速调节后,电机消耗的功率与实际流量和额定流量比值的三次方成正比,由于变频调速效率高,本身的损耗相比很小,在变频器内部,逆变器功率器件的开关损耗最大,其余是电子元器件的热损耗和风机损耗,变频器的效率一般为95%~98%。采用变频调速,泵与风机的效率几乎不变,其特性近似满足相似定律,即满足(1)式的关系。因此(4)式能较准确地计算泵与风机电机变频调速调节相比节流调节所要节约的节电率。 例5.1 某厂离心风机125kW ,实际用风量为0.7,年工作4800h ,准备投资15万元改造为变频器驱动,变频器的效率为96%,估算节电率和投资回收期。 解:由题意知q v /q ve =0.7,由式(4)得节电率为 5.0) 7.055.045.0(96.07.012 3 =⨯+⨯-=Ki 由式(3)得:P L =(0.45+0.55×0.72)×125=90(kW) 采用风门调节风量时风机所需要的轴功率为90kW 。变频器调速器调风量时相对调节风门调风量的节电率为0.50。

相关文档
最新文档