国内外传感器现状及发展趋势

合集下载

2024年传感器的目前现状与发展趋势

2024年传感器的目前现状与发展趋势

传感器作为工业自动化和智能化的核心部件,发挥着不可磨灭的影响力。

2023年,传感器的发展将是高效、安全和灵活性的重点。

发展传感
器将帮助实现精细化管理,为智能化、抗灾和安全生产提供支持。

一、传感器的发展状态及趋势
1、综合型传感器。

随着传感器的越来越完善,多种多样的传感器功
能将在同一产品内实现,这样的产品被称为综合型传感器。

这种类型的传
感器不仅可以监测更多的参数,而且可以减少安装空间,减少安装时间,
提高工作效率。

2、智能化传感器。

随着计算机、网络和模块化技术的发展,智能化
传感器也受到了越来越多的关注。

智能化传感器具有自动采集、学习识别、预警监控、安全控制等功能,可以支持更精细化的管理、更安全的抗灾能
力和更高效的工作效率,将极大改善工业自动化的运营管理。

3、新型传感器。

随着传感器技术的发展,新型传感器也不断涌现,
最常见的有光谱传感器、激光扫描传感器、机器视觉传感器等等,其特点
是有较高的精度和性能,并且可以提供更丰富、更准确的信息,有助于更
高精细的检测和控制。

简述国内外传感器主要的发展趋势

简述国内外传感器主要的发展趋势

简述国内外传感器主要的发展趋势下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!国内外传感器主要的发展趋势引言随着科技的飞速发展,传感器作为信息获取的重要手段,在各行各业中扮演着愈发重要的角色。

国内外传感器现状及发展趋势

国内外传感器现状及发展趋势

国内外传感器现状及发展趋势
一、传感器现状
传感器是当今技术发展过程中必不可少的部分,它是检测和控制环境的器件,能够检测到物体、生物体及其他环境参数,并将检测到的信息转化为电信号处理,控制环境参数,使得系统能够自动化操作并取得正确的结果。

近年来,由于电子技术的发展,传感技术也取得长足的进步,它不仅可以应用于消费电子、汽车、工厂自动化等领域,而且可以应用于仪器仪表、通信等军事领域,并且在生物医学、环境科学、空间探测等领域得到了广泛的应用。

目前,国内外传感器技术的发展已经达到了非常可观的水平,技术的改进使其性能有了质的提高,传感器的灵敏度更高,噪声更低,广泛的可调,价格也较低,较常规传感器可以检测更小单位的变化,这都为后续的技术应用奠定了坚实的基础。

二、传感器发展趋势
随着科学技术的发展,传感器技术也在迅速发展,未来几年传感器技术将出现以下发展趋势:
(1)开发更多高灵敏度、超小体积的传感器。

目前,国际上有不少国家正在加大投入,开发更多高灵敏度、超小体积的传感器,满足智能化和自动化技术要求。

(2)开发更多低功耗传感器。

国内外传感器技术现状与未来发展趋势

国内外传感器技术现状与未来发展趋势

《传感器原理与应用》结课论文国外传感器现状及发展趋势学院:计算机与信息工程学院专业:通信工程班级:13级通信工程学号::指导教师:袁博学年学期:2016-2017学年第一学期摘要:传感器技术是现代技术的应用具有巨大的发展潜力,通过传感器技术的应用现状,在未来发展中存在的问题和面临的挑战,传感器技术现状与发展趋势。

关键字:传感器,现状,发展趋势。

正文:一、传感器的定义和组成根据国家标准(GB7665—87),传感器(transduer/sensor)的定义是:能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。

这一定义包含了以下几方面的含意:①传感器是测量装置,能完成检测任务:②它的输出旦是某一被测量,可能是物理量.也可能是化学量、生物量等;②它的输出量是某种物理量,这种量要便于传输、转换、处理、显示等,这种量可以是气、光、电物理量,但主要是电物理量;④输出输入有对应关系,且应有一定的精确程度。

