生活中的数学校本课程

合集下载

数学校本课程

数学校本课程

数学校本课程总的内容:一、目标:以切近生活本质、增强数学应用为主旨,针对数学这门课的特点,从生活中发掘数学,提升学生应用数学知识解决有关问题的能力,培养学生的察看,剖析能力,充足发挥学生的创建性,开发学生自己的潜能,并且增强对学生的着手操作能力的训练,鼓舞学生能够展现自己的研究成功,培育学生的成功心态,使学生的心理获取健康的发展,使每位学生的能力获取充足表现。

一、课程介绍:1、生活中的数学以领会数学与人、自然的关系为切入点,使学生感想学习数学的价值,增强学习数学和应用数学的信心,培育学生着手实践的兴趣;以创建情况形成良性的学习竞争氛围为基础,使学生在一个浓烈的学习氛围中互学相助,每一个人都要获取成功,每一个人都要进步。

2、兴趣规律数学数学兴趣性和规律性很强,找到一些数学规律,充足发挥学生的创建力,提升学生的逻辑思想能力,掌握数学思想方法,适应时代的需要。

依照学生的认识规律,依照启迪性和兴趣性相联合的原则,补充着手操作,给学生供应更多的着手时机,重视理论联系本质,扩展教材把数学识题放在社会的大背景下启迪学生的思虑,让学生走进生活,应用于生活,使学生认识数学知识与社会各方面的联系,以便于学生理解所学的指示,培育学生的实践意识,在兴趣性的指引下,学生兴趣盎然,带给学生更多的考虑和启迪,学生不单获取数学知识,经过兴趣实验,还初步掌握了数学研究的方法,体验到了追究其理和创新实验的乐趣。

3、解决问题的策略经历利用特别状况研究一般规律的过程,经历分状况探议论的过程,经历将生疏的、繁琐的、未解决的问题转变为熟习的、简单的、以解决问题的能力,经历用数与形联合的方法解决位的研究过程,经历用整体思想解决问题的研究过程,经历多种策略解决一致问题的研究过程。

