小学数学中常见的几种数学思想方法

合集下载

小学数学中体现的数学思想与方法有哪些

小学数学中体现的数学思想与方法有哪些

小学数学中体现的数学思想与方法有哪些在小学数学中,体现了许多数学思想与方法,以下是其中一些例子:1.抽象思维:小学数学强调从具体的事物中提取共性、去除特殊性,实现抽象思维。

例如,学习数的运算时,通过将具体的事物抽象成数字,进行运算操作;学习几何时,通过将具体的图形抽象成几何形状,并进行相应的运算和推理。

2.归纳与演绎:小学数学通过归纳与演绎的方法培养学生的逻辑思维能力。

通过观察和总结,归纳出事物之间的规律,并进一步演绎出更一般的结论。

例如,学习数列时,通过观察数列中的规律,归纳出通项公式,从而推算出数列的任意项。

3.探究性学习:小学数学注重培养学生的探究精神和问题解决能力。

通过设计问题和情境,引导学生主动思考和探索。

例如,教学中可以使用教具和故事情境,让学生通过操作、实践和讨论解决问题。

这种学习方式能够激发学生的学习兴趣,增强他们的思考能力和创新能力。

4.决策与推理:小学数学通过决策问题和推理问题的解决过程,培养学生的逻辑思维和批判思维能力。

通过分析问题,寻找解决方案,并进行论证和验证。

例如,在解决实际问题时,学生需要选择合适的数学方法,进行计算和推理,从而得到正确的答案。

5.审美与美感:小学数学通过培养学生的审美意识,提高他们对数学美感的感知和理解能力。

例如,在几何学习中,学生通过观察和欣赏各种几何形状、图案和艺术作品,体验到数学的美妙和魅力。

6.适度抽象与形象思维:小学数学在引导学生进行适度抽象时,也注重发展形象思维。

通过使用具体的物体和图形,辅助学生理解数学概念、规则和运算。

例如,在学习分数时,可以使用物体的切割和图形的绘制,帮助学生形象地理解分数的概念和运算。

7.整体与部分:小学数学注重培养学生分析整体与部分之间的关系与变化的能力。

例如,在学习分数时,学生需要理解分数是整体与部分的关系,能够将一个整体分成几个相等的部分,并掌握分数的基本概念和运算规则。

以上只是一些例子,小学数学中还有许多其他数学思想与方法的体现。

小学数学中常见的数学思想方法有哪些

小学数学中常见的数学思想方法有哪些

小学数学中常见的数学思想方法有哪些1.归纳法:通过观察一般情况,从而推断出普遍规律。

例如,通过寻找一些数列的规律,利用归纳法可以推出数列的通项公式。

2.逆向思维:通过逆向思考问题,从结果出发逆推回起始状态。

逆向思维常用于解决逻辑推理和问题求解。

例如,将一个求和问题转化为找到使得等式成立的数。

3.分解与组合:将一个大问题分解为若干个较小的子问题,然后通过解决子问题得到解决整个问题的方法。

这种思想方法常用于解决复杂的问题,可以降低问题的难度。

4.比较与类比:通过比较或类比不同的情况或对象,找到相似之处或变化的规律,从而解决问题。

例如,可以通过类比找到两个数的最大公约数和两个数的最大公倍数之间的关系。

5.推理与证明:通过逻辑推理和数学证明解决问题。

推理与证明是数学思维中最基本和最重要的方法之一、通过推理和证明,可以建立数学定理和推理规则,从而解决更复杂的问题。

6.抽象与泛化:将问题抽象为一般性质或模式,从而简化问题,找到问题的本质。

抽象与泛化是数学思想中的核心思维方法之一,通过抽象和泛化,可以建立数学概念和定理。

7.反证法:通过反证得到正证结论。

反证法常用于证明一些结论的唯一性或否定性。

通过假设结论不成立,然后推导出与已知条件矛盾的结果,从而得到结论的成立性。

8.猜想与验证:通过猜想和验证的方法解决问题。

猜想与验证是一种探索性的方法,通过发现规律和验证猜想的正确性,找到问题的解决方法。

9.近似与估算:通过近似和估算的方法解决问题。

近似与估算是数学思维中的实用方法之一,可以在缺乏精确计算方法时得到近似的结果。

以上是小学数学中常见的数学思想方法,请注意,数学思想方法的具体应用还受到问题性质、题型以及学生认识和思维水平的影响,因此,教学中还应根据具体情况灵活运用。

1小学数学中常见的数学思想方法有哪些

1小学数学中常见的数学思想方法有哪些

1小学数学中常见的数学思想方法有哪些数学思想方法是指在解决数学问题时所运用的思维方式和方法步骤。

下面是小学数学中常见的数学思想方法:1.观察法:通过观察问题中的数据和现象,发现问题的规律和特点。