关于传感器,我国曾出现过多种名称,如发送器、传送器、变送器等,它们的涵相同或相似。

所以近来己逐渐趋向统一,大都使用传感器这一名称了。

但是,在我国还经常有把‘传感器”和“敏感元件”等同使用的情况。

当从仪器仪表学科的角度强调是一种感受信号的装置时,称其为。

传感器”:而从电子学的角度强调它是一种能感受信号的电子元件时,称其为“敏感元件”。

两种不同的提法在大多数情况下并不矛盾。

例如热敏电阻,既可以称其为“温度传感器”,也可以称之为“热敏元件”。

但在有些情况下则只能概括地用“传感器”一词来称谓。

例如,利用压敏元件作为敏感元件,并具有质量块、弹按和阻尼等结构的加速度传感器,很难用“敏感元件%类的词称谓,而只“传感器”则更为贴切。

传感器一般由敏感元件、转换元件和转换电路三部分组成。

(1)敏感元件:它是直接感受被测量,并输出与被测量成确定关系的某一种量的元件。

是一种气体压力传感器的示意图。

膜盒2的下半部与壳体l固接,上半部通过连扦与磁芯4相连,磁芯4置于两个电感线圈3中,后者接人转换电路5。

位置传感器国内外发展现状及未来趋势分析

位置传感器国内外发展现状及未来趋势分析

位置传感器国内外发展现状及未来趋势分析引言位置传感器是一种用于测量和检测目标物体在空间中的位置或者姿态变化的设备。

它在汽车、航空航天、工业机器人、智能手机、虚拟现实等领域发挥着重要作用。

本文将分析位置传感器在国内外的发展现状,并展望其未来的趋势。

一、国内外位置传感器市场现状1. 国内市场现状位置传感器在中国市场呈现出快速发展的趋势。

近年来,随着汽车工业的快速增长,汽车行业成为位置传感器市场最主要的消费者之一。

尤其是自动驾驶技术的兴起,位置传感器在汽车中的应用愈发重要。

此外,工业机器人和智能手机等领域对位置传感器的需求也在不断增加。

2. 国外市场现状相比之下,国外市场对于位置传感器的需求早已发展成熟。

欧美市场对于汽车行业的需求持续稳定增长,尤其是在高端汽车中的应用更加广泛。

同时,航空航天领域对于位置传感器的需求也十分旺盛。

在工业机器人和智能手机领域,国际厂商对于位置传感器技术的应用更加成熟和广泛。

二、国内外位置传感器技术现状1. 国内技术现状虽然中国的位置传感器市场仍然相对较小,但在技术方面,中国的一些企业已经取得了重要的进展。

例如,某些中国企业在MEMS(微机电系统)技术方面取得重大突破,推动了位置传感器的技术创新。

此外,一些传感器厂商还在不断提升位置传感器的抗干扰能力和测量精度。

2. 国外技术现状国外在位置传感器技术方面具有较长时间的积累和成熟经验。

从传感器材料到生产工艺,国外企业在多个方面取得了突破。

例如,他们不断改进基于磁阻、电容、压力和光学等原理的位置传感器技术,大大提高了测量精度和稳定性。

三、国内外位置传感器未来的趋势1. 技术趋势位置传感器的未来发展将继续朝着更高精度、更小尺寸、更低功耗的方向发展。

在技术上,趋势包括微纳制造技术的应用、传感器与互联网的深度结合以及多传感器融合技术的发展等。

此外,随着人工智能技术的发展,位置传感器也将与人工智能相结合,推动位置感知能力的提升。

2. 市场趋势位置传感器市场将持续增长,并且增长速度将加快。

传感器技术发展现状与趋势文献

传感器技术发展现状与趋势文献

传感器技术发展现状与趋势文献传感器技术是现代工业、农业、医疗、环保等领域中不可或缺的一项技术。

随着科技的不断进步和应用领域的不断扩展,传感器技术也在不断发展和创新。

本文将从传感器技术的发展现状和趋势两个方面展开,探讨传感器技术的未来发展方向。

一、传感器技术的发展现状传感器技术的发展可以追溯到20世纪初,当时主要应用于工业自动化控制领域。

随着科技的不断进步和应用领域的不断扩展,传感器技术也得到了广泛应用。

目前,传感器技术已经涉及到了工业、农业、医疗、环保、交通等多个领域。

在工业领域,传感器技术已经成为工业自动化控制的重要组成部分。

传感器可以实时监测生产过程中的温度、压力、流量等参数,从而实现对生产过程的精确控制和优化。

在农业领域,传感器技术可以实现对土壤湿度、温度、光照等参数的监测,从而实现对农作物的精准管理和优化。

