中学数学中常见的数学思想有哪些

合集下载

初中数学思想

初中数学思想

中学数学思想数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。

1、函数方程2、数形结合3、分类讨论4、整体思想5、转化思想6、类比思想7、建模思想8、归纳推理9、概率统计思想10、极限思想一、方程函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。

方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。

函数思想是构造函数从而利用函数的性质解题。

二、数形结合“数无形,少直观,形无数,难入微”,利用“数形结合”可使所要研究的问题化难为易,化繁为简。

把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答,这种方法在解析几何里最常用。

三、分类讨论当一个问题因为某种量或图形的情况不同而有可能引起问题的结果不同时,需要对这个量或图形的各种情况进行分类讨论。

比如解不等式|a-1|>4的时候,就要分类讨论a的取值情况。

四、整体思想从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。

整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用,整体代入、叠加叠乘处理、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用。

五、转化思想(划归思想)在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题。

常见的转化方式有:一般特殊转化,等价转化,复杂简单转化,数形转化,构造转化,联想转化,类比转化等。

转化思想亦可在狭义上称为划归思想。

化归思想就是将待解决的或者难以解决的问题A经过某种转化手段,转化为有固定解决模式的或者容易解决的问题B,通过解决问题B来解决问题A的方法。

初中数学思想方法有哪些

初中数学思想方法有哪些

初中数学思想方法有哪些1、数形结合思想:就是依据数学问题的条件和结论之间的内在联系,既分析其代数含义,又显示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

2、分类讨论的思想:在数学中,我们经常必须要依据研究对象性质的差异,分各种不同状况予以考查;这种分类思索的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

3、联系与转化的思想:事物之间是互相联系、互相制约的,是可以互相转化的。

数学学科的各部分之间也是互相联系,可以互相转化的。

4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

2方法一1.对应的思想和方法在初一代数入门教学中,有代数式求值的计算题,通过计算发现:代数式的值是由代数式里字母的取值所决定的,字母的不同取值可得不同的计算结果。

这里字母的取值与代数式的值之间就建立了一种对应关系,再如实数与数轴上的点,有序实数对与坐标平面内的点都存在对应关系在进行此类教学〔制定〕时,应注意渗透对应的思想,这样既有助于培养同学用变化的观点看问题,又助于培养同学的函数观念。

2.整体的思想和方法整体思想就是合计数学问题时,不是着眼于它的局部特征,而是把注意和和着眼点放在问题的整体结构上,通过对其全面深入的观察,从宏观整体上熟悉问题的实质,把一些彼此独立但实质上又互相紧密联系着的量作为整体来处理的思想方法。

整体思想在处理数学问题时,有广泛的应用。

3.数形结合的思想和方法数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。

著名数学家华罗庚先生说:"数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。

'这充分说明了数形结合思想在数学研究和数学应用中的重要性。

4.分类的思想和方法教材中进行分类的实例比较多,如有理数、实数、三角形、四边形等分类的教学不仅可以使同学明确分类的重要性:一是使有关的概念系统化、完整化;二是使被分概念的外延更清楚、更深入、更具体,并且还能使同学掌握分数的要点方法:3方法二1、数形结合的思想和方法在同学刚接触初中数学不久,教材中设置利用"数轴'这一图形,巩固"具有相反意义的量'的概念,了解相反数,绝对值的概念,掌握有理数大小的道理,理解有理数加法、乘法的意义,掌握运算法则等。

初中数学常用的17种思想方法

初中数学常用的17种思想方法

初中数学常用的17种思想方法1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一样是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,依照数量显现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,把握之后能够使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维进展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情形,能够关心学生较快地找到解题途径。

4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这确实是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,差不多上用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。

类比思想不仅使数学知识容易明白得,而且使公式的经历变得顺水推舟般自然和简洁。

6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。

如几何的等积变换、解方程的同解变换、公式的变形等,在运算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法表达对数学对象的分类及其分类的标准。

