小学数学常见数学思想方法归纳与整理
小学教学中有哪些常见的数学思想与方法?如何应用?

小学教学中有哪些常见的数学思想与方法?如何应用?小学数学学习方法七点总结小学一年级数学是基础,养成良好的学习习惯运用良好的学习方法,让小朋友们拥有扎实的语文知识是关键!这是一篇语文学习方法归纳的文章,欢迎大家阅读!小结一下小学数学学习方法:1.求教与自学相结合在学习过程中,既要争取教师的指导和帮助,但是又不能处处依靠教师,必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。
2.学习与思考相结合在学习过程中,对课本的内容要认真研究,提出疑问,追本穷源。
对每一个概念、公式、定理都要弄清其来龙去脉、前因后果,内在联系,以及蕴含于推导过程中的数学思想和方法。
在解决问题时,要尽量采用不同的途径和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。
3.学用结合,勤于实践在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程;对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。
4。
博观约取,由博返约课本是学生获得知识的主要来源,但不是唯一的来源。
在学习过程中,除了认真研究课本外,还要阅读有关的课外资料,来扩大知识领域。
同时在广泛阅读的基础上,进行认真研究。
掌握其知识结构。
5.既有模仿,又有创新模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有的框框,不囿于现成的模式。
6.及时复习,增强记忆课堂上学习的内容,必须当天消化,要先复习,后做练习。
复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。
7.总结学习经验,评价学习效果学习中的总结和评价,是学习的继续和提高,它有利于知识体系的建立、解题规律的掌握、学习方法和态度的调整和评判能力的提高。
在学习过程中,应注意总结听课、阅读和解题中的收获和体会。
小学数学中常见的数学思想方法有哪些

小学数学中常见的数学思想方法有哪些1.归纳法:通过观察一般情况,从而推断出普遍规律。
例如,通过寻找一些数列的规律,利用归纳法可以推出数列的通项公式。
2.逆向思维:通过逆向思考问题,从结果出发逆推回起始状态。
逆向思维常用于解决逻辑推理和问题求解。
例如,将一个求和问题转化为找到使得等式成立的数。
3.分解与组合:将一个大问题分解为若干个较小的子问题,然后通过解决子问题得到解决整个问题的方法。
这种思想方法常用于解决复杂的问题,可以降低问题的难度。
4.比较与类比:通过比较或类比不同的情况或对象,找到相似之处或变化的规律,从而解决问题。
例如,可以通过类比找到两个数的最大公约数和两个数的最大公倍数之间的关系。
5.推理与证明:通过逻辑推理和数学证明解决问题。
推理与证明是数学思维中最基本和最重要的方法之一、通过推理和证明,可以建立数学定理和推理规则,从而解决更复杂的问题。
6.抽象与泛化:将问题抽象为一般性质或模式,从而简化问题,找到问题的本质。
抽象与泛化是数学思想中的核心思维方法之一,通过抽象和泛化,可以建立数学概念和定理。
7.反证法:通过反证得到正证结论。
反证法常用于证明一些结论的唯一性或否定性。
通过假设结论不成立,然后推导出与已知条件矛盾的结果,从而得到结论的成立性。
8.猜想与验证:通过猜想和验证的方法解决问题。
猜想与验证是一种探索性的方法,通过发现规律和验证猜想的正确性,找到问题的解决方法。
9.近似与估算:通过近似和估算的方法解决问题。
近似与估算是数学思维中的实用方法之一,可以在缺乏精确计算方法时得到近似的结果。
以上是小学数学中常见的数学思想方法,请注意,数学思想方法的具体应用还受到问题性质、题型以及学生认识和思维水平的影响,因此,教学中还应根据具体情况灵活运用。
小学四年级数学学习方法