在医疗领域,传感器技术可以实现对患者的生命体征、病情等参数的监测,从而实现对患者的精准治疗和护理。

在环保领域,传感器技术可以实现对环境污染物的监测和控制,从而实现对环境的保护和治理。

在交通领域,传感器技术可以实现对车辆、行人等的监测和控制,从而实现对交通流量的优化和管理。

二、传感器技术的发展趋势随着科技的不断进步和应用领域的不断扩展,传感器技术也在不断发展和创新。

未来,传感器技术的发展趋势主要包括以下几个方面:1. 多功能化未来的传感器将不仅仅是单一的测量仪器,而是具备多种功能的智能传感器。

例如,可以实现对多种参数的监测和控制,同时还可以实现数据处理、通信等功能。

2. 微型化未来的传感器将越来越小,甚至可以实现微型化。

微型化的传感器可以更加方便地嵌入到各种设备和系统中,实现对设备和系统的实时监测和控制。

3. 无线化未来的传感器将越来越倾向于无线化。

无线传感器可以实现对设备和系统的远程监测和控制,从而提高工作效率和安全性。

4. 智能化未来的传感器将越来越智能化。

智能传感器可以通过学习和适应,实现对环境和设备的自主控制和优化。

传感器发展现状与发展趋势

传感器发展现状与发展趋势

传感器发展现状与发展趋势引言传感器是现代科技的重要组成部分,其在各个领域中扮演着至关重要的角色。

传感器的发展不仅推动了科学技术的进步,也改变了人们的生活方式。

本文将对传感器的发展现状与发展趋势进行探讨。

传感器的发展现状传感器的定义和分类传感器是一种能够感知和获得外界信息并转化为可用信号的装置。

传感器按照不同的工作原理和应用领域可以被分为多种类型,如光学传感器、温度传感器、压力传感器、湿度传感器等。

传感器的应用领域传感器广泛应用于各个领域,如工业自动化、医疗健康、交通运输、环境监测等。

在工业自动化中,传感器可以实时监测生产过程中的温度、压力、湿度等参数,以保证生产质量和安全。

在医疗健康领域,传感器被用于监测病人的血压、心率等生命体征,以提供及时的医疗救助。

在交通运输领域,传感器被用于智能交通系统中,实时监测道路交通情况,以优化交通流量和减少交通事故。

传感器的发展挑战尽管传感器在各个领域中有着广泛的应用,但其发展仍面临着一些挑战。

首先,传感器的精度和灵敏度需要不断提高,以满足人们对于更精准数据的需求。

其次,传感器在极端环境下的可靠性和稳定性需要得到提升,以适应各种恶劣条件下的工作需求。

此外,传感器的能耗和体积也需要进一步减小,以适应小型化和无线化的趋势。

传感器的发展趋势物联网与传感器的融合随着物联网的快速发展,传感器与物联网的融合将成为未来的趋势。

通过将传感器与云计算、大数据等技术相结合,可以实现传感器数据的高效传输、存储和分析,进一步推动社会的数字化和智能化发展。

人工智能与传感器的结合人工智能技术的快速发展为传感器的应用带来了新的机遇。

传感器可以用于采集大量的数据,而人工智能算法可以对这些数据进行分析和学习,从而做出更加智能的决策和预测。

通过将传感器与人工智能相结合,可以实现更加智能化的应用,如无人驾驶汽车、智能家居等。

新材料与传感器的结合新材料的发展也将对传感器产生深远的影响。

新材料的特殊性能可以被用于制造更加高效和灵敏的传感器。

新型传感器的研究现状及未来发展趋势

新型传感器的研究现状及未来发展趋势

新型传感器的研究现状及未来发展趋势传感器是一种现代化技术所必需的元件,它能够将各种物理量转化为电信号。

传感器的应用范围广泛,例如自动化生产、交通运输、医疗诊断、安全监测等领域,因此传感器技术的发展对现代化生产、生活、科学技术的发展有着非常重要的作用。

传感器的种类很多,根据测量的物理量不同,可以分为温度传感器、压力传感器、流量传感器、湿度传感器、加速度传感器、光学传感器等等。

在这些传感器中,新型传感器是一种备受关注的技术。

一、新型传感器的研究现状1. MEMS技术传感器MEMS是微电子机械系统(Micro-Electro-Mechanical System)的缩写,它是一种微型化的电气机械系统,它能够将机械元件和电子元件进行集成化处理。

