zemax设计显微镜课件
合集下载
《Zemax教程》课件

能和操作。
二次开发与定制功能
二次开发接口
Zemax提供二次开发接口,允许用户开发定制功能和插件,扩展 软件的功能范围。
定制界面和工具栏
用户可以根据自己的需求,定制界面的布局和工具栏,以及添加自 定义的工具和按钮。
集成第三方软件
通过二次开发接口,用户可以将Zemax与其他软件集成,实现数 据共享和协同工作。
《Zemax教程》 PPT课件
目录
CONTENTS
• Zemax软件简介 • Zemax基础操作教程 • Zemax光学设计实例教程 • Zemax光学仿真与性能评估 • Zemax高级功能教程 • Zemax常见问题与解决方案
01 Zemax软件简介
软件背景与发展历程
创立背景
为了解决光学设计中的复杂问题 ,Zemax软件于1997年诞生。
移动对象
使用鼠标拖动对象。
旋转对象
使用鼠标中键拖动对象。
缩放对象
使用滚轮或“+”和“-”按钮进行缩放。
文件类型与管理
.zmx
Zemax设计文件,包含光学系统的 所有信息。
.zdl
Zemax数据文件,包含光学系统的一 部分信息。
文件类型与管理
• .zpl:Zemax脚本文件,用于自动化任务。
文件类型与管理
发展历程
经过多年的研发和改进,Zemax 已经成为业界广泛认可的光学设 计软件。
软件特点与优势
01
02
03
高效性能
Zemax提供了强大的计算 引擎,能够快速进行光学 性能分析和优化。
用户友好
软件界面直观,易于学习 和操作,降低了使用门槛 。
全面功能
Zemax提供了从光学系统 设计到分析评估的完整解 决方案。
二次开发与定制功能
二次开发接口
Zemax提供二次开发接口,允许用户开发定制功能和插件,扩展 软件的功能范围。
定制界面和工具栏
用户可以根据自己的需求,定制界面的布局和工具栏,以及添加自 定义的工具和按钮。
集成第三方软件
通过二次开发接口,用户可以将Zemax与其他软件集成,实现数 据共享和协同工作。
《Zemax教程》 PPT课件
目录
CONTENTS
• Zemax软件简介 • Zemax基础操作教程 • Zemax光学设计实例教程 • Zemax光学仿真与性能评估 • Zemax高级功能教程 • Zemax常见问题与解决方案
01 Zemax软件简介
软件背景与发展历程
创立背景
为了解决光学设计中的复杂问题 ,Zemax软件于1997年诞生。
移动对象
使用鼠标拖动对象。
旋转对象
使用鼠标中键拖动对象。
缩放对象
使用滚轮或“+”和“-”按钮进行缩放。
文件类型与管理
.zmx
Zemax设计文件,包含光学系统的 所有信息。
.zdl
Zemax数据文件,包含光学系统的一 部分信息。
文件类型与管理
• .zpl:Zemax脚本文件,用于自动化任务。
文件类型与管理
发展历程
经过多年的研发和改进,Zemax 已经成为业界广泛认可的光学设 计软件。
软件特点与优势
01
02
03
高效性能
Zemax提供了强大的计算 引擎,能够快速进行光学 性能分析和优化。
用户友好
软件界面直观,易于学习 和操作,降低了使用门槛 。
全面功能
Zemax提供了从光学系统 设计到分析评估的完整解 决方案。
《zemax教程》PPT课件

息等。
精选课件ppt
18
ZEMAX Editors界面
有很多种: • Lens data editor: 基本的lens data,包括surface type, radius,
thickness, glass,etc. • Merit function editor:优化时,定义和编辑merit function; • Multi-Configuration editor:为变焦镜头和其它多重结构系统定义多重
精选课件ppt
7
ZEMAX简介(II)