小学四年级数学学习方法5篇小学四年级数学学习方法精选篇11、利用生活中的数学体现,激发孩子内在的学习动机数学贯穿与日常生活,家长可在与孩子的日常生活接触中观察孩子的喜好,融入数学思维引导孩子主动学习。
并有意识地进行思考、猜想、讨论与动手动脑等,利用孩子感兴趣喜欢的元素作为数学思维的承担载体,激发孩子内在的学习动机,使孩子感受到相互学的重要和有趣,使他们对数学学习更加主动积极。
2、抓住数学敏感期,循序渐进,发展数学思维研究证明,儿童在4岁前后会出现一个“数学敏感期”。
他们会对数字概念,比如数、数字、数量关系、排列顺序、数运算、形体特征等突然发生极大兴趣,对它们的种种变化有着强烈的求知欲,这标志着孩子的数学敏感期到来了。
错过了这个“数学敏感期”,有的人一生都害怕数学,一提数学就头疼。
而在面对“数学”这种纯抽象概念的知识时,让孩子觉得容易的学习方法,也只有以具体、简单的实物为起始。
由感官的训练,从“量”的实际体验,到“数”的抽象认识。
自少到多,进入加、减、乘、除的计算,逐渐培养孩子的数学心智和分析整合的逻辑概念。
让孩子在亲自动手中,先由对实物的多与少、大和小,求得了解,在自然而然地联想具体与抽象间的关系。
3、讨论合作,共同发散数学思维每个孩子都有其独特的天马行空的思维能力,在学校学习中,就可以借助这种思维的差异性,让孩子参与到团队合作中来,共同堆一座积木或进行折纸游戏,共同探讨知识交流合作,利用空间思维与多彩丰富的具象结合,在互助交流中动手动脑、发散思维的同时建构自己的经验和知识,参与到团队合作中来,有助于语言能力的增强,形成自己的认知结构和思维系统。
孩子在小时候以形象思维为主,喜欢把一切抽象问题都形象化,但这不利于抽象思维的培养,那么培养孩子良好的思维习惯就很重要,具体到数学思维,就是要培养孩子及时总结分析问题和解决问题的方法,按步思维,有意识的逐步培养孩子的抽象思维能力和思维品质,加强训练。
小学四年级数学学习方法精选篇2六年级是备战小升初的最后阶段,学生要归纳和梳理知识点,记清楚概念。
小学数学知识点总结归纳大全

小学数学知识点总结归纳大全一年级的知识点及重难点(一)数与计算(1)20以内数的认识。
加法和减法。
数数。
数的组成、顺序、大小、读法和写法。
加法和减法。
连加、连减和加减混合运算。
(2)100以内数的认识。
加法和减法。
数数。
个位、十位。
数的顺序、大小、读法和写法。
两位数加、减整十数和两位数加、减一位数的口算。
两步计算的加减式题。
(二)量与计量钟面的认识(整时)。
人民币的认识和简单计算。
(三)几何初步知识长方体、正方体、圆柱和球的直观认识。
长方形、正方形、三角形和圆的直观认识。
(四)应用题比拟容易的加法、减法一步计算的应用题。
多和少的应用题(抓有效信息的才能)(五)理论活动选择与生活亲密联络的内容。
例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。
二年级的知识点和重难点(一)数与计算(1)两位数加、减两位数。
? 两位数加、减两位数。
加、减法竖式。
两步计算的加减式题。
(2)表内乘法和表内除法。
? 乘法的初步认识。
乘法口诀。
乘法竖式。
除法的初步认识。
用乘法口诀求商。
除法竖式。
有余数除法。
两步计算的式题。
(3)万以内数的读法和写法。
? 数数。
百位、千位、万位。
数的读法、写法和大小比拟。
(4)加法和减法。
?加法,减法。
连加法。
加法验算,用加法验算减法。
(5)混合运算。
? 先乘除后加减。
两步计算式题。
小括号。
(二)量与计量时、分、秒的认识。
米、分米、厘米的认识和简单计算。
千克(公斤)的认识(三)几何初步知识直线和线段的初步认识。
? 角的初步认识。
直角。
(四)应用题加法和减法一步计算的应用题。
? 乘法和除法一步计算的应用题。
?比拟容易的两步计算的应用题。
(五)理论活动与生活亲密联络的内容。
例如调查家中本周各项消费的开支情况,想到哪些数学问题。
三年级知识点和重难点(一)数与计算(1)一位数的乘、除法。
一个乘数是一位数的乘法(另一个乘数一般不超过三位数)。
0的乘法。
连乘。
除数是一位数的除法。
最新-北师大版小学数学六年级(全册)知识点归纳 精品

北师大版小学数学六年级(全册)知识点第一单元圆1、使学生认识圆的特征:圆的半径、直径、圆心。
认识在同圆内半径和直径的关系。
知道圆是轴对称图形,有无数条对称轴,而这些对称轴都过圆心。
知道生活中有了圆才使我们的生活更美好。
2、认识同心圆、等圆。
知道圆的位置由圆心决定,圆的大小由半径或直径决定。
等圆的半径相等,位置不同;而同心圆的半径不同,位置相同。
3、使学生知道圆的周长和圆周率的含义,掌握圆的周长的计算公式,能够正确地计算圆的周长.介绍祖冲之在圆周率研究上的成就,渗透爱国主义教育。
在运用上,要能根据圆的周长算直径或半径,会算半圆的周长:圆的周长×1/2+直径。
会求组合图形的周长。
4、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
5、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。
会灵活运用圆的面积公式。
已知圆的周长会算圆的面积,会求组合图形的面积。
会算圆环的面积,并且知道在周长相等的情况下,正方形、长方形、圆三种图形中,圆的面积最大。
6、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
第二单元百分数的应用本单元重点讲解百分数在生活中的应用,知识点为:1、知道百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
百分数通常不写成分数形式,而用百分号“%”表示;百分数有时也定义为分母是100的分数,但百分数与分数是有区别的:分数既可表示具体的量,又可表示两个数量间的倍比关系;然而百分数只能表示两个数量间的倍比关系;所以是不名数,也就是不能带单位的数。
2、在具体情景中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。
3、能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。
4、知道出勤率、出粉率、成活率等百分数的意义及在实际生活中的应用,会计算这种百分数。
人教版小学四年级数学上册知识点归纳汇总