因此,MEMS技术传感器的优势在于体积很小、功耗低、响应速度快、可靠性高、价格便宜等等。

如今,MEMS技术传感器的应用已经非常广泛,例如手机中的加速度传感器、陀螺仪、磁力计、压力传感器等等,这些传感器的应用大大提升了手机的功能和用户体验。

2. 光纤传感器光纤传感器是一种基于光学原理的传感器,它使用光的传输来测量物理量。

与传统传感器相比,光纤传感器具有很多优势,例如高灵敏度、抗干扰能力强、安全可靠、经济实用,能够实现长距离传递、分布式检测等等。

目前,光纤传感器主要应用在石油天然气、交通运输、环境监测、生命科学等领域。

例如,在石油天然气开采中,光纤传感器可以测量油井的温度、压力、流量等参数,可以帮助确定油井的产量和工作状态,并且可以提高油井的生产效率。

3. 生物传感器生物传感器主要是应用在医疗诊断领域中的,它能够检测人体内的生物分子、细胞和组织等信息。

例如,可以测量血液中的血糖、白细胞计数、酸碱度等指标,可以帮助医生进行疾病的诊断和治疗。

目前,生物传感器技术发展非常迅速,尤其是以DNA、RNA 等为基础的生物传感器,它可以快速、准确地检测病原体、基因变异等信息,有望成为未来医疗诊断中的主要手段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引言3正文3 1.传感器的开发3气体传感器3温度传感器6 2. 传感器的现状及发展趋势8传感器发展的三个阶段8我国传感器的现状9传感器的发展方向与途径10欧美传感器发展趋势11传感器的宏观技术特点分析17 3.传感器的精度问题18消除传感器零点误差和零点漂移的方法18提供直流供电电源的稳定性方法18统一和标准化保证传感器精度19传感器的标校19敏感元件的质量控制19精度的结构防护技术20传感器补偿技术21 4.传感器的品牌22称重传感器22压力传感器22流量传感器22位移传感器23温湿度传感器23液位传感器23传感器的一些竞争品牌24中国的传感器基地24引言随着科学技术的发展,检测技术巳应用于人类科研、生产、生活等活动中。

检测技术既是服务于其它学科的工具,又是综合运用其它多门学科最新成果的尖端技术。

因此检测技术的发展是科学技术和生产发展的重要基础,也是一个国家生产力发展和现代化程度的重要标志。

而研究检测技术的进步总是从检测的新方法与新对象来考虑。

但不论是检测方法的更新还是检测对象的扩展,都与传感器的开发有着密切的联系,也就是说检测技术的发展,如果离开传感器的开发那是绝对不行的。

正文1.传感器的开发气体传感器气体传感器是一种将气体的成份、浓度等信息转换成可以被人员、仪器仪表、计算机等利用的信息的装置,气体传感器通常是用来检测气体的类别、浓度和成分。

气体传感器的种类很多,分类方法也各不相同。

按气体传感器的材料分,可分为半导体型和非半导体型。

应用广泛的气体传感器有:半导体型气体传感器、固体电解质气体传感器、电化学传感器、光学气体传感器等。

1.半导体型气体传感器这种类型的传感器在气体传感器中约占60%,根据其机理分为电阻型半导体气体传感器和非电阻型半导体气体传感器。

电阻型半导体气体传感器电阻型半导体气体传感器是将气体浓度的变化转变成电阻值变化的一种传感器,典型的电阻型半导体气体传感器材料是322e n nO O F O Z S 、、等因为这些材料存在气敏效应,当表面吸附某种气体时会引起电导率的变化,作为传感器,还要求这种反应必须是可逆的。