使学生明确解决一个问题常常能够从不一样的角度去考虑,养成擅长思虑,擅长创新,擅长用更好地解决问题策略去解决问题的好习惯。

目勾股定理的明⋯⋯⋯⋯⋯⋯⋯⋯.6生活中的称⋯⋯⋯⋯⋯⋯⋯21研究活(花)⋯⋯⋯⋯26子改了什么⋯⋯⋯⋯⋯⋯⋯⋯27频次与概率⋯⋯⋯⋯⋯⋯⋯⋯28几何就在你的身⋯⋯⋯⋯32一个小数点与一大悲⋯⋯⋯34”与“灾小行”⋯⋯36建班一台水机⋯⋯38巧用数学看⋯⋯⋯⋯⋯⋯41如何烧开水最快最省煤气⋯⋯⋯4 4生活中的数学⋯⋯⋯5 0探出租司机的买卖⋯⋯⋯54最高的与最矮的⋯⋯⋯⋯⋯57表面涂漆的小木的数⋯⋯⋯59抽原理和六人集合⋯⋯⋯62怎列分式方程解用⋯⋯65勾股定理的证明【证法1】(课本的证明)a b b aa a c a a c ba bcbc b b b caa b a b做8个全等的直角三角形,设它们的两条直角边长分别为a 、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上能够看到,这两个正方形的边长都是a+b,所以面积相等.即41abc41ab,整理得a2b2c2.22【证法2】(邹元治证明)以a、b为直角边,以c为斜边做四个全等的直角三角形,则每1ab个直角三角形的面积等于 2 .把这四个直角三角形拼成以下图形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,D b G a C C、G、D三点在一条直线上.RtHAE≌RtEBF,∴∠AHE=∠BEF.accHbcA a E b B∵∠AEH+∠AHE=90o,∴∠AEH+∠BEF=90o.∴∠HEF=180o―90o=90o.∴四边形EFGH是一个边长为c的正方形.它的面积等于c2.RtGDH≌RtHAE,∴∠HGD=∠EHA.∵∠HGD+∠GHD=90o,∴∠EHA+∠GHD=90o.又∵∠GHE=90o,∴∠DHA=90o+90o=180o.∴ABCD是一个边长为a+b的正方形,它的面积等于ab241abc2∴a 222∴2.c .【证法3】(赵爽证明)D 以a、b为直角边(b>a),以c为斜bc边作四个全等的直角三角形,则每个直角GaAH1ab三角形的面积等于把这四个直角三2.角形拼成以下图RtDAH≌RtABE,∴∠HDA=∠EAB.∵∠HAD+∠HAD=90o,C a b2.∴∠EAB+∠HAD=90o,∴ABCD是一个边长为c的正方形,它的面积等于c2.EF=FG=GH=HE=b―a,∠HEF=90o.∴EFGH是一个边长为b―a的正方形,它的面积等于ba241ab b a2c2∴2.∴a2b2c2.【证法4】(1876年美国总统Garfield证明)以a、b为直角边,以c为斜边作两个全等的直角三角形,则每1个直角三角形的面积等于2ab.把这两个直角三角形拼成以下图形状,使A、E、B三点在一条直线上.C∵Rt EAD≌Rt CBE, D∴∠ADE=∠BEC.ac c b∵∠AED+∠ADE=90o,A b E aB ∴∠AED+∠BEC=90o.∴∠DEC=180o―90o=90o.DEC是一个等腰直角三角形,1c2它的面积等于 2 .又∵∠DAE=90o,∠EBC=90o,∴AD∥BC.1a b 2∴ABCD是一个直角梯形,它的面积等于2.∴∴1b221ab1c2222 .a 2b22.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过C作AC的延伸线交DF于点P.∵D、E、F在一条直线上, 且Rt GEF≌Rt EBD,∴∠EGF=∠BED,∵∠EGF+∠GEF=90°,b aG c E∴∠BED+∠GEF=90°,P∴∠BEG=180o―90o=90o.bCb c c又∵AB=BE=EG=GA=c,abHaa∴ABEG是一个边长为c的正方形.A cB∴∠ABC+∠CBE=90o.∵Rt ABC≌Rt EBD,∴∠ABC=∠EBD.∴∠EBD+∠CBE=90o.即∠CBD=90o.又∵∠BDE=90o,∠BCP=90o,BC=BD=a.∴BDPC是一个边长为a的正方形.同理,HPFG是一个边长为b的正方形.设多边形GHCBE的面积为S,则a 2b2S21ab,2c2S21ab,2∴a2b2c2.【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、bb>a),斜边长为c.再做一个边长为c的正方形.把它们拼成以下图的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N. Eb a∵∠BCA=90o,QP∥BC,F c A∴∠MPC=90o,Pb∵BM⊥PQ,c∴∠BMP=90o,N ∴BCPM是一个矩形,即∠MBC=90o.Q c ∵∠QBM+∠∠ABC ∴∠QBM=∠又∵∠BMP=90o,∠BCA=90o,BQ=BA=c, cCaBRtBMQ≌RtBCA.同理可证Rt QNF≌Rt AEF.从而将问题转变为【证法4】(梅文鼎证明).【证法7】(欧几里得证明)做三个边长分别为a、b、c的正方形,把它们拼成以下图形状,使H、C、B三点在一条直线上,连接BF、CD.过C作CL⊥DE,交AB于点M,交DE于点GH aL.C∵∵AF=AC,AB=AD,Fa bMA B∠FAB=∠GAD,∴FAB≌GAD,cFAB的面积等于12∵2,DL cE GAD的面积等于矩形ADLM的面积的一半,∴矩形ADLM的面积=a2.同理可证,矩形MLEB的面积=b2.∵正方形ADEB的面积矩形ADLM的面积+矩形MLEB的面积∴c2a2b2,即a2b2c2.【证法8】(利用相像三角形性质证明)如图,在Rt ABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.在ADC和ACB中,∵∠ADC=∠ACB=90o,∠CAD=∠BAC,Ca b∴ADC∽ACB.cAD∶AC=AC∶AB,A即AC2ADAB.同理可证,CDB∽ACB,从而有BC2BDAB.∴AC 2BC2AD DB ABAB2,即a2b2c2.【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、bb>a),斜边长为c.再做一个边长为c的正方形.把它们拼成以下图的多边形.过A作AF⊥AC,AF 交GT于F,AF交DT于R.过B作BP⊥AF,垂足为P.过D作DE与CB的延伸线垂直,垂足为E,DE交AF于H.∵∠BAD=90o,∠PAC=90o,∴∠DAH=∠BAC.又∵∠DHA=90o,∠BCA=90o,AD=AB=c,G a Dcb921c∴RtDHA≌RtBCA.F8R P∴DH=BC=a,AH=AC=b.T3456c由作法可知,PBCA是一个矩形,Q7aCB所以Rt APB≌Rt BCA.