可以通过观察图形、数据表格、实物等来推测规律。

2.归纳法:通过观察若干个具体的数学问题,总结问题中的共同特点,得出一般规律。

采用归纳法可以从特例推广到一般性结论。

3.推理法:通过逻辑推理的方式,从已知的前提出发,得出结论。

可以采用直接推理法、间接推理法、逆否命题推理法等。

4.分类法:将问题中的元素或对象进行分类,找出每个类别的共性和差异性。

通过分类的方法,可以更好地理解和解决问题。

5.拆解法:将复杂的问题拆解成多个简单的小问题进行分析解决。

通过拆解问题的方法,可以更好地理清思路和解题思路。

6.类比法:将问题中的数学概念和方法与已知的类似问题进行对比,从而找到解决问题的方法和思路。

7.假设法:在解决问题时,可以先进行一定的假设,然后验证是否成立。

通过假设法可以引导学生尝试不同的解题思路。

8.反证法:通过假设问题的反面情况,证明原命题的成立。

采用反证法可以理解和解决一些反常或特殊情况下的问题。

9.逆向思维:将问题的要求逆转或倒过来思考。

逆向思维可以帮助学生从不同的角度思考问题,发现问题的本质。

10.前推法:从已知条件出发,通过按照题目要求的步骤和顺序逐步推导,最终得出结论。

11.空想法:通过想象和设想一些与实际情况不一样的情景或条件,以拓宽解决问题的思路。

12.再化归纳法:对已知的规律和经验进行归纳总结,再应用到新的问题中。

通过再化归纳法可以更好地理解和应用数学知识。

这些数学思想方法在小学数学中常常被运用。

学生通过学习和应用这些方法,可以培养出系统的数学思维和解决问题的能力。

小学数学中常见的数学思想方法有哪些?

小学数学中常见的数学思想方法有哪些?

小学数学中常见的数学思想方法有哪些?答;1、集合思想。

集合思想对数学的影响巨大,很多的数学分支都需要用集合语言表达。

①教学中要注重集合概念的渗透。

例如,认识“2”的教学中,例举多个两个物体,这多个两个物体的所在类的代表就是“2”。

又如六头猪和六只狗等所在类的代表就是“6”。

这里的2、6就是集合的基数。

”②教学中要注重集合关系的渗透。

如:一一对应关系,包含关系等。

③教学中要注重集合运算的渗透。

如:加法运算其实就是并集,减法运算的结果就是差集。

2、数形结合思想。

数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。

数与形之间的联系即称为数形结合,或形数结合。

数形结合,主要指的是数与形之间的一一对应关系。

数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。

即“以形助数”或“以数解形”。

作为一种数学思想方法,数形结合的应用一般可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系。

数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决很多数学问题。

①利用数与形的对应来理解数学概念。

例如:认识分数的教学。

②利用数与形的对应解应用题。

例如:画线段图解应用题。

③坐标思想。

用方程表示图形,沟通数形之间的关系。

在教学中要培养学生积极主动地利用数形结合的思想解决问题。

3、函数思想。

函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变化的关系和规律。

函数的思想方法就是提取问题的数学特征,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系,并利用函数的性质研究、解决问题的一种数学思想方法。

在小学阶段学习的对应关系,正、反比例关系中就蕴藏中基本的函数思想。

4、变换与转化思想。

变换与转化思想是中小学数学中最重要的数学思想,充分重视这种数学思想方法在解题中的应用,不但可使问题化繁为简、化难为易,而且还可以提高学生的思维品质,培养学生的创新能力。

浅谈小学数学教学中的数学思想方法

浅谈小学数学教学中的数学思想方法

浅谈小学数学教学中的数学思想方法小学数学教学中的数学思想方法是指在教学过程中,教师引导学生通过观察、比较、抽象、推理、解决问题等一系列思维活动,培养和发展学生的数学思维能力。

