中学数学中重要数学思想
中小学数学很重要的20种常见思想方法

中小学数学很重要的20种常见思想方法1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
又如三角形可以按边分,也可以按角分。
不同的分类标准就会有不同的分类结果,从而产生新的概念。
对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
中学数学中重要的数学思想――分类讨论的思想

中学数学中重要的数学思想――分类讨论的思想依据数学研究对象本质属性的相同点和差异点,将数学对象分为不同种类的数学思想叫做分类的思想。
“物以类聚,人以群分”。
将事物进行分类,然后对划分的每一类分别进行研究和求解的方法叫做分类讨论的方法。
分类的思想是自然科学乃至社会科学研究中经常用到的,又叫做逻辑划分。
不论从宏观上还是从微观上对研究对象进行分类,都是深化研究对象、发展科学必不可少的思想。
因此分类讨论既是一种逻辑方法,也是一种数学思想。
需要运用分类讨论的思想解决的数学问题,就其引起分类的原因,可归结为:①涉及的数学概念是分类定义的;②运用的数学定理、公式或运算性质、法则是分类给出的;③求解的数学问题的结论有多种情况或多种可能;④数学问题中含有参变量,这些参变量的取值会导致不同结果的。
应用分类讨论思想解决问题,必须保证分类科学、统一,不重复,不遗漏,并力求最简。
运用分类的思想,通过正确的分类,可以使复杂的问题得到清晰、完整、严密的解答。
回顾总结中学数学教材中分类讨论的知识点,大致有:绝对值概念的定义;根式的性质;一元二次方程根的判别式与根的情况;二次函数二次项系数正负与抛物线开口方向;反比例函数k/x的反比例系数k,正比例函数的比例系数k,一次函数kx+b的斜率k 与图象位置及函数单调性关系;幂函数xn的幂指数n的正、负与定义域、单调性、奇偶性的关系;指数函数y=ax及其反函数y=logax中底数a的a>1及0<1对函数单调性的影响;等比数列前n项和公式中q=l与q≠1的区别;复数概念的分类;不等式性质中两边同乘(除)时正数与负数对不等号方向的影响;排列组合中的分类计数原理;圆锥曲线中离心率e的取值与椭圆、抛物线、双曲线的对应关系;直线与圆锥曲线位置关系的讨论;运用点斜式、斜截式直线方程时斜率k是否存在;曲线系方程中的参数与曲线类型;角终边所在象限与三角函数符号;……当你对以上各种情况“心中有数”时,分类讨论便不再令人望而生畏。
高中数学 四大数学思想

高中数学四大数学思想1.数形结合思想数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合. 应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决. 运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征.应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数列通项及求和公式的函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线.以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.2.分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决. 分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”.应用分类讨论思想方法解决数学问题的关键是如何正确分类,即正确选择一个分类标准,确保分类的科学,既不重复,又不遗漏. 如何实施正确分类,解题时需要我们首先明确讨论对象和需要分类的全体,然后确定分类标准与分类方法,再逐项进行讨论,最后进行归纳小结.常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类等. 分类讨论思想方法可以渗透到高中数学的各个章节,它依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则.3.