即PB=CA=b,AP=a,从而PH=b―a.RtDGT≌RtBCA,Rt DHA≌Rt BCA.RtDGT≌RtDHA.DH=DG=a,∠GDT=∠HDA.又∵∠DGT=90o,∠DHF=90o,∠GDH=∠GDT+∠TDH=∠HDA+∠TDH=90o,DGFH是一个边长为a的正方形.GF=FH=a.TF⊥AF,TF=GT―GF=b―a.TFPB是一个直角梯形,上底TF=b―a,下底BP=b,高FP=a+(b―a).用数字表示面积的编号(如图),则以c为边长的正方形的面积为c2S1S2S3S4S5①∵S8S3S41bba aba b21ab,2=2S5S8S9,∴S321S2abS8=b2S1S8②4.把②代入①,得c2S1S2b2S1S8S8S9=b2S2S9=b2a2.∴a2b2c2.【证法10】(李锐证明)设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c.做三个边长分别为a、b、c的正方形,把它们拼成以下图形状,使A、E、G三点在一条直线上.用数字表示面积的编号(如图).∵∠TBE=∠ABH=90o,∴∠TBH=∠ABE.又∵∠BTH=∠BEA=90o,BT=BE=b,b B82CD6 H31MG7F4E5c∴Rt HBT≌Rt ABE.QHT=AE=a.GH=GT―HT=b―a.又∵∠GHF+∠BHT=90o,∠DBC+∠BHT=∠TBH+∠BHT=90o,∴∠GHF=∠DBC.DB=EB―ED=b―a,∠HGF=∠BDC=90o,∴Rt HGF≌Rt BDC.即S7 S2.过Q作QM⊥AG,垂足是M.由∠BAQ=∠BEA=90o,可知∠ABE=∠QAM,而AB=AQ=c,所以Rt ABE≌Rt QAM.又Rt HBT≌Rt ABE.所以Rt HBT≌Rt QAM.即S8S5.由Rt ABE≌Rt QAM,又得QM=AE=a,∠AQM=∠BAE.∵∠AQM+∠FQM=90o,∠BAE+∠CAR=90o,∠AQM=BAE,∠FQM=∠CAR.又∵∠QMF=∠ARC=90o,QM=AR=a,∴Rt QMF≌Rt ARC.即S4S6.∵c 2S1S2S3S4S5,a2S1S6,b2S3S7S8,又∵∴S7S2,S8S5,S4S6,a 2b2S1S6S3S7S8= S1S4S3S25c2,即a2b2c2.【证法11】(利用切割线定理证明)在RtABC中,设直角边BC=a,AC=b,斜边AB=c.如图,以B为圆心a为半径作圆,交AB及AB的延伸线分别于D、E,则BD=BE=BC=a.因为∠BCA=90o,点C在⊙B上,所以AC是⊙的切线.由切割线定理,得AC2AE AD=AB BEABBD Cb=cac a acE a B a Dc2a2,即b2c2a2,∴a2b2c2.【证法12】(利用多列米定理证明)在RtABC中,设直角边BC=a,AC=b,斜边AB=c(如图).过点A作AD∥CB,过点B作BD∥CA,则ACBD为矩形,矩形ACBD内接于一个圆.依据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有ABD CAD BCACBD,∵AB=DC=c,AD=BC=a,D b BAC=BD=b,a cc a∴AB 2BC2AC2,即c2a22,A b C∴a222.【证法13】(作直角三角形的内切圆证明)在Rt ABC中,设直角边BC=a,AC=b,斜边AB=c.作Rt ABC的内切圆⊙O,切点分别为D、E、F(如图),设⊙O的半径为r.AE=AF,BF=BD,CD=CE,∴ACBC ABAECE BDCDAFBF=CE CD=r+r=2r,即abc2r,cFrrEOr∴ab2rc.∴ a b 22r c2,即∵a 2b22ab4r2rcc2,S ABC1ab2,∴又∵2ab4S ABC,SABCS AOBS BOCSAOC=1cr1ar1br1abcr222=212rccr=2rc,=2∴4r2rc4SABC,∴4r2rc2ab,∴a2b22ab2abc2,∴a2b2c2.【证法14】(利用反证法证明)如图,在RtABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.假定a2b2c2,即假定AC2BC2AB2,则由AB2ABAB=ABAD BD=ABAD ABBD可知AC2AB AD,或许BC2ABBD.即AD:AC≠AC:AB,或许BD:BC≠BC:AB.在ADC和ACB中,∵∠A=∠A,∴若AD:AC≠AC:AB,则∠ADC≠∠ACB.Ca bA D c B在CDB和ACB中,∵∠B=∠B,∴若BD:BC≠BC:AB,则∠CDB≠∠ACB.又∵∠ACB=90o,∴∠ADC≠90o,∠CDB≠90o.这与作法CD⊥AB矛盾. 所以,AC2BC2AB2的假定不可以成立.∴a 2b2c2.【证法15】(辛卜松证明)A b aD Aa2aababaab a ccc2b bab b c1ab1abab a C B aB b设直角三角形两直角边的长分别为a、b,斜边的长为c.作边长是a+b的正方形ABCD.把正方形ABCD区分红上方左图所示的几个部分,则正方形ABCD的面积为ab2a2b22ab;把正方形ABCD区分红上方右图所示的几个部分,则正方形ABCD的面积为ab241abc222=2ab c.∴a2b22ab2ab c2,∴a2b2c2.【证法16】(陈杰证明)设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c.做两个边长分别为a、b的正方形(b>a),把它们拼成以下图形状,使E、H、M三点在一条直线上.用数字表示面积的编号(如图).在EH=b上截取ED=a,连接DA、DC,则AD=c.∵ B∵EM=EH+HM=b+a,ED=a,c54c∴DM=EM―ED=ba―a=b.A又∵∠CMD=90o,CM=a,G23cb1a∠AED=90o,AE=b,c76∴RtAED≌RtDMC.E bD∴∠EAD=∠MDC,DC=AD=c.∵∠ADE+∠ADC+∠MDC=180o,∠ADE+∠MDC=∠ADE+∠EAD=90o,∴∠ADC=90o.∴作AB∥DC,CB∥DA,则ABCD是一个边长为c的正方形.∵∠BAF+∠FAD=∠DAE+∠FAD=90o,∴∠BAF=∠DAE.连接FB,在ABF和ADE中,AB=AD=c,AE=AF=b,∠BAF=∠DAE,ABF≌ADE.∴∠AFB=∠AED=90o,BF=DE=a.∴点B、F、G、H在一条直线上.在RtABF和RtBCG中,∵AB=BC=c,BF=CG=a,RtABF≌RtBCG.∵c 2S2S3S4S5,b2S1S2S6,a2S3S7,S1S5S4S6S7,∴a 2b2S3S7S1S2S6=S2S3S1S6S7=S2S3S4S5=c2∴a2b2c2.生活中的轴对称我们生活在一个充满对称的世界之中,对称给人以均衡与和睦的美感。