电阻型半导体气体传感器中应用最广泛的是气敏元件,其工作原理是和空气中电子亲和性大的气体发生反应形成吸附氧束缚晶体中的电子。

使器件处于高阻状态,当它与被测气体接触时,气体与吸附氧发生反应,元件表面电导增加,电阻减小。

气敏元件制作时多采用烧结工艺。

以多孔陶瓷为基底材料,再添加不同的其他物质,用制陶工艺烧结而成。

烧结时埋入加热电阻丝和测量电极。

此外,还有薄膜型与厚膜型两种工艺。

非电阻型半导体气体传感器结型气体传感器结型气体传感器又称气敏二极管。

是利用气体改变二极管的整流特性,将金属与半导体结合做成整流二级管,其整流作用来源于金属和半导体功函数的差异。

随着功函数因吸附气体而变化,其整流作用也随之变化。

型气体传感器气敏二极管的特性曲线左移可以看作二极管导通电压发生改变,这一特性如果发生在场效应管的栅极,将使场效应管的阈值电压UT改变。

利用这一原理可以制成MOSFET型气敏器件。

氢气敏MOSFET是一种最典型的气体传感器,它用金属钯(Pd)制成钯栅。

在含有氢气的气氛中由于钯的催化作用,氢气分子分解成氢原子扩散到钯与二氧化硅的界面。

最终导致MOSFET的阈值电压UT发生变化。

使用时常将栅漏短接,可以保证MOSFET工作在饱和区,利用这一气敏器件可以测出氢气浓度。

氢气敏MOSFET在氢气浓度高时其灵敏度变低,氢气浓度低时灵敏度则升高。

2.固体电解质气体传感器这种传感器元件为离子对固体电解质隔膜传导,称为电化学池。

分为阳离子传导和阴离子传导,是选择性强的传感器,研究较多达到实用化的是氧化锆固体电解质传感器。

其机理是利用隔膜两侧两个电池之间的电位差等于浓差电池的电势。

稳定的氧化锆固体电解质传感器已成功地应用于钢水中氧的侧定和发动机空燃比成分测量等。

为弥补固体电解质导电的不足,近几年来在固态电解质上蒸镀一层气体敏膜。

把周围环境中存在的气体分子数量和介质中可移动的粒子数量联系起来。

3.接触燃烧式气体传感器接触燃烧式气体传感器的工作原理是:气敏材料在通电状态下,温度约在300~600℃,当可燃性气体氧化燃烧或在催化剂作用下氧化燃烧,燃烧热进一步使电热丝升温,从而使其电阻值发生变化,测量电阻变化从而测量气体浓度。

该种气体传感器的优点是对气体选择性好,受温度和湿度影响小,响应快,已经被广泛应用在石油化工厂、矿井、浴室和厨房等处。

目前接触燃烧式气体传感器实现规模生产的有H2、LPG、CH4以及部分有机溶剂蒸气检测用产品。

该类传感器市场上一般以各类报警器的形式出现较多,但它们对低浓度可燃性气体灵敏度低,敏感元件受催化剂侵害较严重。

4.光学式气体传感器光学式气体传感器包括光谱吸收型、荧光型、光纤化学材料型等类型。

光谱吸收型荧光型的原理是:不同的气体物质由于其分子结构不同、浓度不同和能量分布的差异而有各自不同的吸收光谱。

这就决定了光谱吸收型气体传感器的选择性、鉴别性和气体浓度的唯一确定性。

若能测出这种光谱便可对气体进行定性、定量分析。

目前已经开发了流体切换式、流程直接测量式等多种在线红外吸收式气体传感器[16,24]。

在汽车的尾气中,CO、CO2和烃类物质的浓度,以及工业燃烧锅炉中的有害气体SO2、NO2都可采用光谱吸收型气体传感器来检测。

荧光型是指气体分子受激发光照射后处于激发态,在返回基态的过程中发出荧光。

由于荧光强度与待测气体的浓度成线性关系,荧光型气体传感器通过测试荧光强度便可测出气体的浓度。

光纤化学材料型气体传感器是在光纤的表面或端面涂一层特殊的化学材料,而该材料与一种或几种气体接触时,引起光纤的耦合度、反射系数、有效折射率等诸多性能参数的变化,这些参数又可以通过强度调制等方法来检测。

例如:涂在光纤上的钯膜遇H2时就会膨胀,薄膜的膨胀可以通过测量干涉仪的输出光的强度来测得。

光谱吸收型的原理清楚,技术相对成熟,是目前光学式气体传感器的市场主流。

5.石英谐振式气体传感器石英谐振式气体传感器的气敏元件主要由石英基片、金电极和支架三部分组成。

其电极上涂有一层气体敏感膜,当被测气体分子吸附在气体敏感膜上时,敏感膜的质量增加,从而使石英振子的谐振频率降低。

由于谐振频率的变化量与被测气体的浓度成正比,故通过检测谐振频率便可判断气体浓度大小[7]。

该传感器结构简单、灵敏度高,但只能使用在室温下工作的气体敏感膜。

选取聚乙烯亚胺PEI(poly ethylene imine)作敏感膜,该传感器对CO2的气敏特性、选择性都很好,对体积分数为500×10-6的CO2进行测试,其响应时间为5 s,恢复时间为2 s。