人教版小学四年级数学上册知识点归纳汇总本文为人教版小学四年级数学上册知识点归纳汇总,旨在帮助同学们回顾本学期的研究内容,并在期末考试中取得好成绩。
第一单元:大数的认识一、亿以内数的认识1、计数单位包括一(个)、十、百、千、万……亿。
2、数位是指数字按照一定顺序排列的位置。
3、数级是每四个数位为一级,包括个级、万级、亿级等。
4、十进制计数法是指每相邻两个计数单位之间进率都是十的计数方法。
数级和数位的区别在于,数位是指数字排列的位置,而数级是每四个数位为一级的概念。
二、含有两级的数的读法1、先读万级,再读个级。
2、万级的数按照个级的读法来读,再在后面加上一个“万”字。
3、每级末尾不管有几个,都不读;其他数位上有一个或连续几个,都只读一个。
三、亿以内数的写法1、先写万级,再写个级。
2、哪个数位上一个单位也没有,就在那个数位上写。
四、比较两个数的大小1、位数高的数大。
2、位数相同的数,从最高位比起,最高位上的数大的那个数就大,如果最高位上的数相同,就比较下一个数位上的数。
五、四舍五入求近似数的方法删除了明显有问题的段落,对每段话进行了简单的改写,使其更加通顺易懂。
角的定义:当一条射线绕着它的端点旋转形成的图形被称为角,其顶点为角的顶点,两条射线为角的边,符号为∠。
角的度量:角的单位为度,人们将圆平均分成360份,将其中1份所对的角作为度量角的单位,记作1°。
量角器是将半圆分成180等份制成的,其中心和°刻度线用于量角的步骤,即将量角器的中心与角的顶点重合,°刻度线与角的一条边重合,角的度数即为量角器上的刻度。
角的分类:角可以看作由一条射线绕着它的端点从一个位置旋转到另一个位置所成的图形。
根据旋转的角度不同,角可分为直角(1直角=90°)、平角(1平角=180°)、周角(1周角=360°)、锐角(小于90°)和钝角(大于90°小于180°)。
常用的数学思想方法

常用的数学思想方法常用的数学思想方法大全在数学的学习过程中,有哪些常见的思想方法呢?下面是店铺网络整理的常见的数学思想方法以供大家学习。
常用的数学思想方法篇11、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。
这种思维过程通常称为“执果寻因”8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”9、演绎法:由一般到特殊的推理方法。
小学数学思想方法有哪些