《生活中的数学》校本课程纲要

《生活中的数学》校本课程纲要
考核项目
内容
分值(100)
每节作业情况
每一节的练习
24
课程测试
本课程学习完的章节测试
60
参与态度
上课出勤率、提问检测、上课发言等
16
2、评价主体:教师和学生,考评按照自评、互评、指导教师评价相结合的原则进行,最后形成综合评定等级。其中,自评权重为20%,互评权重为30%,指导教师评价权重为50%。
3、学生评价等级分为优、良、合格与不合格四级。80分及以上为优秀,70分—80分为良好,60—70分为合格,60分以下为不合格。
课程实施要求:
充分体现数学的应用性,让学生体会实用数学的魅力,以及合作交流的快乐。
课程实施:本课程采用课堂讲授和学生合作探讨相结合的模式,合理评价学生思想方法和建模成果。
课程评价建议
1、构建以能力为中心的课程评价体系,将创新意识和审美欣赏能力纳入考核。
对学生的评价分别从“阶段成果(主题摄影作品)、作品么赏析能力、参与态度”三方面进行综合测评
校本课程《生活中的数学》正是基于此,其宗旨在于开阔学生视野,提升学生数学综合涵养,增强学生数学建模能力。
课程目标
1、知识与技能:通过本课程的学习,使学生了解高中数学很多基础知识有着广泛的应用,巩固已学的知识。
2、能力目标:通过本课程的学习,使学生能掌握数学建模的能力,运用很多高中知识合理解决实际生活中的案例。
3、情感、态度、价值观:让学生经历知识的构建、合作探究的成就感,开阔学生视野,领略数学文化,学习数学家的严谨治学和为科学奉献的崇高精神。
课程内容
第1课时储蓄与贷款的利息
第2课时阶梯水费、电费问题
第3课时彩票中奖的概率
第4课时桥的设计与限高设置
第5课时实际测量问题

生活中的数学校本课程讲解

生活中的数学校本课程讲解

《生活中的数学》校本课程目录第一讲:生活中的趣味数学第二讲:数学中的悖论第三讲:对称——自然美的基础第四讲:斐波那契数列第五讲:龟背上的学问第六讲:巧用数学看现实第七讲:运用数学函数方程解决生活中的问题第八讲:生活中的优化问题举例第一讲:生活中的趣味数学1.“荡秋千”问题:我国明朝数学家程大位(1533~1606年)写过一本数学著作叫做《直指算法统宗》,其中有一道与荡秋千有关的数学问题是用《西江月》词牌写的:平地秋千未起,踏板一尺离地;送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?词写得很优美,翻译成现代汉语大意是:有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(每5尺为一步),秋千的踏板就和人一样高,这个人的身高为5尺,如果这时秋千的绳索拉得很直,试问它有多长?下面我们用勾股定理知识求出答案:如图,设绳索AC=AD=x(尺),则AB=(x+1)-5(尺),BD=10(尺)在Rt△ABD中,由勾股定理得AB2+BD2=AD2,即(x-4)2+102=x2,解得x=14.5,即绳索长为14.5尺.2.方程的应用:小青去植物园春游,回来以后爸爸问他春游花掉多少钱。

小青并不直接回答,却调皮地说:“我带出去的钱正好花了一半,剩下的元数是带出去角数的一半,剩下的角数与带出去元数相同。

”爸爸踌躇一下,有些为难。

你能否帮助他把钱数算出来,小青到底带了多少钱?花了多少钱?还剩多少钱?方法一:设带出去x元,y角.根据"剩下的元数是带出去角数的一半"知道y是偶数花了的钱分x为奇数与偶数情况(1)x是奇数时候,花一半就是花了=剩下=(x-1)/2元,(y/2+5)角根据后面两句话知道,剩下=y/2元,x角有二元一次方程组:(x-1)/2=y/2,y/2+5=x 解得x=9,y=8(2)x是偶数时候,花一半就是花了=剩下=x/2元,(y/2+5)角剩下的同上面情况有二元一次方程组:x/2=y/2,y/2+5=x 解得x=y=10 但是没有10角钱说法不符合实际(舍)∴答案是9元8角方法二:设带出去X元Y角,还剩a元b角按照用掉一半还剩一半的等式:10a + b = ( 10x + y)/ 2又因为: a = y / 2b = x带入等式化简即可得:x / y = 9 / 8因为y 只能是小于10的整数所以,小青带了9元8角!用了4元9角,还剩4元9角!3.工资的选择:假设你得到一份新的工作,老板让你在下面两种工资方案中进行选择:(A)工资以年薪计,第一年为4000美元以后每年加800美元;(B)工资以半年薪计,第一个半年为2000美元,以后每半年增加200美元。