•界面友好,容易上手;资料丰富,既可以直接选择,又可以自定义; •可建立反射、 折射、衍射及散射等光学模型; •可进行偏振、镀膜和温度、气压等方面的分析 • 具有强大的像质评价和分析功能; • 丰富的资料库,有现成的镜头和玻璃、样板数据,可供用户选择; • 大部分窗口都提供在线帮助,方便随时获取相关功能的在线解释和帮助;
精选课件ppt
27
Session file的概念
• Session file :在保存文件时,如果选择Session file,则它包括 lens file, 所有图形和文本窗口,editors,它们在屏幕上的大小和位 置,及每个窗口的设置。此时,除了一个ZMX文件以外,还有一 个SES文件。
精选课件ppt
• Purely sequential :
传统的镜头设计,和大多数成像系统;
• Hybrid sequential/ non-sequential(aka NSC with ports)
同时有sequential组件和non-sequential组件(如prism,pipe)的 系统;
用“ports”为光线进入和离开NS group的出入口;
精选课件ppt
18
ZEMAX Editors界面
有很多种: • Lens data editor: 基本的lens data,包括surface type, radius,
thickness, glass,etc. • Merit function editor:优化时,定义和编辑merit function; • Multi-Configuration editor:为变焦镜头和其它多重结构系统定义多重
精选课件ppt
7
ZEMAX简介(II)
•界面友好,容易上手;资料丰富,既可以直接选择,又可以自定义; •可建立反射、 折射、衍射及散射等光学模型; •可进行偏振、镀膜和温度、气压等方面的分析 • 具有强大的像质评价和分析功能; • 丰富的资料库,有现成的镜头和玻璃、样板数据,可供用户选择; • 大部分窗口都提供在线帮助,方便随时获取相关功能的在线解释和帮助;
精选课件ppt
27
Session file的概念
• Session file :在保存文件时,如果选择Session file,则它包括 lens file, 所有图形和文本窗口,editors,它们在屏幕上的大小和位 置,及每个窗口的设置。此时,除了一个ZMX文件以外,还有一 个SES文件。
精选课件ppt
• Purely sequential :
传统的镜头设计,和大多数成像系统;
• Hybrid sequential/ non-sequential(aka NSC with ports)
同时有sequential组件和non-sequential组件(如prism,pipe)的 系统;
用“ports”为光线进入和离开NS group的出入口;
《zemax软件培训》课件

高级优化算法
Zemax提供了多种高级优化算法,如非线性优化、遗传算 法、模拟退火等。这些算法在处理复杂的光学系统优化问 题时具有更高的效率和可靠性。
性能评估与验证
在进行优化设计时,需要建立合理的性能评估指标,并对 优化结果进行实验验证,以确保设计方案的可行性和有效 性。
多光线追迹
01 02
多光线追迹概述
03
CHAPTER
Zemax软件高级应用
像差理论
像差理论概述
像差是光学系统设计和分析中的 重要概念,它描述了光线通过光 学系统后产生的各种畸变。了解 像差理论对于优化光学系统性能
至关重要。
常见像差类型
包括球差、彗差、场曲、畸变等 ,这些像差类型对成像质量的影 响各不相同,了解其产生原因和
特性是进行像差校正的基础。
像差校正方法
Zemax提供了多种像差校正方法 ,如优化算法、离散对数优化等 ,可以根据实际需求选择合适的 校正方法,以达到更好的成像效