如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。

又如三角形能够按边分,也能够按角分。

不同的分类标准就会有不同的分类结果,从而产生新的概念。

对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

初中数学中常见的数学思想方法见解

初中数学中常见的数学思想方法见解

初中数学中常见的数学思想方法见解作为一门基础学科,数学在我们的生活和学习中扮演着非常重要的角色。

在初中数学学习中,学生需要掌握许多基本概念、基本原理和方法。

除了常见的数学知识点之外,还有一些重要的数学思想方法,如数学归纳法、逆向思维、抽象思维等。

本文将针对初中数学中常见的数学思想方法进行探讨,重点分析其原理和实际应用,并给出具体的数学题例子。

一、数学归纳法数学归纳法是初中数学中常见的数学思想方法之一,它是证明自然数的某些性质时常用的一种方法。

数学归纳法的基本思想是:证明一个性质对于所有自然数都成立,只需证明当自然数 n = 1 时成立,且当自然数 n 成立时,自然数 n+1 也成立,即可推出该性质对于所有自然数都成立。

例如,我们要证明一个常见的命题:对于任意自然数 n,1+2+3+...+n = n(n+1)/2。

首先当 n=1 时,左侧等式为 1,右侧等式为 1×(1+1)/2=1,两边相等。

再假设对于自然数 n 成立,即1+2+3+...+n = n(n+1)/2,那么将 n+1 代入等式,得到:1+2+3+...+(n+1) = [1+2+3+...+n] + (n+1)由假设可得左侧等式为 n(n+1)/2 + (n+1),经过化简得到:(n+1)(n+2)/2 = (n+1)(n+2)/2,由此证明了该命题对于任意自然数 n 成立。

数学归纳法还可以用于证明一些更复杂的命题,例如利用数学归纳法证明斐波那契数列的性质。

斐波那契数列是一个非常经典的数学问题,其定义为:对于自然数 n,斐波那契数列的第 n 项 F(n) 等于前两项的和,即 F(n) = F(n-1) + F(n-2),其中 F(1)=1,F(2)=1。

利用数学归纳法可以证明:对于任意自然数 n,斐波那契数列的第 n 项 F(n) 满足 F(n) = (1/√5){[(1+√5)/2]^n - [(1-√5)/2]^n}。