小学数学思想方法有哪些数学作为一门重要的学科,对于小学生来说,既是一种学习工具,也是一种思维方式的培养。
在学习数学的过程中,培养学生的数学思想方法至关重要。
那么,小学数学思想方法有哪些呢?下面我们来一一探讨。
首先,小学数学思想方法之一是逻辑思维。
数学是一门严谨的学科,逻辑思维是数学思维的基础。
在学习数学的过程中,学生需要培养严密的逻辑思维能力,学会分析问题、归纳规律、推理论证。
例如,在解决数学题目时,学生需要按部就班地进行思考,找出问题的关键点,进行逻辑推理,找出解题的正确方法。
这种逻辑思维方法不仅能够帮助学生解决数学问题,也能够培养学生的严谨思维能力,对学习其他学科也大有裨益。
其次,小学数学思想方法之二是抽象思维。
数学是一门抽象的学科,学生需要具备一定的抽象思维能力。
在学习数学的过程中,学生需要将具体的问题进行抽象,找出其中的共性和规律。
例如,在学习几何图形的时候,学生需要将具体的图形进行抽象,找出它们的共同特点,从而得出一般性的结论。
这种抽象思维方法不仅能够帮助学生理解数学知识,也能够培养学生的抽象思维能力,提高学生的综合分析问题的能力。
再次,小学数学思想方法之三是直观思维。
数学是一门具有直观性的学科,学生需要具备一定的直观思维能力。
在学习数学的过程中,学生需要通过观察、感觉、想象等方式来理解数学概念和规律。
例如,在学习数学几何的时候,学生需要通过观察图形、感受形状、想象变化等方式来理解几何概念。
这种直观思维方法不仅能够帮助学生理解数学知识,也能够培养学生的直观思维能力,提高学生的空间想象能力。
最后,小学数学思想方法之四是创新思维。
数学是一门富有创造性的学科,学生需要具备一定的创新思维能力。
在学习数学的过程中,学生需要通过灵活的思维方式来解决问题,发现新的方法和规律。
例如,在解决数学问题的时候,学生可以通过不同的思路,找出不同的解题方法,培养自己的创新思维能力。
这种创新思维方法不仅能够帮助学生提高解决问题的能力,也能够培养学生的创新意识,激发学生对数学的兴趣和热情。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学常见数学思想方法归纳与整理
1、对应思想方法
对应是人们对两个集合元素之间的联系的一种思想方法。
小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线(数轴)上的点与表示具体大小的数的一一对应,又如分数应用题中一个具体数量与一个抽象分数(分率)的对应等。
对应思想也是解答一般应用题的常见方法。
2、转化思想方法:
这是解决数学问题的重要策略。
是由一种形式变换成另一种形式的思想方法。
如几何形体的等积变换、解方程的同解变换、公式的变形等。
在计算中也常常用到转化,如甲÷乙(零除外)=甲×,又如除数是小数的除法可以转化成除数是整数的除法来计算。
在解应用题时,常常对条件或问题进行转化。
通过转化达到化难为易、化新为旧、化繁为简、化整为零、化曲为直等。
3.符号化思想方法:
数学的思维离不开符号的形式(图、表),这样可大大地简化和加速思维的进程。
符号化语言是数学高度抽象的要求。
如定律a.b=b.a,公式S=vt等都是用字母表示数和量的一般规律,而运算的本身就是符号化的语言。
所以说,符号化思想方法是数学信息的载体,也是人们进行定量分析和系统分析的一种载体。
4、分类思想方法:
分类的思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如对自然数的分类,若按能否被2整除可分为奇数和偶数,若按约数的个数分则可分为质数、合数和1。
又如三角形既可按角分,也可按边分。
不同的分类标准就会有不同的分类结果,从而产生新的概念。
对数学对象的正确、合理分类取决于分类标准的正确、合理性。
数学知识的分类有助于学生对知识的梳理和建构。
5、比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
6、类比思想方法
类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。
7、代换思想方法:
它是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。
8、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
9、可逆思想方法:
它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。
10、化归思想方法:
把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。
而数学知识联系紧密,新知识往往是旧知识的引申和扩展。
让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。
11、集合思想方法:
集合思想是近代数学的最基本思想,许多重要的数学分支,如数理逻辑、实变函数、概率统计等都建立在集合理论的基础上。
小学数学采用直观手段,利用图形和实物渗透集合的思想。
如在数的认识时出现韦恩图,在讲述公约数和公倍数时孕伏了交集的思想方法。
12、数形结合思想方法:
数和形是数学研究的两个主要对象,数离不开形,形离不开数。
一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化;另一方面复杂的形体可以用简单的数量关系表示。
在解应用题中常常借助线段图的直观帮助分析数量关系。
13、统计思想方法:
数据处理方法随着现代化的发展进程,越来越深入到社会生活的各个领域。
小学数学中的统计图表是一些最基本的统计方法。
求平均数应用题就是体现出数据处理的思想方法。
数学课程标准在学习内容制订中就十分强调要发展学生的统计观念。
14、极限思想方法:
事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。
这个变化过程中存在一个“关节点”,在小学数学讲述圆的周长、面积知识时,就以“极限”为“关节点”。
“化曲为直”地从有限中认识无限,从近似中认识精确,从量变中认识质变。
15、有序的思想方法:
思维要有序,即要按照一定的顺序,有条理地,全面地观察和思考问题。
如果思维无序,观察或思考时杂乱无章,就容易造成思维的重复或遗漏。
例15 左图中有几个三角形?
16、整体思想方法:
对数学问题的观察和分析应从宏观和大处着手,整体把握,化零为整往往不失为一种更便捷更省时的方法。
17、函数的思想方法
恩格斯说:“数学中的转折点是笛卡儿的变数。
有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。
”我们知道,运动、变化是客观事物的本质属性。
函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。
学生对函数概念的理解有一个过程。
在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。
18、运动的思想方法:
运动是永恒的,静止是相对的。
用运动的、变化的眼光看事物,往往最能把握事物间的本质联系。
如几何中的点到线,线到面,面到体,变化的根本原因就在一个“动”字。
19、数学模型的思想方法:
所谓数学模型,是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析、综合概括等思维过程,达到简化和假设。
它是把生活中实际问题转化为数学问题(模型)的一种思想方法。
培养
学生用数学的眼光去认识和处理周围事物或数学问题,乃数学教学的最高境界,也是学生高数学素养所追求的目标。
20、变中抓不变的思想方法:
在纷繁复杂的变化中如何把握数量关系,抓“不变量”作为突破口,往往问题就可迎刃而解。
除了以上介绍的这些主要思想方法外,小学数学还有其它的一些思想方法,如倒推法、类比法、列举法、假定法、实验法等。