果。
高级优化技术
多目标优化
在光学系统设计中,往往需要同时考虑多个性能指标,如 成像质量、系统尺寸、成本等。多目标优化技术可以帮助 我们在多个目标之间找到最佳的平衡点。
在Zemax中,可以通过设置多个子光线来执行多光线追迹。合理的子光
线数量和分布方式可以提高计算精度和效率。
光线追迹分析
光线追迹分析概述
光线追迹分析是评估光学系统性能的重要手段,通过模拟光线在系统中的传播过程,可以 深入了解系统的成像规律和性能特点。
光线追迹参数设置
在进行光线追迹分析时,需要合理设置参数,如光线数量、采样点数、折射率等。这些参 数的选择直接影响分析结果的准确性和可靠性。
调整光路
对光路进行调整和优化,提高光学系统的性 能和成像质量。
Zemax提供了多种高级优化算法,如非线性优化、遗传算 法、模拟退火等。这些算法在处理复杂的光学系统优化问 题时具有更高的效率和可靠性。
性能评估与验证
在进行优化设计时,需要建立合理的性能评估指标,并对 优化结果进行实验验证,以确保设计方案的可行性和有效 性。
多光线追迹
01 02
多光线追迹概述
03
CHAPTER
Zemax软件高级应用
像差理论
像差理论概述
像差是光学系统设计和分析中的 重要概念,它描述了光线通过光 学系统后产生的各种畸变。了解 像差理论对于优化光学系统性能
至关重要。
常见像差类型
包括球差、彗差、场曲、畸变等 ,这些像差类型对成像质量的影 响各不相同,了解其产生原因和
特性是进行像差校正的基础。
像差校正方法
Zemax提供了多种像差校正方法 ,如优化算法、离散对数优化等 ,可以根据实际需求选择合适的 校正方法,以达到更好的成像效
果。
高级优化技术
多目标优化
在光学系统设计中,往往需要同时考虑多个性能指标,如 成像质量、系统尺寸、成本等。多目标优化技术可以帮助 我们在多个目标之间找到最佳的平衡点。
在Zemax中,可以通过设置多个子光线来执行多光线追迹。合理的子光
线数量和分布方式可以提高计算精度和效率。
光线追迹分析
光线追迹分析概述
光线追迹分析是评估光学系统性能的重要手段,通过模拟光线在系统中的传播过程,可以 深入了解系统的成像规律和性能特点。
光线追迹参数设置
在进行光线追迹分析时,需要合理设置参数,如光线数量、采样点数、折射率等。这些参 数的选择直接影响分析结果的准确性和可靠性。
调整光路
对光路进行调整和优化,提高光学系统的性 能和成像质量。
25×显微物镜设计ppt课件

为避免焦距变化过大,将其确定为初始值, 即设定有效焦距EFFL为6.93(选择第2波长)
27
像差曲线分析
• 球差,位置色差, 二级光谱:
• Analysis miscellaneou s
longitudinal aberration
• 横坐标是球差 • 纵坐标是孔径
28
轴外细光束像差曲线
• 象散,场曲: Analysis
miscellaneous field
curv/distortion (Fcd) • 不同颜色表示不同色 光,T和S分别表示子 午和弧矢量,同色的 T和S间的距离表示像 散的大小,纵坐标为 视场,横坐标是场曲
29
• 畸变: Analysis
miscellaneou s field curv/distorti on • 纵坐标为视场 • 横坐标是畸变 的百分比值。
35
• 波像差
• Analysis Wavefront Wavefront map
• 如果光学系统的波像 差小于瑞利准则1/4 波长,则光学系统满 足像质要求,而瑞利 准则没有考虑缺陷的 面积,仅适用于小像 差系统
• PEAK TO VALLEY
36
Zemax中常用的优化操作数