谈谈初中数学中常用的数学思想

谈谈初中数学中常用的数学思想

谈谈初中数学中常用的数学思想在初中数学中,常用的数学思想有:数形结合思想、方程与函数思想、分类讨论思想和化归与转化思想等。

教学中逐步渗透数学思想方法,培养学生思维能力,是进行数学素质教育的一个切入点。

一、数形结合的思想数形结合的思想是研究数学的一种重要的思想方法,它是指把代数的精确刻划与几何的形象直观相统一,将抽象思维与形象直观相结合的一种思想方法。

由以上的例子,我们可以看出数形结合思想的应用往往能使一些错综复杂的问题变得形象直观。

二、方程与函数的思想方程与函数的思想解决数学问题的一个有力工具。

用函数和方程的思想来解决问题,往往能使一些错综复杂的问题变得直观,解题思路清晰,步骤明了。

例:某公司到果园基地购买某种优质水果,果园基地对购买量在3000㎏以上(含3000㎏)的有两种销售方案。

方案一:每千克9 元,由基地送货上门;方案二:每千克8 元,由顾客自己租车运回。

已知该公司租车从基地到公司的运输费为5000 元。

(1)分别写出该公司两种购买方案的付款y(元)与所买的水果x(㎏)之间的函数关系式,并写出自变量x的取值范围。

(2)当购买量在什么范围时,选择哪种购买方案付款最少?并说明理由。

分析:由题意易得方案一与方案二对应的函数关系式为y1=9x与y2=8x+5000,再根据y1与y2的大小关系选择付款最少的购买方案。

解:(1)方案一,y1=9x;方案二,y2=8x+5000,x≥3000㎏.(2)9x=8x+5000,x=5000;当x=5000㎏时,y1=y2。

两种方案付款一样;当x﹥5000㎏时,y1﹥y2,选择方案二付款最少;当3000≤x﹤5000,y1﹤y2,选择方案一付款最少。

三、分类讨论的思想分类是通过比较数学对象本质属性的相同点和差异点,然后根据某一种属性将数学对象区分为不同种类的思想方法。

此方法可以训练学生思维的全面性,克服思维的片面性,防止漏解。

运用分类讨论思想时,分类要准确、全面、不重、不漏。

初中数学思想方法有哪些

初中数学思想方法有哪些

初中数学思想方法有哪些1.抽象思维:数学是一门抽象的科学,学生需要通过将具体问题抽象化,找到问题的本质,从而解决问题。

例如,将实际问题转化为代数方程式,通过求解方程得到答案。

2.推理思维:数学是一门严密的逻辑学科,学生需要通过推理和证明来解决问题。

推理思维包括归纳和演绎思维。

归纳思维是从特殊到一般的思考方式,通过观察到的具体情况推导出普遍的规律。

演绎思维是从一般到特殊的思考方式,通过已知的规律推导出未知的结论。

3.创造性思维:数学是一门富有创造性的学科,学生需要发散思维来解决问题。

学生应该养成从多个角度思考问题、寻找多种解决方法的习惯。

例如,在解决几何问题时,可以尝试使用不同的图形构造方法来求解。

4.反证法思维:反证法是一种常用的数学证明方法,在解决问题时可以采用。

学生可以假设问题的逆否命题成立,然后通过逻辑推理和推导得出矛盾,从而证明原问题成立。

5.模型思维:通过建立模型来解决实际问题是数学思维中的重要方法之一、模型可以是几何图形、方程式或者统计模型等,通过对模型进行分析和求解,获得问题的解答。

6.折中思维:在解决问题中,有时需要找到一个平衡点,综合考虑各种因素来确定最优解。

学生需要分析问题的各方面情况,权衡利弊,寻找最佳解决方案。

7.归纳与猜想:通过归纳已有的数据、规律和经验,进行猜想和推论,从而找到问题的解答。

学生可以通过数列、几何图形等进行观察和总结,从中找到问题的规律。

8.合作思维:数学是一门合作学科,学生应该培养合作与沟通的能力。

学生可以通过小组讨论、合作解题等方式,互相帮助、共同思考问题,从而提高解决问题的能力。

以上是初中数学思想方法的一些例子,学生通过不断练习和培养,可以逐渐培养出灵活运用这些思维方法解决数学问题的能力。

初中数学常用的十一种思想方法介绍

初中数学常用的十一种思想方法介绍

初中数学常用的十一种思想方法介绍初中数学常用的十一种思想方法介绍数学的思想和方法是初中数学的基础知识。

数学学习中要提高我们分析问题的能力,形成用数学的意识决问题,这些都离不开数学思想和数学方法。

我们在初中的数学学习中,学到了很多处理数学问题的思想和方法,下面,本人就教学过程中常用的数学思想方法介绍如下:一、数形结合思想根据数学问题的条件和结论之间内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起一,并充分得用这种结合,寻求解题思路,使问题得到解决。

二、联系与转化的思想事物之间是相互联系,相互制约的。

是可以相互转化的。

数学学科的各部分之间也是相互联系,可以相互转化的。

在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

如:代换转化、已知与未知的转化特殊与一般的转化、具体抽象的转化、部分与整体的转化、动与静的转化等等。

三、分类讨论的思想在数学中,我们常常需要根据研究对象性质的差异,分各种不同的情况予以考查,这种分类思考的方法是一一种重要的.数学思想方法。

同时也是一种重要的解题策略。

四、待定系数法当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母的值就可以,为此,把已知道条件代入特定形式的式子中,往往会得到含待定字母的方和或方程组就使问题得到解决。

待定系数法是一种重要的数学解题方法,在代数式恒等变形及研究函数中有着广泛的应用。

五、配方法把一个代数式设法构造成平方式,然后再进行所需要的变形,配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