以下是几种常见的数学思想方法。

一、分析归纳法:通过观察具体的数学现象,总结规律、归纳规则,从而形成一般性的数学概念和理论。

如在教学中,通过观察一组数据,学生可以通过分析归纳,得出相应的规律,并运用到解决问题中。

二、抽象方法:将具体问题中的某些特征抽象出来,形成一般性的数学模型,从而解决类似的问题。

在教学中,通过将具体的几何图形抽象成图形的性质、关系等概念,可以解决各种不同几何问题。

三、推理方法:通过已知条件和数学方法,推导出未知结论,通过逻辑推理的过程来解决问题。

在教学中,通过已知两个角相等推导出两个角的性质,从而解决各类相似三角形的问题。

四、问题解决方法:通过让学生参与问题的提出、分析和解决,培养学生的数学思维能力和解决实际问题的能力。

在教学中,设计一些实际生活中的问题,让学生运用所学的数学知识解决问题,培养他们的创造思维和解决问题的能力。

五、探究方法:通过给学生提供一些有趣的数学问题,让学生自主探究、发现数学规律和方法,从而激发学生的学习兴趣和积极性。

在教学中,通过给学生提供一些有趣的数学游戏,让学生发现其中的数学规律,并从中得到启示。

数学思想方法是在小学数学教学中培养学生主动思考、发现问题、解决问题的能力的重要途径。

教师需要在教学中注重培养学生的观察力、归纳总结能力、抽象思维能力、逻辑推理能力和问题解决能力等各方面的数学思维方法,以提高学生的数学素养和综合能力。

教师还应根据学生的实际情况,采取不同的教学手段和方法,灵活运用各种数学思想方法,激发学生的学习兴趣,促进学生的数学思维能力的发展。

小学常用的数学思想

小学常用的数学思想

小学常用的数学思想1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。

类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。

6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。

如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。

如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。

又如三角形可以按边分,也可以按角分。

不同的分类标准就会有不同的分类结果,从而产生新的概念。

对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

小学数学的数学思想

小学数学的数学思想

小学数学的数学思想小学阶段的数学教程中,学生体验到的数学思想有:数形结合思想、符号化思想、假设思想、转化思想、对应思想、归纳思想、类比思想、统计思想等等。

1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。

类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。

6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。

如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。

如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。

小学数学思想方法有哪些

小学数学思想方法有哪些

小学数学思想方法有哪些小学数学是培养学生数学思维能力和逻辑推理能力的重要阶段。

为了帮助学生培养正确的数学思想和方法,我们可以运用以下几种思想方法。

一、观察与发现思想方法二、综合思想方法综合思想方法强调把多种知识和方法进行综合运用,从而解决复杂的问题。

例如,在解决一个应用题时,学生可以结合整数、分数、小数等数的知识,运用四则运算的基本法则进行综合计算。

三、抽象思维方法抽象思维方法是指学生通过抽象事物的共同特点和规律,将问题进行归纳和概括,从而进行类比和推理。

例如,学生可以通过观察和比较三角形、四边形、五边形等多边形的特点,得出它们的共同规律,然后解决一些有关多边形的问题。

四、归纳与演绎思想方法归纳与演绎思想方法是指学生通过归纳和总结大量的具体事例和数据,从而发现其中的共同规律。

例如,学生可以通过观察和总结两个数之间的运算特点,得出数的运算规律,然后根据这个规律解决一些计算问题。

五、借助工具思想方法借助工具思想方法是指学生可以通过使用具体的工具,如尺子、天平等来帮助解决问题。

例如,在学习长度的比较时,学生可以使用尺子来测量和比较两个物体的长度,以便更直观地理解大小关系。

六、探究与实践思想方法探究与实践思想方法是指学生通过实际操作和探索,从而获得数学知识和解决问题的能力。

例如,在学习几何形状时,学生可以通过剪纸、折纸等手工活动,来探索不同形状的特点和性质。

以上是小学数学常用的思想方法,通过合理运用这些方法,可以帮助学生更好地理解和掌握数学知识,提高解决问题的能力。

同时,在教学中也需要注意灵活运用这些方法,根据学生的实际情况和能力发展的要求,选择适合的思想方法进行教学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学中常见的几种数学思想方法
我们的教学实践表明:小学数学教育的现代化,主要不是内容的现代化,而是数学思想及教育手段的现代化,加强数学思想的教学是基础数学教育现代化的关键。

所谓数学思想,是指人们对数学理论与内容的本质认识,它直接支配着数学的实践活动。

所谓数学方法,是指某一数学活动过程的途径、程序、手段。

数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段。

以上合称为数学思想方法。

一、小学数学教学中渗透数学思想方法的必要性小学教学教材是数学教学的显性知识系统,数学思想方法是数学教学的隐性知识系统。

许多重要的法则、公式,教材中只能看到漂亮的结论,许多例题的解法,也只能看到巧妙的处理,而看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的心智活动过程。

虽然数学知识本身是非常重要的,但是它并不是唯一的决定因素,真正对学生以后的学习、生活和工作长期起作用,并使其终生受益的是数学思想方法。

因此,向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口。

二、在小学数学课堂中如何运用数学思想方法 1.符号思想用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学的内容,这就是符号思想。

符号思想是将复杂的文字叙述用简洁明了的字母公式表示出来,便于记忆,便于运用。

把客观存在的事物和现象及它们相互之间的关系抽象概括为数学符号和公式,有一个从具体到表象再抽象的过程。

在数学中各种量的关系,量的变化以及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式来表达大量的信息。

例1:“六一”联欢会上,小明按照3个红气球、2个黄气球、1个蓝气球的顺序把气球串起来装饰教室。

你能知道第24个气球是什么颜色的吗?解决这个问题可以用书写简便的字母a、b、c分别表示红、黄、蓝气球,则按照题意可以转化成如下符号形式:aaabbc aaabbc aaabbc……从而可以直观地找出气球的排列规律并推出第24个气球是蓝色的。