函数与方程思想函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多. 函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,应做到:(1)深刻理解函数f(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系. 掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.4.转化与化归思想化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想. 转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题. 转化与化归思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解题过程的各个环节中. 转化有等价转化与不等价转化. 等价转化后的新问题与原问题实质是一样的. 不等价转化则部分地改变了原对象的实质,需对所得结论进行必要的修正.应用转化与化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化. 常见的转化有:正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化.。
初中数学中的主要数学思想方法概要.doc

初中数学中的主要数学思想方法初中数学中蕴含的数学思想很多,其中最主要的数学思想方法包括转化思想、数形结合思想、分类讨论思想、函数与方程思想等.(1) 转化思想.转化思想就是人们将需要解决的问题,通过演绎、归纳等转化手段,归结为另一种相对容易解决或已经有解决方法的问题,从而使原来的问题得到解决.转化思想体现在数学解题过程中就是将未知的、陌生的、复杂的问题通过演绎和归纳转化为已知的、熟悉的、简单的问题.初中数学中诸如化繁为简、化难为易、化未知为已知等均是转化思想的具体体现.具体而言,代数式中加法与减法的转化,乘法与除法的转化,用换元法解方程,在几何中添加辅助线,将四边形的问题转化为三角形的问题,将一些角转化为圆周角并利用圆的知识解决问题等等都体现了转化思想.在初中数学中,转化思想运用的最为广泛.(2) 数形结合思想.数学是研究现实世界空间形式和数量关系的科学,因而,在某种程度上可以说数学研究是围绕着数与形展开的.初中数学中的“数”就是代数式、方程、函数、不等式等符号表达式,初中数学中的“形”就是图形、图象、曲线等形象表达式.数形结合思想的实质是将抽象的数学语言(“数” ) 与直观的图象(“ 形“ ) 结合起来,数形结合思想的关键就是抓住“数”与“形”之间本质上的联系,以“形”直观地表达“数”,以“数”精确地研究“形”,实现代数与几何之间的相互转化.数形结合思想包括“以形助数”和“以数辅形”两个方面,它可以使代数问题几何化,几何问题代数化.“数无形时不直观,形无数时难入微.”数形结合是研究数学、解决数学问题的重要思想,在初中数学中有着广泛应用.譬如,在初中数学中,通过数轴将数与点对应,通过直角坐标系将函数与图象对应均体现了数形结合思想的应用.再比如,用数形结合的思想学习相反数、绝对值等概念,学习有理数大小比较的法则,研究函数的性质等,从形象思维过渡到抽象思维,从而显著降低了学习难度.(3) 分类讨论思想.分类讨论思想就是根据数学对象本质属性的共同点和差异点,将数学对象区分为不同的种类.分类是以比较为基础的,它有助于揭示数学对象之间的内在联系与规律,有助于学生总结归纳数学知识、解决数学问题.譬如,初中数学从整体上看分为代数、几何、概率统计等几大版块,并分别采用不同方法进行研究,就是分类思想的体现.具体而言,实数的分类,方程的分类、三角形的分类、函数的分类、统计量的分类等等,都是分类思想的具体体现.分类思想在初中数学中有大量运用,从初中数学内容的组织与展开到数学概念的界定与划分再到数学问题的分析与解决都大量运用着分类思想.(4) 函数与方程思想.函数与方程思想就是用函数的观点和方法分析问题、解决问题.函数思想是客观世界中事物运动变化、相互联系、相互制约的普遍规律在数学中的具体反映.函数与方程思想的本质是变量之间的对应,即用变化的观点和函数的形式将所研究的数量关系表示出来,然后用函数的性质进行研究,从而使问题获得解决.