六、换元法在解题过程中,把某个(或某些)字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。

换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题从而过到化繁为简、化难为易的目的。

七、分析法在研究或证明一个命题时,由结论向己知条件追溯,即从结论升始,推求它成立的充分条件,这个条件的成立如果还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件(或己知的事实)为止,从而使命题得到证明,这种方法叫佬分析法。

中学数学中常见的数学思想有哪些

中学数学中常见的数学思想有哪些

中学数学中常见的数学思想有哪些答题内容:1、化归的思想方法:所谓化归思想方法又叫转换思想方法、也叫转换思想方法、也叫转化思想方法,是一种把未解决的问题或特解决的问题,通过某种方式的转化,归化到一类已经能解决或比较容易解决的问题,最终得原问题的解答的思想方法.化归思想方法的三要素:化归谁化归对象、化归到哪化归目标、怎样化归化归方法.常见的化归方式有:已知与未知的化归、特殊与一般的化归、动与静的化归、抽象与具体的化归等.化归思想方法的特点:是实际问题的规范化、简单化、熟悉化、模式化、直观化、正难侧反思化、以便应用已知的理论、方法和技巧到解决问题的目的.其形式如图所示:例如方程问题转化为不等式问题:已知关于,的方程组,的解满足,求的取值范围.解析:先解关于,的方程组,再把用表示的,的代数式代入不等式组中,解关于的不等式组.2、数形结合的思想方法所谓数形结合的思想方法是指把数学问题用数量关系与图形结合起来解答数学问题.数形结合的思想方法的特点:数→形→问题的解答;形→数→问题的解答;数形,问题的解答.例如:如图所示、在数轴上的位置,请化简+的结果是:3、分类讨论的思想方法所谓分类讨论的思想方法是指根据所研究的问题的某种相同性和差异性将它们分类来进行研究的思想方法.分类讨论的思想方法的特点:分类不能重复也不能遗漏;同一次分类时,标准须相同;分类须有一定的范围,不能超范围.例如:三角形按边分类方法:三角形可分为不等边三角形、等腰三角形,等腰三角形又可分为等边三角形、底边和腰不相等的等腰三角形.三角形按角分类方法:三角形可分为直角三角形、锐角三角形、钝角三角形.4、类比与归纳的思想方法所谓类比与归纳的思想方法是包括类比思想方法和归纳思想方法.类比思想方法是指不同的研究对象在某些方面有相似或相同之处,来联想、推导、猜想这些研究对象在其它方面也可能相同或相似,并作出某种判断的推理的思想方法.其特点是从特殊到特殊的推理方式.例如:从分数性质到分式性质;从全等三角形到相似三角形等.归纳思想方法是指由个别的、特殊的事例来推出同一类事物一般性的方法.其特点是由特殊至一般的推理方式.例如:1个点分割直线为2个部分,2个点分割直线为3个部分,3个点分割直线为4个部分,4个点分割直线为5个部分,5个点分割直线为6个部分,┉,n个点分割直线为1个部分.类比与归纳的思想方法活动过程如下:研究对象形成命题证明5、数学建模的思想方法所谓数学建模的思想方法是根据所研究问题的一些属性、关系,用形式化的数学语言表示的一种数学结构,中学数学中常用的数学模型有:图形、图象、表格和数学表达式,具体讲有方程模型、函数模型、几何模型、三角模型、不等式模型和统计模型.数学建模的思想方法一般原则:简化原则、可推演原则、反映性原则,其一般形式如图所示:例如:某公司计划购买若干台电脑,现从两家协力商厂了解到同一型号的电脑报价均为5000元,并且多买都有一定的优惠,A协力商厂优惠条件:第一台按原报价收款,共余每台优惠30%;B协力商厂优惠条件:每台优惠20%.如果你是老板,你该怎么考虑,如何选择分析:什么情况下,两家协力商厂收费相同;什么情况下,A协力商厂优惠;什么情况下,B协力商厂优惠;列不等式解决实际问题的数学建模的思想方法.