校本课程设计趣味数学

校本课程设计趣味数学

校本课程设计趣味数学一、课程目标知识目标:1. 让学生掌握基本的数学概念和运算方法,如分数、小数、整数的四则运算。

2. 培养学生解决实际问题的能力,能运用所学知识解决生活中的趣味数学问题。

3. 引导学生理解数学在生活中的广泛应用,认识到数学与生活的紧密联系。

技能目标:1. 培养学生运用数学工具和技巧解决问题的能力,提高学生的逻辑思维和创新能力。

2. 培养学生运用数学语言进行表达和交流的能力,提高学生的团队协作能力。

3. 培养学生运用信息技术手段辅助数学学习的能力,提高学生的学习效率。

情感态度价值观目标:1. 激发学生对数学的兴趣和好奇心,培养学生的探究精神和自主学习能力。

2. 培养学生面对困难和挑战时保持积极态度,勇于克服困难,不断进步的品质。

3. 培养学生尊重他人观点,学会合作与分享,形成良好的集体意识和道德品质。

课程性质:本课程为校本课程,旨在通过趣味数学教学,提高学生的数学素养,培养学生的创新精神和实践能力。

学生特点:考虑到学生年级的特点,课程内容以直观、形象、有趣为主,注重激发学生兴趣,提高学生的学习积极性。

教学要求:教师应结合学生实际情况,运用多样化教学手段,注重启发式教学,引导学生主动参与,确保课程目标的达成。

同时,注重过程性评价,关注学生的学习成果和情感态度价值观的培养。

二、教学内容1. 数的概念与运算- 分数、小数、整数的认识与运算- 混合运算及运算定律2. 生活中的趣味数学- 趣味几何:图形的认识、分类及性质- 生活中的计量:长度、面积、体积的测量与计算3. 数学思维与方法- 逻辑思维训练:分析、综合、比较、分类- 解决问题的策略:枚举、归纳、推理、建模4. 数学在实际中的应用- 数学在科学、技术、生活中的应用案例- 创新与实践:设计数学游戏、解决实际问题教学内容安排与进度:第一周:数的概念与运算(1-2课时)第二周:生活中的趣味数学(3-4课时)第三周:数学思维与方法(5-6课时)第四周:数学在实际中的应用(7-8课时)教材章节及内容:第一章 分数与小数第二章 整数的四则运算第三章 逻辑思维与解决问题第四章 数学在实际中的应用教学内容注重科学性和系统性,结合课程目标,确保学生能掌握基本知识,培养数学思维,提高解决实际问题的能力。

小学数学校本课程教材 (中学也可用)

小学数学校本课程教材 (中学也可用)

小学数学校本课程教材 (中学也可用)目录- 引言- 教学目标- 课程纲要- 教材特点- 教学方法- 结束语引言本文档旨在介绍小学数学校本课程教材的主要内容和特点,同时也适用于中学阶段。

通过本教材,学生将能够系统地研究数学的基本概念和技能,培养数学思维和解决问题的能力。

教学目标- 帮助学生掌握基础数学知识,并初步应用于日常生活中的实际问题中。

- 培养学生逻辑思维和数学思维的能力,提高解决问题的能力。

- 培养学生对数学的兴趣和自信心,激发研究数学的动力。

课程纲要本教材包含以下主要内容:1. 数的认识:包括数的读写和数的比较。

2. 四则运算:加减乘除的基本运算规则和方法。

3. 分数与小数:分数和小数的概念、转换和运算。

4. 几何图形:各种几何图形的认识、性质和应用。

5. 数据与统计:数据的收集、整理和分析。

6. 代数与方程:代数表达式和简单方程的应用。

教材特点1. 简明易懂:教材内容以简洁的语言和图表进行呈现,注重学生的理解和记忆。

2. 应用导向:教材通过实际生活中的问题,引导学生将数学知识应用于实际情境中。

3. 渐进式研究:教材按照难易度逐步展开,帮助学生逐步提高数学水平。

4. 多元素教学:教材融入多种教学元素,如示范、练、游戏等,激发学生的研究兴趣。

教学方法1. 讲授与讨论:教师通过讲解和与学生的互动讨论,帮助学生理解和掌握数学概念和方法。

2. 练与应用:教师设计各种练和应用情境,培养学生的解决问题的能力。

3. 探究与合作:教师引导学生进行探究性研究和合作研究,培养学生的自主研究和团队合作能力。

结束语小学数学校本课程教材以其简明易懂、应用导向和渐进式学习等特点,旨在帮助学生全面提升数学水平。

通过教学目标的实现和多元化的教学方法的运用,学生将能够掌握基础数学知识,并培养数学思维和解决问题的能力。

这将为学生未来的学习和发展奠定扎实的基础。

培智学校生活数学校本课程的构建探究

培智学校生活数学校本课程的构建探究

培智学校生活数学校本课程的构建探究1. 引言1.1 研究背景在传统的数学教学中,学生往往只是被要求死记硬背公式定理,缺乏实际运用数学知识的机会。

而培智学校生活数学校本课程的构建将更注重培养学生的数学思维和应用能力,通过将数学知识与日常生活联系起来,让学生在实践中学习,提高他们的数学能力。

通过研究培智学校生活数学校本课程的构建,我们可以更好地了解该课程对学生的学习成绩、思维能力以及综合素质的影响。

也可以为其他学校的数学教育改革提供借鉴和参考,推动我国数学教育的发展。

1.2 研究目的研究目的是为了探究培智学校生活数学校本课程的构建,深入了解该课程在学生学习和发展中的作用和价值。

通过对该课程的重要性、内容设计、教学方法、实施效果评估以及发展前景展望的全面分析,旨在为进一步完善和改进该课程提供理论支撑和实践指导。

通过对该课程构建的探究,希望能够为其他类似课程的设计和实施提供借鉴和参考,推动生活数学课程在教育领域的深入发展和推广。

通过本研究,旨在为培智学校生活数学校本课程的构建提供有效的指导和建议,促进学生在数学学习中的全面发展,为其未来的学习和生活奠定坚实的基础。

2. 正文2.1 培智学校生活数学校本课程的重要性探究培智学校生活数学校本课程的重要性在于其为学生提供了一种全新的数学学习方式,使数学不再仅仅是枯燥的公式和算术,而是与生活紧密相连,更容易引起学生的兴趣和学习动力。