如果函数的形式用解析式的方式表示,那么就可以将函数解析式看作方程,并通过解方程和对方程的研究使问题得到解决,这就是方程思想.譬如初中数学中大量涉及一次函数、反比例函数、二次函数等内容的数学问题都要用到函数与方程思想来解决.由于函数思想与方程思想的内容和形式相一致,因而往往将其并称为函数与方程思想,并将二者结合学习与运用.除上述几种主要的数学思想之外,初中数学中还有集合思想、对应思想、符号化思想、公理化思想等.初中数学主要包括如下基本的数学方法:( 1 )几种重要的科学思维方法:比较与分类、观察与尝试、分析与综合、概括与抽象、特殊与一般、归纳与类比等;( 2 )几种重要的推理方法:完全归纳法、综合法、分析法、反证法、演绎法等;( 3 )几种常用的求解方法:待定系数法、数学建模法、配方法、消元法、换元法、构造法、坐标法、参数法等.1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
关于数学中最重要的思想--转化思想63

关于数学中最重要的思想--转化思想摘要在中学数学教学中,转化思想既是一种解题方法,也是一种思维策略。
转化就是把不常见的问题转化为常见的、熟悉的问题来考虑,通过转化,化一般为特殊,化非典型为典型,化复杂为简单,化未知为已知等。
本文通过分析数学转化思想的重要性以及理论基础,对其常见的基本形式和培养方法进行了探讨。
关键词中学数学教学转化思想理论依据运用策略所谓转化思想就是将未知解法或难以解决的问题,通过观察、分析、类比、联想等思维过程,选择恰当的数学方法进行变换,转化为在已知知识范围内已经解决或容易解决的问题的思想。
布卢姆在《教育目标分类学》中指出:数学转化思想是“把问题元素从一种形式向另一种形式转化的能力”,它可以从语言描述向图形表示转化,或从语言表达向符号形式的转化,或是每一种情况反过的转化。
这种数学转化包含了数学特有的数、式、形的相互转换,又包含了心理达标的转换。
简而言之,数学转化思想就是通过数学内部的联系和矛盾运动,在转变中实现问题的规范化,将待解问题转化为规范问题从而使原问题得到解决的方法。
(一)数学转化思想的重要性转化思想贯穿在数学解题的始终,在解题过程中,常常需要把抽象的概念直观化、隐蔽的条件明显化、复杂的关系简单化,善用转化思想往往能使我们更深刻地领会问题的实质,有助于理解各知识体系间的相互联系,也更有利于各知识体系间的融合。
有意识地运用数学变换方法,将有利于提高数学解题的应变能力和技巧。
一方面,通过转化能优化解题方法。
有些数学问题通过转化,不只是获得了解决,更重要是获得了解法的优化。
另一方面,通过转化能揭露问题的本质。
有不少数学问题,在原来提出这一问题的领域内很难解决,甚至无法解决,如果把问题转化到另一领域中,就可以迎刃而解了。
(二)数学转化思想的理论基础辩证唯物主义:辩证唯物主义认为任何事物内部均存在着矛盾,客观世界是充满矛盾的统一体,是具有普遍联系的,事物处于运动变化中而又在一定条件下互相转化,从而推动事物的发展。
中学数学中四种重要思想方法

中学数学中四种重要思想方法一、函数方程思想函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想.1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想;2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想;3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想.二、数形结合思想数形结合是中学数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形),这种解决问题的方法称之为数形结合.1.数形结合与数形转化的目的是为了发挥形的生动性和直观性,发挥数的思路的规范性与严密性,两者相辅相成,扬长避短.2.恩格斯是这样来定义数学的:“数学是研究现实世界的量的关系与空间形式的科学”.这就是说:数形结合是数学的本质特征,宇宙间万事万物无不是数和形的和谐的统一.因此,数学学习中突出数形结合思想正是充分把握住了数学的精髓和灵魂.3.