• EFFL 透镜单元的有效焦距 • TOTR 透镜单元的总长 • SPHA 在规定面出的波球差分布 • COMA 透过面彗差 • ASTI 透过面像散 • FCUR透过面场曲 • DIST透过面波畸变 • 注意:限制越少越好
• 3. 光学系统某个视场的MTFT,MTFS不好, 则在系统中针对这个视场设定渐晕。
• 4.增大视场或者增大口径时,要一点一点地 增大。
24
• 5.减掉某个透镜时,要一点一点地减小透镜 的厚度
《Zemax光学设计软》课件

性。
02 Zemax软件基本操作
界面介绍
菜单栏
包含所有可用的命 令和选项。
工具栏
提供常用命令的快 捷方式。
标题栏
显示软件名称和当 前打开的文件名。
工作区
用于显示和编辑光 学设计的相关数据 和图形。
状态栏
显示当前操作的状 态和提示信息。
文件操作
新建文件
创建一个新的光学设计项目。
打开文件
打开一个已存在的光学设计项目。
高效的照明模拟
Zemax可以模拟各种光源和照明条件下的光学系统性能,帮助设 计师优化照明设计。
软件应用领域
光学仪器设计
01
Zemax广泛应用于望远镜、显微镜、照相机等光学仪器的设计
和优化。
摄像头和投影仪设计
02
Zemax可以帮助设计师优化摄像头和投影仪的性能,提高成像
质量。
照明设计和分析
03
Zemax可以用于照明系统的设计和分析,提高照明效率和均匀
光学性能分析
分辨率分析
分析光学系统的分辨率,评估系统对 细节的分辨能力。
光束孔径分析
研究光束孔径大小对成像质量的影响 ,优化光束孔径配置。
波前分析
波前畸变
研究光波经过光学系统后的波前畸变情况,分析其对成像质 量的影响。
波前重建
利用Zemax软件对波前进行重建,了解光波的传播特性和变 化规律。
05
保存文件
将当前光学设计项目保存到磁盘上。
另存为
将当前光学设计项目以不同的文件名或格式保存。
工具栏介绍
01
视图工具栏
用于控制工作区的视图,包括放大 、缩小、旋转等操作。
绘图工具栏
提供绘制各种光学元件和光路的功 能。
zemax实验(课堂PPT)

第三章 ZEMAX设计实例
例8 折叠反射镜面和坐标断点
加入单个反射镜面使会聚光束方向向上。反射镜面的初始位置的方向为45度。假设我 们需要反射镜面离开近轴透镜30mm的距离,就要求有3个新的镜面:一个坐标断点使坐 标系统转45度,一个反射镜面,还有另外一个使反射光旋转45度。关键的一点是:这三 个面都要求使用一个单反射镜面来实现。要加入三个表面,在像面行上任何一处单击, 使光标重新定位,按Insert键3次,将第1面(STO面)的厚度改为30,在第3面的玻璃列 输入MIRROR,再将第4面(IMA前一面)的厚度改为-70。注意70是负的,因为经过奇 数面的镜面后厚度符号改变。
第三章 ZEMAX设计实例
例9 扫面镜(Scanning Mirror)
现在,为了使镜面成为一个扫描镜,需要倾斜它。因为扫描角度为10°。所以 在45°标称位置倾斜±5°。 为了使镜面成为扫描镜,使用倾斜/偏心元件工具。 选择tools/coordinates/tilt/decenter…….
第三章 ZEMAX设计实例
例8 折叠反射镜面和坐标断点
将要学到的:更好地理解坐标断点,为倾斜和偏心系统设立的符号约定,反 射镜面的应用。
先前的课程中讲述了如何设计一个牛顿望远镜,那一课中介绍了反射镜面和 坐标断点概念,该课的重点为:
1)厚度在经过一个镜面后总是会改变符号。经过奇数面的镜面后,总厚度 应该是负的。此符号的约定与镜面的数量或坐标断点的存在无关。
要实现另一个反射镜面,单击像面使光标落在那儿, 按Insert 键3次。将第四面的厚度从-70改为-30,第6 面的玻璃改为MIRROR,第7面的厚度改为+40(再次注 意经过镜面后符号的改变),再将第5和7面的表面类 型改为坐标断点,在第5面对X轴倾斜中输入—45度。 在第7面的对X轴的倾斜