通过生活数学课程,学生可以学会将抽象的数学知识运用到日常生活中,从而更好地理解和掌握数学的应用。

生活数学课程还能培养学生的实际动手能力和问题解决能力,帮助他们培养综合运用知识的能力。

通过实际的生活案例和情境模拟,学生们可以在解决问题的过程中提升自己的思维逻辑能力和创新能力。

生活数学课程的重要性还在于其能够帮助学生建立更广阔的数学视野,拓展数学的应用领域。

学生通过生活数学课程不仅可以学会数学知识,还可以了解数学在各个领域的应用,激发学生对数学的兴趣,并为未来的学习和职业规划打下坚实的基础。

培智学校生活数学校本课程的构建探究

培智学校生活数学校本课程的构建探究

培智学校生活数学校本课程的构建探究引言:随着社会的发展和教育改革的不断深入,人们对于教育质量的要求也越来越高。

学校课程建设是教育教学改革中的重要环节,对于提高学生综合素质和培养创新能力具有重要作用。

生活数学是一门能够加强学生数学思维能力和实际运用能力的课程,而如何构建一门贴合学生需求、注重实践、富有探究性的生活数学课程成为了近年来教育界的热门讨论话题。

本文将探讨培智学校生活数学课程的构建。

一、培智学校生活数学课程的目标:生活数学课程是为了让学生在实际生活中运用数学知识解决问题,提高数学的实际运用能力以及数学思维能力。

培智学校生活数学课程的目标是培养学生的数学素养,提高学生的数学运用水平,增强学生数学思维能力。

具体包括以下几个方面的目标:1. 培养学生的数学实际运用能力,使其能够将数学知识灵活运用到实际生活中解决问题。

2. 培养学生的数学思维能力,提高学生的逻辑思维、推理能力和问题解决能力。

3. 培养学生的数学兴趣和学习动机,激发学生对数学的好奇心和探索欲望。

4. 培养学生的合作意识和实践能力,使其能够通过团队合作解决实际问题。

二、培智学校生活数学课程的内容:培智学校生活数学课程的内容应该注重与实际生活的结合,内容应具有一定的灵活性和变化性,以适应不同年级学生的需求。

具体包括以下几个方面的内容:1. 生活中的数学计算:包括货币运算、购物计算、比较大小等实际问题的数学计算。

2. 数据的收集和分析:通过实际调查和实验,学会收集数据,运用统计学知识进行数据分析。

3. 实际问题的数学建模:通过实际问题,引导学生运用数学知识进行问题的数学建模和求解。

4. 运用数学思维解决实际问题:通过实际问题的解决,引导学生运用数学思维进行问题的分析和解决。

三、培智学校生活数学课程的教学方法:培智学校生活数学课程的教学方法应该注重实践性和探究性,在教学中充分发挥学生的主体作用,激发学生的学习兴趣和学习动力。

具体包括以下几个方面的教学方法:1. 问题导向的教学法:引导学生通过问题的提出和解决,培养学生的问题意识和解决问题的能力。

数学校本课程《趣味数学》

数学校本课程《趣味数学》

数学校本课程《趣味数学》数学,这门古老而神秘的学科,常常让许多学生感到头疼和畏惧。

但其实,数学并非只是枯燥的公式和复杂的计算,它也有着充满趣味和魅力的一面。

我们的数学校本课程《趣味数学》,就是要为大家揭开数学神秘的面纱,展现其有趣的灵魂。

在这门课程中,我们将摒弃传统数学教学中那种严肃刻板的模式,以一种轻松愉快的方式带领大家走进数学的奇妙世界。

我们会从生活中的数学现象入手,让大家发现数学其实无处不在。

比如,大家都喜欢逛商场购物,那么在各种促销活动中,如何才能算出最划算的购买方案呢?这就需要用到数学知识。

假设一件商品原价 100 元,现在打八折出售,那我们很容易就能算出它的现价是 80 元。

但如果商家给出两种优惠方案,一种是直接打七折,另一种是满 100元减 30 元,这时该怎么选择呢?通过计算我们可以知道,购买价格为100 元的商品时,选择直接打七折更划算,因为此时只需支付 70 元;而如果购买价格为 200 元的商品,满 100 元减 30 元的方案就更优惠,因为此时只需支付 140 元,而直接打七折则需要支付 140 元。

再比如,大家都喜欢玩游戏,像扑克牌游戏中的“24 点”,就是一个很好的锻炼数学计算能力和思维敏捷性的方式。

给定四个数字,通过加、减、乘、除等运算,使其最终结果等于24。

例如,给出数字3、4、6、8,我们可以这样计算:3×8×(6 4)= 24 。

这个游戏不仅有趣,还能让大家在不知不觉中提高数学运算能力。

除了生活中的数学,课程中还会介绍一些有趣的数学谜题和智力游戏。

比如著名的“鸡兔同笼”问题:笼子里有若干只鸡和兔,从上面数有 35 个头,从下面数有 94 只脚,问鸡和兔各有多少只?我们可以通过假设法来解决这个问题。

假设笼子里全是鸡,那么脚的总数应该是2×35 = 70 只,而实际有 94 只脚,多出来的 24 只脚就是因为把兔当成鸡来算少算的。

因为每只兔比每只鸡多 2 只脚,所以兔的数量就是24÷2 = 12 只,鸡的数量就是 35 12 = 23 只。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《生活中的数学》校本课程目录第一讲:生活中的趣味数学第二讲:数学中的悖论第三讲:对称——自然美的基础第四讲:斐波那契数列第五讲:龟背上的学问第六讲:巧用数学看现实第七讲:运用数学函数方程解决生活中的问题第八讲:生活中的优化问题举例第一讲:生活中的趣味数学1.“荡秋千”问题:我国明朝数学家程大位(1533~1606年)写过一本数学著作叫做《直指算法统宗》,其中有一道与荡秋千有关的数学问题是用《西江月》词牌写的:平地秋千未起,踏板一尺离地;送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?词写得很优美,翻译成现代汉语大意是:有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(每5尺为一步),秋千的踏板就和人一样高,这个人的身高为5尺,如果这时秋千的绳索拉得很直,试问它有多长?下面我们用勾股定理知识求出答案:如图,设绳索AC=AD=x(尺),则AB=(x+1)-5(尺),BD=10(尺)在Rt△ABD中,由勾股定理得AB2+BD2=AD2,即(x-4)2+102=x2,解得x=14.5,即绳索长为14.5尺.2.方程的应用:小青去植物园春游,回来以后爸爸问他春游花掉多少钱。