数形结合的本质是:几何图形的性质反映了数量关系,数量关系决定了几何图形的性质.4.华罗庚先生曾指出:“数缺形时少直观,形少数时难入微;数形结合百般好,隔裂分家万事非.”数形结合作为一种数学思想方法的应用大致分为两种情形:或借助于数的精确性来阐明形的某些属性,或者借助于形的几何直观性来阐明数之间的某种关系.5.把数作为手段的数形结合主要体现在解析几何中,历年高考的解答题都有关于这个方面的考查(即用代数方法研究几何问题).而以形为手段的数形结合在高考客观题中体现.6.我们要抓住以下几点数形结合的解题要领:(1) 对于研究距离、角或面积的问题,可直接从几何图形入手进行求解即可;(2) 对于研究函数、方程或不等式(最值)的问题,可通过函数的图象求解(函数的零点,顶点是关键点),作好知识的迁移与综合运用;(3) 对于以下类型的问题需要注意:可分别通过构造距离函数、斜率函数、截距函数、单位圆x2+y2=1上的点及余弦定理进行转化达到解题目的.三、分类讨论的数学思想分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答.1.有关分类讨论的数学问题需要运用分类讨论思想来解决,引起分类讨论的原因大致可归纳为如下几种:(1)涉及的数学概念是分类讨论的;(2)运用的数学定理、公式、或运算性质、法则是分类给出的;(3)求解的数学问题的结论有多种情况或多种可能性;(4)数学问题中含有参变量,这些参变量的不同取值导致不同的结果的;(5)较复杂或非常规的数学问题,需要采取分类讨论的解题策略来解决的.2.分类讨论是一种逻辑方法,在中学数学中有极广泛的应用.根据不同标准可以有不同的分类方法,但分类必须从同一标准出发,做到不重复,不遗漏,包含各种情况,同时要有利于问题研究.四、化归与转化思想所谓化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而达到解决的一种方法.一般总是将复杂的问题通过变化转化为简单的问题,将难解问题通过变换转化为容易求解的问题,将未解决的问题转化为已解决的问题.。
初中数学常见的几种数学思想

初中数学常见的几种数学思想与数学基础知识一样,数学思想也是数学的重要内容之一。
重视与加强中学数学思想的教学,这对于抓好双基,培养能力以及培养学生的数学素质都具有十分重要的作用。
本人结合几年的初中数学教学实践,认为初中数学常见的数学思想有以下几种:1.字母代数思想用字母代替数字,是初中生最先接触到的数学思想,也是初等代数以至整个数学最重要最基础的数学思想。
在初中数学中,用字母代替数字,各种量、量的关系、量的变化以及量与量之间进行推理与演算,都是以符号形式(包括数字、字母、图形和图表以及各种特定的符号)来表示的,即进行着一整套的形式化的数学语言。
例如:用l al表示某个数的绝对值,用一a表示某个数的相反数,用an表示n个a连续相乘的积,用s=40t表示路程与时间的关系,用一对有序实数对(x,y)表示某个点在平面直角坐标系中的位置。
初中数学教材在七(上)第三章讲解用字母代替数字,也就是当学生刚从小学生转变为初中生,便开始从原有的数字与数字的运算转变为用字母代替数字进行推理与运算,这对大多数学生来说要有一个转变适应的过程,所以苏科版新教材以一些丰富、贴近学生生活的情境来引导学生逐渐掌握用字母代替数的数学思想。
用字母表示数是“代数”的基础和出发点,也是“符号感”的主要表现之一。
其实,日常生活中人们经常用符号表示某种意义,例如:天气预报图标、交通标志、五线谱等,从这样的情境出发,有助于学生借助已有经验感受“在数学中,经常用字母表示数”。
用字母表示数是从算术到代数的重要转折点,但是,它的学习是建立在算术学习基础上的。
教师应当通过具体数字运算,让学生观察,总结规律,形成对“用字母表示数”的必要性的认识。
实际上,过去学过的运算律(交换律、结合律、分配律等)、简单几何图形的面积、行程问题等知识,都能说明用字母表示数的重要意义:普遍性、应用的广泛性等。
2.化归转换思想化归,即转化与归结的意思。
把有待解决或未解决的问题,通过转化过程,归结为所熟悉的规范性问题或已解决的问题中去,从而求得问题解决的思想。
初中数学思想

中学数学思想数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。