Zemax软件设计教程(共85张PPT)

VDX,VDY,VCX, VCY,VAN是用来 设置渐晕因子的
Wav
ZEMAX最多允许定义12个波长,必须指定参考波长,可以根据不同波长的重要
性,设定不同的权重。
波长的单位为微米。
Select-〉功能可以选择多种默认的波长
Lens Data Editor
一定存在的3个表面:OBJ、STO和IMA
对于后者,除了图形窗口,如果你要查看文本窗口的内容,点击菜单栏中的 “Text”
Dialog boxes
用来编辑其他窗口或系统的数据,比如General,Field Data, Wavelength Data,Glass Catalog,Lens Catalogs……
序列模式
这种模式下的光学设计和仿真可按照下列步骤进行:
在这里定义和编辑优化函数
• Multi-Configuration Editor
给变焦距透镜和其它的多结构系统定义参数变化表
• Tolerance Data Editor
定义和编辑公差
• Extra Data Editor
一个扩展的透镜数据编辑器,为那些需要很多参数才能定义的表面准备的,比如表面类型 Binary 2
中的θ是实际边缘光线与光轴的夹角
Fie
ZEMAX支持4种不同视场形式: Field angle: XZ和YZ平面上主光线与Z轴的夹角。常用于无限共轭系统。 Object height: 物面上X,Y高度。常用于有限共轭系统。 Paraxial Image height: 像面上的近轴像高。用于需要固定像的大小的设计中(只用于近轴 光学系统中) Real image height: 像面上实际像高。用于需要固定像幅的设计中(如camera lenses)。
Wav
ZEMAX最多允许定义12个波长,必须指定参考波长,可以根据不同波长的重要
性,设定不同的权重。
波长的单位为微米。
Select-〉功能可以选择多种默认的波长
Lens Data Editor
一定存在的3个表面:OBJ、STO和IMA
对于后者,除了图形窗口,如果你要查看文本窗口的内容,点击菜单栏中的 “Text”
Dialog boxes
用来编辑其他窗口或系统的数据,比如General,Field Data, Wavelength Data,Glass Catalog,Lens Catalogs……
序列模式
这种模式下的光学设计和仿真可按照下列步骤进行:
在这里定义和编辑优化函数
• Multi-Configuration Editor
给变焦距透镜和其它的多结构系统定义参数变化表
• Tolerance Data Editor
定义和编辑公差
• Extra Data Editor
一个扩展的透镜数据编辑器,为那些需要很多参数才能定义的表面准备的,比如表面类型 Binary 2
中的θ是实际边缘光线与光轴的夹角
Fie
ZEMAX支持4种不同视场形式: Field angle: XZ和YZ平面上主光线与Z轴的夹角。常用于无限共轭系统。 Object height: 物面上X,Y高度。常用于有限共轭系统。 Paraxial Image height: 像面上的近轴像高。用于需要固定像的大小的设计中(只用于近轴 光学系统中) Real image height: 像面上实际像高。用于需要固定像幅的设计中(如camera lenses)。
《zemax培训教程》课件

总结词:安装问题
详细描述:在进行zemax安装过程中,可能会遇到各种问题,如无法下载、安装中断、无法运行等。
解决方案:首先检查硬件和系统要求是否符合zemax标准,其次确保在官网或指定渠道下载zemax安装包,避免因下载不完整或受污染的文件导致安装问题。另外,根据具体问题,可以参考zemax官方文档或寻求专业人士帮助。