另外酞菁类聚合物也常被用来制成石英谐振式气敏元件。

目前已经开发出可测试NH3、SO2、HCl、H2S、醋酸蒸气等气体的石英谐振式气体传感器,但产业化还需时日,尤其是选择性还未得到根本解决。

6.表面声波气体传感器表面声波气体传感器的发展历史很短,可谓是后起之秀。

表面声波传播速度的影响因素很多,例如:环境温度、压力、电磁场、气体性质、固体介质的质量、电导率等。

通过选择合适的敏感膜来控制诸多影响因素中的一个因素起主导作用。

当质量起主导作用时,表面声波的振荡频率与气体敏感膜的密度成正比;当电导率起主导作用时,表面声波的振荡频率与气体敏感膜的电导率成反比。

设计时,通常采用双通道延迟线结构来实现对环境温度和压力变化的补偿。

目前研究的该类气体传感器大多采用有机膜做气敏材料,主要有聚异丁烯、氟聚多元醇等,被用来检测苯乙烯和甲苯等有机蒸气[16,28];酞菁类聚合物薄膜被用来检测NO2、NH3、CO、SO2等气体[7]。

尽管该类气体传感器在实用化方面还存在许多问题,但它符合信号系统数字化、集成化、高精度的方向,因此受到许多国家的高度重视。

7.气体传感器的发展方向气体传感器的研究涉及面广、难度大,属于多学科交叉的研究领域。

要切实提高传感器各方面的性能指标需要多学科、多领域研究者的协同合作。

气敏材料的开发和根据不同原理进行传感器结构的合理设计一直受到研究人员的关注。

在综合气体传感器的国内外的研究未来气体传感器的发展也将围绕这两方面展开工作。

主要内容为:(1)气敏材料的进一步开发:一方面寻找新的添加剂对已开发的气敏材料的敏感特性进一步提高,尤其是通过选择不同的添加剂来改善同一基质材料对不同气体的选择性;另一方面充分利用纳米、薄膜等新材料制备技术使气敏材料各方面的性能均得到大大改善,譬如:纳米器件比表面积大,有利于提高其灵敏度,大大降低使用温度,易于器件集成化,降低成本,便于使用。

(2)新型气体传感器的开发和设计:根据气体与气敏材料可能产生的不同效应设计出新型气体传感器是气体传感器未来发展的重要方向和后劲。

近年来表面声波气体传感器、光学式气体传感器、石英谐振式气体传感器等新型传感器的开发成功进一步开阔了设计者的视野。

目前仿生气体传感器也在研究中。

警犬的鼻子就是一种灵敏度和选择性都非常好的理想气敏传感器,结合仿生学和传感器技术研究类似狗鼻子的”电子鼻”将是气体传感器发展的重要趋势和目标之一。

(3)气体传感器传感机理的研究:新的气敏材料和新型传感器层出不穷,需要在理论上对它们的传感机理进行深入研究。

传感机理一旦明确,设计者便可有据可依地针对传感器的不足之处加以改进,也将大大促进气体传感器的产业化进程。

(4)气体传感器的智能化:生产和生活日新月异的发展变化对气体传感器提出了更高的要求,气体传感器智能化是其发展的必由之路。

纳米、薄膜技术等新材料制备技术的成功应用为气体传感器集成化和智能化提供了很好的前提条件[30]。

气体传感器将在充分利用微机械与微电子技术、计算机技术、信号处理技术、电路与系统、传感技术、神经网络技术、模糊理论等多学科综合技术的基础上得到发展。

研制能够同时监测多种气体的全自动数字化的智能气体传感器将是以后该领域的重要研究方向。

温度传感器1.气体温度传感器气体的状态方程为PV = nRT,其中P为压力,V为体积,n为气体的摩尔量,R为常数,T为温度。

如果其中一个量保持不变,测量另外一个变量,然后第三个变量可以通过计算得到。

因此,如果气体的摩尔量保持不变,温度可以通过测量压力计算出。

简单的气体温度计最早是1952年Simon使用的。

它包括一个球形容器,并通过一毛细管连接至测量压力的规管。

这个气体温度计在低温下的测量结果非常准确。

在高温下需要经过一些修正。

在温度降低的时候,外来体积的比例越来越小,因此修正值也越来越小。

2.蒸汽压力温度传感器液体的饱和蒸汽压随温度的变化而表现出一定的关系,因此可以通过测量液体的饱和蒸汽压推算出环境温度。

蒸汽压温度计的一个最大的优势是在其使用的温度范围内其灵敏度非常高,适合于蒸汽压温度计的气体包括氧气、氮气、氢气和氦气。

相关文档
最新文档