1、函数方程2、数形结合3、分类讨论4、整体思想5、转化思想6、类比思想7、建模思想8、归纳推理9、概率统计思想10、极限思想一、方程函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。
方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。
函数思想是构造函数从而利用函数的性质解题。
二、数形结合“数无形,少直观,形无数,难入微”,利用“数形结合”可使所要研究的问题化难为易,化繁为简。
把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答,这种方法在解析几何里最常用。
三、分类讨论当一个问题因为某种量或图形的情况不同而有可能引起问题的结果不同时,需要对这个量或图形的各种情况进行分类讨论。
比如解不等式|a-1|>4的时候,就要分类讨论a的取值情况。
四、整体思想从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。
整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用,整体代入、叠加叠乘处理、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用。
五、转化思想(划归思想)在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题。
常见的转化方式有:一般特殊转化,等价转化,复杂简单转化,数形转化,构造转化,联想转化,类比转化等。
转化思想亦可在狭义上称为划归思想。
化归思想就是将待解决的或者难以解决的问题A经过某种转化手段,转化为有固定解决模式的或者容易解决的问题B,通过解决问题B来解决问题A的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中学数学中重要数学思想——分类讨论思想的教中学数学中重要数学思想——分类讨论思想数学思想是人们对数学内容的本质认识,是对数学方法的进一步抽象和概括,属于对数学规律的理性认识的范畴,数学教学中不仅要注重数学知识的传授,能力的提高,更要注重揭示知识发生、发展过程中,解决问题过程中蕴含的数学思想方法。
数学思想方法在人的能力培养和素质提高方面具有重要作用。
分类讨论是一种重要的数学思想方法:是按照数学对象的相同点和相异点将数学对象区分为不同种类的思想方法(朱人杰.数学思想方法研究导论);分类讨论是根据需要对研究对象进行分类,然后将划分的每一类别分别进行求解,综合后即得答案(任子朝.数学标准解读)。
分类讨论贯穿在整个高中数学学习的全过程,通过分类可以使大量繁杂的材料条理化、系统化,从而为人们进行分门别类的深入研究创造条件,分类讨论不仅在数学知识的探究和概念学习中十分重要,而且在解决数学问题过程中起着重要作用。
学会用这种思想方法解决问题,对提高学生思维能力、解决问题的能力有很大作用。
数学思想方法需要在教学过程中多次孕育,初步形成以致应用发展,使思想方法由隐到显,以致明朗化、深刻化。
本文针对部分学生不会分类,分类不全面,标准不统一,以致有畏难情绪,结合学生学习实际,提出分类讨论的三个教学策略,以求学生能理解该思想方法的含义,初步掌握该方法的操作步骤,会运用分类讨论思想方法解决问题。
1、分类讨论的教学策略一、“按需而分”分类讨论是按照数学对象的相同点和相异点,将数学对象区分为不同种类的思想方法。
是根据研究数学对象、数学问题过程的需要进行分类讨论,需要是根本。
在教学过程中要挖掘教材中采用分类讨论解决问题的材料,渗透、孕育分类讨论思想,同时一定要让学生体验到分类讨论的必要性,是解决问题的需要而讨论。
逐步内化为学生的思想意识。
1.1、从数学知识的发生、发展过程,分类是一种重要的逻辑方法,通过分类研究可以使问题化繁为简,化零乱为条理,化分散为系统。
如研究函数,从函数的解析式、定义域、值域、性质和图像,先一般函数后特殊函数,指数函数、对数函数、三角函数。
数列也可以看成特殊的函数来进行研究,以期更深刻地理解数列的本质。