zemax的发展历程
成长阶段
zemax在2000年发布了其首款产品zemax optical design,此后便开始不断推出新的产品和服务,扩大市场份额。
成熟阶段
zemax在2010年成为纳斯达克上市公司,拥有超过500名员工,服务全球超过30个国家和地区。
zemax software
01
zemax software是zemax的主打产品,是一款专业的高速的光学设计软件,可以用于各种光学系统设计,包括相机、望远镜、投影仪等。
总结词
详细描述
解决方案
zemax基础操作过程中遇到的问题及解决方案
高级操作问题
zemax高级操作过程中遇到的问题及解决方案
zemax高级操作涉及优化算法、公差分析、像差校正等复杂的光学设计技巧。在操作过程中可能会遇到算法错误、公差分析不准确、像差校正失败等问题。
首先熟悉zemax高级操作菜单和功能,理解算法原理和应用范围。其次,针对公差分析和像差校正问题,需要掌握zemax自带的公差分析和像差校正工具使用方法,同时结合实际设计需求进行操作。如果遇到困难,可以参考zemax官方文档或寻求专业人士帮助。
VR/AR 头盔设计
通过一个 VR/AR 头盔设计的实际项目案例,让学员掌握 Zemax 在 VR/AR 头盔设计方面的应用,包括对头部跟踪系统的设计、视场角的优化等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 因此表明:物镜的数值孔径愈大,入射光 的波长愈短,则物镜的分辨能力愈高。在 可见光中,观察时常用黄绿光(λ ≈440nm),则可使分辨能力提高25%左右。
3.3物镜的有效放大倍数
• 在保证物镜的鉴别率充分利用时所对应的 物镜的放大倍数,称为物镜的有效放大倍 数。有效放大倍数可由以下关系推出:人 眼在明视距离(250mm)处的分辨能力为 0.15~0.30,因此,需将物镜鉴别的距离d 经显微镜放大后成0.15~0.30mm方能被人 眼分辨。若以M表示物镜的放大倍数,则 • d.m=0.15~0.30 • 。
显微物镜的MTF图
4.6 最终仿真参数分析 原始物高设定如下:
最终仿真参数如下:
• 由图可看出: • (1)物方数值孔径NA=0.37333,与要求的 0.4很接近; • (2)初始设定的物高为12.5,仿真所得像高为 0.497,则放大倍数m=1.25/0.497=25.1,与 要求的放大倍数25倍十分接近。 • 最终的仿真参数基本符合设计的要求。
• M=0.15~0.30/d=(0.15~0.30)(N.A.)/0.5λ=0. 3~0.6N.A./λ • 此时的放大倍数即为物镜的有效放大倍数, 通常以M有效表示。因此 • M有效=0.3~0.6N.A./λ • 由此可知:物镜的有效放大倍数由物镜的 数值孔径及入射光波长决定
3.4垂直鉴别率
• 本次课设主要是应用ZEMAX光学设计软件,设计 出25×显微镜物镜光学系统。经过计算机优化— 系统分析—微调参数—改变参数变量—再次进行 优化反复过程之后,设计出了能够很好的消除系 统像差的物镜和整个光学系统,使得成像光斑达 到了衍射极限。分析和评价模拟结果的点列图、 波像均方差、波前均方差、光学传递函数等参数, 设计出符合设计要求的显微物镜。 • 关键词:显微物镜;ZEMAX;优化;光学系统
25×显微镜物镜设计
• 技术要求: • (1)学习zemax软件。 • (2)设计一个25×显微镜物镜,要求所设 计的系统成像清晰,显微物镜放大倍率为 25×,物方数值孔径NA=0.4,物高为1mm 左右。 • (3)对所设计的显微镜光学系统进行 zemax软件仿真工作。
• 物镜是显微镜最重要的光学部件,利用光线使 被检物体第一次成象,因而直接关系和影响成 象的质量和各项光学技术参数,是衡量一台显 微镜质量的首要标准。