这是符号思想的具体体现。

2.化归思想化归思想是数学中最普遍使用的一种思想方法,其基本思想是:把甲问题的求
解,化归为乙问题的求解,然后通过乙问题的解反向去获得甲问题的解。

它的基本原则是:化难为易,化生为熟,化繁为简。

例2:狐狸和黄鼠狼进行跳跃比赛,狐狸每次可向前跳4米,黄鼠狼每次可向前跳6米。

它们每秒种都只跳一次。

比赛途中,从起点开始,每隔21米设有一个陷阱,当它们之中有一个掉进陷阱时,另一个跳了多少米? 这是一个实际问题,但通过分析知道,当狐狸(或黄鼠狼)第一次掉进陷阱时,它所跳过的距离即是它每次所跳距离4(或6)米的整倍数,又是陷阱间隔21米的整倍数,也就是4和21的“最小公倍数”(或6和21的“最小公倍数”)。

针对两种情况,再分别算出各跳了几次,确定谁先掉入陷阱,问题就基本解决了。

上面的思考过程,实质上是把一个实际问题通过分析转化、归结为一个求“最小公倍数”的问题,即把一个实际问题转化、归结为一个数学问题,这种化归思想正是数学能力的表现之一。

例3:一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就这样每次都喝了上一次剩下的一半。

甲五次一共喝了多少牛奶? 此题若把五次所喝的牛奶加起来,即++++就为所求,但这不是最好的解题策略。

我们先画一个正方形,并假设它的面积为单位“1”,将一半面积涂为阴影,然后不断将其剩下面积中的一半涂为阴影,最后至结束,所有阴影面积之和化归为1-,这就是所求。

这里形式上渗透了数形结合思想,本质上其实就是化归思想中化难为易的原则的体现。

3.转换思想转换思想是一种解决数学问题的重要策略,是由一种形式变换成另一种形式的思想方法。

对问题进行转换时,既可转换已知条件,也可转换问题的结论。

用转换思想来解决数学问题,转换仅是第一步,第二步要对转换后的问题进行求解,第三步要将转换后问题的解答反演成问题的解答。

例4:2.8÷÷÷0.7,直接计算比较麻烦,而分数的乘除运算比小数方便,故可将原问题转换为:×××,这样,利用约分就能很快获得本题的解。

例5:某班上午缺席人数是出席人数的,下午因有1人请病假,故缺席人数是出席人数的。

问此班有多少人?此题因上下午出席人数起了变化,解题遇到了困难。

如将上午缺席人数转换成是全班人数的=,下午缺席人数是全班人数的=,这样,很快发现其本质关系:与的差是由于缺席1人造成的,故全班人数为:1÷(-)=56(人)。

4.类比思想数学上的类
比思想是指依据两类数学对象的相似性,将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁,从而可以激发起学生的创造力。

例6:把一个立方体切成27个相等的小立方体,如果在切的过程中不允许调整,很显然,要6刀才能切成,现在的问题是,如果允许在切的过程中调整,即第一刀切完后,如果你愿意的话,切成的两部分可以重叠到一起后再切第二刀,在切第三刀之前,也可以把前两刀切出的部分任意重叠,如此类推。

请问,按这样的切法,是否可以用少于6刀切出27个相等的小立方体? 分析这个问题并不容易,一是三维空间对人的想象力要求比较高,二是各种切法情况比较复杂,难于一一分析。

我们不妨用类比的方法,先考虑一个二维情况下的类似问题:把一个正方形分成9个大小一样的小正方形,如果的切的时候不能调整,容易知道,要四刀。

现在的问题是,如果可以调整,可以将切出的部分重叠后再切,可以少于四刀吗?
您去试一试就知道,这个问题还是不容易解决! 一不做,二不休,考虑一维情况下类似的题目:把一条线段平均分成三段,不能调整的话,两刀?如果能调整呢?情况如何?你很快可以发现,还是要两刀!怎么理解这种现象?您很快会找到中间那段,这段有两个端点,每个端点处总是要切一下的! 返回去想切正方形的事!也看中间那个正方形,它有四条边,不论你怎么切,每一刀总只能切一条边!于是4刀是最少的! 再看三维的情况:也考虑最中间的正方体。

它有六个面,不论你怎么切,每刀最多切出一个面来,那么最少要六刀! 问题就这样解决了! 5.归纳思想在研究一般性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。

在解决数学问题时运用归纳思想,既可发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。

因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。

例7:在教学“三角形内角和”时,先由直角三角形、等边三角形算出其内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度。

这就是运用归纳的思想方法。

相关文档
最新文档