解:设购买台电脑,如果到A协力厂更优惠,则移项且合并得,不等式两边同除以-500得.所以购买大于3台时A协力厂更优惠;购买小于3台时B协力厂更优惠;购买3台时两家协力商厂收费相同.6、整体的思想方法所谓整体的思想方法是指将有共同特征的某一类问题看成一个完整的整体,通过对其全面深刻的观察,着眼于问题的整体结构上,从整体上把握问题的内容和解决的方向和策略的思想方法.例如:已知二元一次方程组为,求=,=.分析:通过观察可知两式相减得,则=;两式相加得,则+=15,即得.7、方程的思想方法所谓方程的思想方法是指在研究数学问题时,从问题中的已知量和未知量之间的数量关系中找出相等关系,运用数学语言将这种相等关系列出方程组,然后解方程组,从而使这个数学问题得解.其特点是将繁琐的过程简单化,殊殊的问题一般化.例如:把一长为30米的绳子做成一个长方形,已知宽:长=1:2,求这个长方形的宽和长各是多少解析:宽和长总和为30米,其比为1:2,所以设方程解答.解:设宽为米,长为米.解得:答:长方形的宽为5 米,长为10 米.8、符号化的思想方法所谓符号化的思想方法:指用符号及符号组成的数学语言来表达数学的概念、运算和命题等的思想方法,是方程思想方法的基础.例如:∥、∠、≤、≥、=、、、%、{}、≠、∴、∵、⊙、⊥、△、、、、等等.9、统计思想方法所谓统计思想方法:是通过样本来推断总体,是关于如何收集数据、整体数据、描述数据、分析数据,如何解释数据统计结果的思想方法.例如:为了了解某所初级中学学生对6月5日“世界环境日”是否知道,从该校全体学生1000名中,随机抽查了100名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“世界环境日”约有名学生“不知道”.10、公理化的思想方法所谓公理化的思想方法:指从尽可能少的不加定义的原始概念和不加证明的原始命题即公理公设出发,按照逻辑规则推导出其他命题,建立起一个演绎科学理论系统的方法.例如:平行公理:经过直线外一点,有且只有一条直线与这条直线平行.11、函数的思想方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中学数学中常见的数学思想有
哪些(总4页)
-CAL-FENGHAI.-(YICAI)-Company One1
-CAL-本页仅作为文档封面,使用请直接删除
中学数学中常见的数学思想有哪些?
答题内容:
1、化归的思想方法:
所谓化归思想方法又叫转换思想方法、也叫转换思想方法、也叫转化思想方法,是一种把未解决的问题或特解决的问题,通过某种方式的转化,归化到一类已经能解决或比较容易解决的问题,最终得原问题的解答的思想方法.化归思想方法的三要素:化归谁(化归对象)、化归到哪(化归目标)、怎样化归(化归方法).常见的化归方式有:已知与未知的化归、特殊与一般的化归、动与静的化归、抽象与具体的化归等.
化归思想方法的特点:是实际问题的规范化、简单化、熟悉化、模式化、直观化、正难侧反思化、以便应用已知的理论、方法和技巧到解决问题的目的.其形式如图所示:
例如方程问题转化为不等式问题:已知关于,的方程组,的解满足 ,求的取值范围.
解析:先解关于,的方程组,再把用表示的,的代数式代入不等式组中,解关于的不等式组.
2、数形结合的思想方法
所谓数形结合的思想方法是指把数学问题用数量关系与图形结合起来解答数学问题.
数形结合的思想方法的特点:数→形→问题的解答;形→数→问题的解答;数形,问题的解答.
例如:如图所示、在数轴上的位置,请化简 + 的结果是:
3、分类讨论的思想方法
所谓分类讨论的思想方法是指根据所研究的问题的某种相同性和差异性将它们分类来进行研究的思想方法.
分类讨论的思想方法的特点:分类不能重复也不能遗漏;同一次分类时,标准须相同;分类须有一定的范围,不能超范围.
例如:三角形按边分类方法:三角形可分为不等边三角形、等腰三角形,等腰三角形又可分为等边三角形、底边和腰不相等的等腰三
角形.