小青并不直接回答,却调皮地说:“我带出去的钱正好花了一半,剩下的元数是带出去角数的一半,剩下的角数与带出去元数相同。

”爸爸踌躇一下,有些为难。

你能否帮助他把钱数算出来,小青到底带了多少钱?花了多少钱?还剩多少钱?方法一:设带出去x元,y角.根据"剩下的元数是带出去角数的一半"知道y是偶数花了的钱分x为奇数与偶数情况(1)x是奇数时候,花一半就是花了=剩下=(x-1)/2元,(y/2+5)角根据后面两句话知道,剩下=y/2元,x角有二元一次方程组:(x-1)/2=y/2,y/2+5=x 解得x=9,y=8(2)x是偶数时候,花一半就是花了=剩下=x/2元,(y/2+5)角剩下的同上面情况有二元一次方程组:x/2=y/2,y/2+5=x 解得x=y=10 但是没有10角钱说法不符合实际(舍)∴答案是9元8角方法二:设带出去X元Y角,还剩a元b角按照用掉一半还剩一半的等式:10a + b = ( 10x + y)/ 2又因为: a = y / 2b = x带入等式化简即可得:x / y = 9 / 8因为 y 只能是小于10的整数所以,小青带了9元8角!用了4元9角,还剩4元9角!3.工资的选择:假设你得到一份新的工作,老板让你在下面两种工资方案中进行选择:(A)工资以年薪计,第一年为4000美元以后每年加800美元;(B)工资以半年薪计,第一个半年为2000美元,以后每半年增加200美元。

你选择哪一种方案?为什么?答案:第二种方案要比第一种方案好得多4.我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。

经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。

每间住了人的客房每日所需服务、维修等项支出共计40元。

问题:我们该如何定价才能赚最多的钱?答案:日租金360元。

虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入;扣除50间房的支出40*50=2000元,每日净赚16000元。

而客满时净利润160*80-40*80=9600元。

当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。

第二讲数学中的悖论“悖论”也可叫“逆论”,或“反论”,这个词的意义比较丰富,它包括一切与人的直觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比。

悖论有三种主要形式。

1.一种论断看起来好像肯定错了,但实际上却是对的(佯谬)。

2.一种论断看起来好像肯定是对的,但实际上却错了(似是而非的理论)。

3.一系列推理看起来好像无懈可击,可是却导致逻辑上自相矛盾。

悖论有点像魔术中的变戏法,它使人们在看完之后,几乎没有—个不惊讶得马上就想知道:“这套戏法是怎么搞成的?”当把技巧告诉他时,他就会不知不觉地被引进深奥而有趣的数学世界之中。

正因为如此,悖论就成了一种十分有价值的教学手段。

悖论是属于领域广阔、定义严格的数学分支的一个组成部分,这一分支以“趣味数学”知名于世。

这就是说它带有强烈的游戏色彩。

然而,切莫以为大数学家都看不起“趣味数学”问题。

欧拉就是通过对bridge-crossing之谜的分析打下了拓扑学的基础。

莱布尼茨也写到过他在独自玩插棍游戏(一种在小方格中插小木条的游戏)时分析问题的乐趣。

希尔伯特证明了切割几何图形中的许多重要定理。

冯·纽曼奠基了博弈论。

最受大众欢迎的计算机游戏—生命是英国著名数学家康威发明的。

爱因斯坦也收藏了整整一书架关于数学游戏和数学谜的书。

悖论一览1.理发师悖论(罗素悖论):某村只有一人理发,且该村的人都需要理发,理发师规定,给且只给村中不自己理发的人理发。

试问:理发师给不给自己理发?如果理发师给自己理发,则违背了自己的约定;如果理发师不给自己理发,那么按照他的规定,又应该给自己理发。

这样,理发师陷入了两难的境地。

2.芝诺悖论——阿基里斯与乌龟:公元前5世纪,芝诺用他的无穷、连续以及部分和的知识,引发出以下著名的悖论:他提出让阿基里斯与乌龟之间举行一场赛跑,并让乌龟在阿基里斯前头1000米开始。

假定阿基里斯能够跑得比乌龟快10倍。

比赛开始,当阿基里斯跑了1000米时,乌龟仍前于他100米;当阿基里斯跑了下一个100米时,乌龟依然前于他10米……所以,阿基里斯永远追不上乌龟。

3.说谎者悖论:公元前6世纪,古希腊克里特岛的哲学家伊壁门尼德斯有如此断言:“所有克里特人所说的每一句话都是谎话。

”如果这句话是真的,那么也就是说,克里特人伊壁门尼德斯说了一句真话,但是却与他的真话——所有克里特人所说的每一句话都是谎话——相悖;如果这句话不是真的,也就是说克里特人伊壁门尼德斯说了一句谎话,则真话应是:所有克里特人所说的每一句话都是真话,两者又相悖。