• 物体通过光学仪器成象时,每一物点对应 有一象点,但由于光的衍射,物点的象不 再是一个几何点,而是有一定大小的衍射 亮斑。靠近的两个物点所成的象一两个亮 斑如果互相重叠,则导致这两个物点分辨 不清,从而限制了光学系统的分辨本领一 分辨率。显然,象面上衍射图象中央亮斑 半径愈大,系统的分辨本领愈小。
物镜的光线特性曲线图
4.4 物镜的波像均方差(OPD)分析
• 在接近衍射极限的光学系统中,波像均方 差是像质的敏感函数,要求显微物镜聚焦 精确、像质好、必须对球差、慧差和像散 进行校正,从而使得波像均方差在一定的 允许范围内,一般要求物镜的波像均方差 在0.05以下。图4-4所示为显微物镜的波像 均方差数值图。 •
• 里斯特物镜两个双胶合透镜光焦度分配的 原则通常是使每个双胶合透镜产生的偏角 相等或者是后组的偏角略大于前组。里斯 特物镜的光阑通常放在第一个双胶合透镜 上。
• 当两个双胶合透镜相互补消球差和慧差时, 两个双胶合透镜的间隔大致和物镜的总焦 距相等。第一个双胶合的焦距约为物镜焦 距的二倍。第二个双胶合的焦距大致和物 镜的总焦距相等。
• 图形以光瞳坐标的函数形式表示了横向的 光线像差(指的是以主光线为基准)。左 边的图形中以“EY”代替εY。这是Y方向的 像差,有时也叫做子午的,或YZ面的。右 图以“EX”代替εX,有时也叫做弧矢的,或 XZ面的。从此光学特性曲线可以看出,光 线特性曲线在Y方向视场角度为0度时通过 原点的倾斜不大,表示离焦现象不明显, 基本符合设计要求。
• 经过自动优化后的显微物镜的结构、传函 以及像差如图4-2所示。此时,像方数值孔 径NA=0.37333,传递函数接近于衍射极限, 成像质量较好,基本上达到设计的要求。
自动优化后各参数仿真图
4.3 物镜的光线像差(Ray Aberration) 分析
• 通过光线特性曲线来分析光线像差,以显 示关于入瞳坐标函数的光线像差。本次设 计的物镜系统的光线特性曲线如图4-3所示。
2物镜设计方案
• 25×显微镜物镜属于中倍显微物镜,通常 由两个分离的双胶组合透镜组成,这类物 镜也称为里斯特物镜,它的倍率一般在6× 至30×之间,数值孔径NA为0.2至0.6之间。 • 由于显微物镜倍率较高,像距远大于物距, 显微物镜的设计通常采用逆光路方式,即 把像方的量当做物方的量来处理。
显微物镜的OPD图
4.5 物镜的光学传递函数(MTF)分析
• 光学系统是线性系统,而且在一定条件下还是线 性空间不变系统,因而可以用线性系统ห้องสมุดไป่ตู้论来研 究它的性能,把输入信息分解成各种空间频率分 量,研究系统的空间频率传递特性即光学传递函 数,它能全面反映光学系统的成像性质。 FFTMTF是用快速傅立叶变化 • 算法计算的MTF,是一种物理传递函数,即考虑 光学系统的衍射效应,一般的成像光学系统都可 用它来评价。此时的传递函数接近于衍射极限, 成像质量好。图4-5为显微物镜的光学传递函数图。
• 式中n和n′为物、象所在空间的折射率,成 象总是在空气介质中,故n′=1;u和u′分别 为光线在物、象空间共轭点上的孔径角;d 和d′分别为物点、象点中心斑的间距。
• 考虑到显微镜中入射光并非都是平行光, 有倾斜光线,对上式系数作适当的修正, 所以式中nsinu就是物镜的数值孔径,因此, 上式或者写:d=0.5λ/N.A
4.2自动优化
• 首先,建立自动优化函数。具体过程如下:选择 Editors>> Merit Function,弹出 Merit Function Editor 对话框,在Type栏中输入EFFL,并将 Target定为6.930840, Weight值取1.0; 其次, 选择Merit Function Editor对话框工具栏中的 Tools>>Default Merit Function, 设置Optimization and Reference为RMS~Wavefront~Centroid; • 最后,选择"opt"按钮进行自动优化。 自动优化后, 显微镜物镜结构的数据如下:
5心得体会
• 。
• 物镜的结构复杂,制作精密,由于对象差的校 正,金属的物镜筒内由相隔一定距离并被固 定的透镜组组合而成.物镜有许多具体的要 求,如合轴,齐焦. •
• 现代显微物镜已达到高度完善,其数值孔径 已接近极限,视场中心的分辨率与理论值之 区别已微乎其微.但继续增大显微物镜视场 与提高视场边缘成象质量的可能性仍然存 在,这种研究工作,至今仍在进行
• (b)增加物镜与观察之间的折射率n。是 介质对物镜数值孔径影响示意图。当光线 沿光轴方向射向观察物时,自物体S处发出 的反射光除沿SO方向反射外,尚有 (S1 S1′)(S2,S2′)等衍射光。
• (a)是以空气为介质(又称干系物镜)的 情况,只有(S1 S1′)内的衍射光可以通过 物镜,(S1 S1′)以外的衍射光如(S2, S2′)均不能通过物镜。
• (b)是物镜与观察之间以松柏油或其它油 为介质(又称油浸物镜)时,由于折射率n 增加,使衍射光的角度变狭,致使(S2, S2′)甚至(S3,S′3)内的衍射光均可通 过物镜。因而使物镜通过尽可能多的衍射 光束,利于鉴别组织细节。
3.2物镜的鉴别率
• 物镜的鉴别率是指物镜具有将两个物点清 晰分辨的最大能力,以两个物点能清晰分 辨的最小距离d的倒数表示。d愈小,表示 物镜的鉴别率愈高。 • 要明白鉴别率可以有一定的限度,这就要 用光通过透镜后产生衍射现象来解释。
• 由上式可知:如果要求较大的垂直鉴别率, 最好选用数值孔径小的物镜,或减少孔径 光阑以缩小物镜的工作孔径,这样就不可 避免降低了显微镜的分辨能力。这两个矛 盾因素,只能被具体情况决定取舍
3.5实际参数确定
• 按照设计要求:物镜放大倍数为25,数值孔径 NA=0.4,通过以上几个参数的计算,计算出理论 上的数值并确定符合数值要求的镜片。初步确定 第一个双胶合透镜的初始结构由ZF3与K9组合, 第二个双胶合透镜的初始结构由ZF3与ZK9组合。 求出双胶合透镜的初始结构之后,就可以进行光 线追迹、像差计算和平衡了,如果得到不满意的 结果,可重新选择玻璃对,再重复上面的计算, 达到设计要求,也可以采用自动设计程序作进一 步校正,其结果可能会更好。
• 垂直鉴别率又称景深,定义为在固定像点的情况 下,成象面沿轴向移动仍能保持图象清晰的范围。 表征物镜对应位于不同平面上目的物细节能否清 晰成象的一个性质,垂直鉴别率的大小由满意成 象的平面的两个极限位置(位于聚焦平面之前和 之后)间的距离来量度。 • 如果人眼分辨能力为0.15~0.30mm,n为目的物 所在介质的折射率,(N.A.)为物镜的数值孔径, M为显微镜的放大倍数,则垂直鉴别率h可由下式 求出: • h=n / (N.A.).M ×(0.15~0.30)mm
• 物镜的像差校正方式采取两个双胶合透镜 各自单独校正球差、慧差和色差,这种方 案的优点是:二个双胶合透镜组合在一起 则为一个中倍物镜,移去一个双胶合透镜 后可用作低倍显微物镜使用。
25×显微镜物镜设计方案图
3物镜设计参数及镜片选择 3.1物镜的数值孔径
• 物镜的数值孔径表征物镜的聚光能力,是 物镜的重要性质之一,增强物镜的聚光能 力可提高物镜的鉴别率。
• 瑞利(Rayleigh)提出一个推测(又称瑞利 准则):认为当A1′衍射花样的第一极小值 正好落在A2′衍射花样的极大值时,A1、A2 是可以分辨的,将此时定出的两物点距离 A1、A2作为光学统的分辨极限。θ0称为极 限分辨角。不言而喻,当θ>θ0时是完全可 分辨的,θ<θ0时是不可分辨的。