三角形按角分类方法:三角形可分为直角三角形、锐角三角形、钝角三角形.
4、类比与归纳的思想方法
所谓类比与归纳的思想方法是包括类比思想方法和归纳思想方法.
类比思想方法是指不同的研究对象在某些方面有相似或相同之处,来联想、推导、猜想这些研究对象在其它方面也可能相同或相似,并作出某种判断的推理的思想方法.其特点是从特殊到特殊的推理方式.
例如:从分数性质到分式性质;从全等三角形到相似三角形等.
归纳思想方法是指由个别的、特殊的事例来推出同一类事物一般性的方法.其特点是由特殊至一般的推理方式.
例如:1个点分割直线为2个部分,2个点分割直线为3个部分,3个点分割直线为4个部分,4个点分割直线为5个部分,5个点分割直线为6个部分,┉,n个点分割直线为 1个部分.
类比与归纳的思想方法活动过程如下:
研究对象形成命题证明
5、数学建模的思想方法
所谓数学建模的思想方法是根据所研究问题的一些属性、关系,用形式化的数学语言表示的一种数学结构,中学数学中常用的数学模型有:图形、图象、表格和数学表达式,具体讲有方程模型、函数模型、几何模型、三角模型、不等式模型和统计模型.数学建模的思想方法一般原则:简化原则、可推演原则、反映性原则,其一般形式如图所示:
例如:某公司计划购买若干台电脑,现从两家协力商厂了解到同一型号的电脑报价均为5000元,并且多买都有一定的优惠,A协力商厂优惠条件:第一台按原报价收款,共余每台优惠30%;B协力商厂优惠条件:每台优惠20%.如果你是老板,你该怎么考虑,如何选择?
分析:什么情况下,两家协力商厂收费相同;什么情况下,A 协力商厂优惠;什么情况下,B协力商厂优惠;列不等式解决实际问题
的数学建模的思想方法.
解:设购买台电脑,如果到A协力厂更优惠,则
移项且合并得 ,
不等式两边同除以-500得 .
所以购买大于3台时A协力厂更优惠;购买小于3台时B协力厂更优惠;购买3台时两家协力商厂收费相同.
6、整体的思想方法
所谓整体的思想方法是指将有共同特征的某一类问题看成一个完整的整体,通过对其全面深刻的观察,着眼于问题的整体结构上,从整体上把握问题的内容和解决的方向和策略的思想方法.
例如:已知二元一次方程组为,求 = ,= .
分析:通过观察可知两式相减得 ,则 = ;
两式相加得,则 + =15,即得 .
7、方程的思想方法
所谓方程的思想方法是指在研究数学问题时,从问题中的已知量和未知量之间的数量关系中找出相等关系,运用数学语言将这种相等关系列出方程(组),然后解方程(组),从而使这个数学问题得解.其特点是将繁琐的过程简单化,殊殊的问题一般化.
例如:把一长为30米的绳子做成一个长方形,已知宽:长
=1:2,求这个长方形的宽和长各是多少?
解析:宽和长总和为30米,其比为1:2,所以设方程解答.
解:设宽为米,长为米.
解得:
答:长方形的宽为5 米,长为10 米.
8、符号化的思想方法
所谓符号化的思想方法:指用符号及符号组成的数学语言来表
达数学的概念、运算和命题等的思想方法,是方程思想方法的基础.例如:∥、∠、≤、≥、=、( )、[ ]、%、{ }、≠、∴、∵、⊙、⊥、△、、、、等等.
9 、统计思想方法
所谓统计思想方法:是通过样本来推断总体,是关于如何收集数据、整体数据、描述数据、分析数据,如何解释数据统计结果的思想方法.
例如:为了了解某所初级中学学生对6月5日“世界环境日”是否知道,从该校全体学生1000名中,随机抽查了100名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“世界环境日”约有名学生“不知道”.
10、公理化的思想方法
所谓公理化的思想方法:指从尽可能少的不加定义的原始概念和不加证明的原始命题即公理(公设)出发,按照逻辑规则推导出其他命题,建立起一个演绎科学理论系统的方法.
例如:平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
11、函数的思想方法。

相关文档
最新文档