所以怎样也难以自圆其说,这就是著名的说谎者悖论。

公元前4世纪,希腊哲学家又提出了一个悖论:“我现在正在说的这句话是真的。

”同上,这又是难以自圆其说!4.跟无限相关的悖论:{1,2,3,4,5,…}是自然数集:{1,4,9,16,25,…}是自然数平方的数集。

这两个数集能够很容易构成一一对应,那么,在每个集合中有一样多的元素吗?5.伽利略悖论:我们都知道整体大于部分。

由线段BC上的点往顶点A连线,每一条线都会与线段DE(D点在AB 上,E点在AC上)相交,因此可得DE与BC一样长,与图矛盾。

为什么?6.谷堆悖论:显然,1粒谷子不是堆;如果1粒谷子不是堆,那么2粒谷子也不是堆;如果2粒谷子不是堆,那么3粒谷子也不是堆;……如果99999粒谷子不是堆,那么100000粒谷子也不是堆;7、“意外绞刑”悖论:“一名囚犯被法官告知将于周一到周五间的某一天被绞死。

法官并且声明说:绞刑的具体日期将是完全出人意料的。

这个囚犯非常聪明 (也许以前是逻辑学教授),他由此推断出他根本不会被绞死,为什么?他由此推断出绞刑一定不会安排在周五,因为否则的话,前四天一过他就知道绞刑的具体日期了,但法官说过具体日期会是完全出人意料的。

法官是不会撒谎的,因此绞刑不可能在周五。

排除了周五,就只剩下四天了。

但是依据同样的推理,周四也可以被排除掉,...,以此类推,最终每一天都可以排除掉。

于是他得出令人欣慰的结论:他根本不会被绞死。

可是到了周二法官却突然宣布执行绞刑,大大出乎了他的意料!而这,恰恰证明法官的确没有撒谎。

”1、小丁和小明、小红三个小朋友并排在有灰尘的楼梯上同时从顶上向下走。

小明一步下2阶,小红一步下3阶,小丁一步下4阶,如果楼顶和楼底均有所有三个人的脚印,那么仅有一个人脚印的楼梯最少有几级?2、偶数的难题在很久以前,一个年迈的国王要为自己的独生公主选女婿,一时应者如云。

国王于是想出了比武招亲的办法。

经过文试、武试,三个英俊的小伙子成为最后的人选。

要从这三个难分高下的小伙子中选出一个女婿来,可真难为了国王。

他绞尽脑汁想出了一个方法。

国王命人拿出一个4*4的方格,将16枚棋子依次放在16个方格中。

国王对三个小伙子说:“现在你们从这16枚棋子中随便拿去6个,但要保证纵、横行列中留下的都是偶数枚棋子。

这三个小伙子犯难了,最后,其中一个小伙子终于解开了这道难题,迎娶了公主。

请问这个小伙子是怎样解开这道难题的?第三讲:对称——自然美的基础在丰富多彩的物质世界中,对于各式各样的物体的外形,我们经常可以碰到完美匀称的例子。

它们引起人们的注意,令人赏心悦目。

每一朵花,每一只蝴蝶,每一枚贝壳都使人着迷;蜂房的建筑艺术,向日葵上种子的排列,以及植物茎上叶子的螺旋状颁都令我们惊讶。

仔细的观察表明,对称性蕴含在上述各种事例之中,它从最简单到最复杂的表现形式,是大自然形式的基础。

花朵具有旋转对称的性征。

花朵绕花心旋转适当位置,每一花瓣会占据它相邻花瓣原来的位置,花朵就自相重合。

旋转时达到自相重合的最小角称为元角。

不同的花这个角不一样。

例如梅花为72°,水仙花为60°。

“对称”在生物学上指生物体在对应的部位上有相同的构造,分两侧对称(如蝴蝶),辐射对称(放射虫,太阳虫等)。

我国最早记载了雪花是六角星形。

其实,雪花形状千奇百怪,但又万变不离其宗(六角星)。

既是中心对称,又是轴对称。

很多植物是螺旋对称的,即旋转某一个角度后,沿轴平移可以和自己的初始位置重合。

例如树叶沿茎杆呈螺旋状排列,向四面八方伸展,不致彼此遮挡为生存所必需的阳光。

这种有趣的现象叫叶序。

向日葵的花序或者松球鳞片的螺线形排列是叶序的另一种表现形式。

“晶体闪烁对称的光辉”,这是俄国学者费多洛夫的名言。

无怪乎在古典童话故事中,奇妙的宝石交织着温馨的幻境,精美绝伦,雍容华贵。

在王冠上,以其熠熠光彩向世人炫耀,保持永久不衰的魅力。

第四讲:斐波那契数列斐波那契数列在自然界中的出现是如此地频繁,人们深信这不是偶然的。

(1)细察下列各种花,它们的花瓣的数目具有斐波那契数:延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花。

(2)细察以下花的类似花瓣部分,它们也具有斐波那契数:紫宛、大波斯菊、雏菊。

斐波那契数经常与花瓣的数目相结合:3………………………百合和蝴蝶花5………………………蓝花耧斗菜、金凤花、飞燕草8………………………翠雀花13………………………金盏草21………………………紫宛34,55,84……………雏菊(3)斐波那契数还可以在植物的叶、枝、茎等排列中发现。

例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数。

相关文档
最新文档