1.2、在高中数学教学过程中着重在以下方面对学生加以引导,让学生体悟分类讨论思想的运用: 绝对值概念的定义;一元二次方程根的判别式与实根数的情况;二次函数二次项系数正负与抛物线开口方向;指数函数、对数函数的单调性与底a的关系;等比数列的求和公式中q=l与q≠1的区别;由数列的前n项和求数列的通项公式n=1与n≠1;不等式的性质,不等式两边同乘以一个正数还是负数;绝对值不等式的解法,一般“零点讨论”去绝对值;无理不等式形如,对g(x)非负或正的讨论,以去掉无理号;运用点斜式、斜截式直线方程时斜率k是否存在,若直线的斜率不存在,不能用点斜式或斜截式表示;圆锥曲线的统一定义中,由e的大小决定圆锥曲线的不同形状是椭圆、抛物线或者双曲线;等等1.3、含参数问题,必须考虑参数的不同取值对问题的不同影响,根据问题的需要,对参数进行讨论,以解决问题。
例1.1 设首项为1,公比为q(q>0)的等比数列的前n项之和为Sn又设Tn=Sn/(Sn+1)(n= 1,2,…),求分析:由数列公比q是否等于1不确定,利用前n项和公式就必须讨论。
解:(1)当公比q满足0<q<1时(2)当公比q=1时(3)当公比q>1时例1.2、问a为何值时?不等式(a2-3a+2)x2+(a-1)x+2〉0的解是一切实数。
分析:题目中给出不等式这一属概念,而非具体到一元几次不等式,故解题过程中需针对a 2-3a+2=0,a2-3a+2≠0两种情况进行讨论,确定不等式为一元一次或一元二次,再进行解答。
解:(1)若a2-3a+2=0 解得a=1或a=2a=1时原不等式为2>0恒成立,所以a=1适合题意。
a=2时,原不等式为x+2>0,它的解不是一切实数,所以a=2不适合题意。
(2)若a2-3a+2≠0,必须有由①得a<1或a >2由②得a<1或a>所以a的范围a∈(-∞,1)∪(,+∞)由(1),(2)可知a∈(-∞,1] ∪(,+∞)例1.3、已知,若f(x)=ax2-2x+1在区间[1,3]上的最大值是M(a),最小值是N(a),令g(a)=M(a)-N(a)(1)求g(a)的解析式(2)判断g(a)的单调性,并求g(a)的最小值分析:本题是闭区间上二次函数的最值问题,既要考虑二次函数的对称轴,但最大值随在,(1,2]或(2,3]上不同而变化,故必须讨论所在的区间。
解略。
例1.4、(人教社试验修订本高中数学第二册上p88.23)从圆外一点P(2,3)向这个圆引切线,求切线的方程。
分析:过点P的圆的切线,不可直接设点斜式方程,而应考虑到斜率不存在的情况。
解:过点P(2,3)垂直于x轴的直线方程为x=2,圆心C(1,1)到x=2的距离d=1=r,所以x=2为圆的一条切线设过点P的圆的另一条切线方程为y-3=k(x-2),即kx-y+3-2k=0因为圆心C到次切线的距离所以这条切线的方程是:2. 分类讨论的教学策略二、恰当确定分类的标准,不重不漏分类讨论解决问题,首先根据问题的需要而分类讨论,其次要确定划分的标准,同一次分类要按统一标准进行。
确定划分的标准(1)对事件进行整体分类,从集合的意义讲,分类要作到各类的并集等于全集,以保证分类的不遗漏;任意两类的交集等于空集,以保证分类的不重复。
(2)根据需要局部再分类,即问题需要多级讨论,要逐级分类,每一局部问题都得到解决,整个问题得到解决。
例2.1、由12个人组成课外文娱小组,其中5个人只会跳舞,5个人只会唱歌,2个人既会跳舞又会唱歌,若从中选出4个人会跳舞和4个会唱歌的人去排练节目,共有多少种不同的选法?分析:对用于比较复杂的在若干集合中窜去元素的问题,一般需要分类求解,正确运用分类思想正确地对所选法分类,又能正确地根据题目要求合理地考察步骤,就可以顺利地求解问题。
本题可从特殊元素--既会跳舞又会唱歌的二人入手,从他们开始分类,按对象的性质分布挑选,同时按统一性质的对象的多少进行分类,应“注重一面,照应全局”,以避免重复或遗漏。
解:(1)若既会跳舞又会唱歌的二人都不去跳舞,则有种不同选法。
(2)若两人一人去跳舞,则有种不同的选法。
(3) 若两人都去跳舞,则有种不同的选法。
由分类计数原理,共有种不同的选法。
巩固练习:用正五棱柱的10个顶点中的5个顶点做四棱锥的5个顶点,共可得到多少个四棱锥?例2.2、解关于x的不等式:分析:本题是含参数的分式不等式,解本题要先化成型标准的分式不等式,在转化为型,进而找出的所有根,求出不等式的解。
解:原不等式变为(这一层次需要明确(a-1)x-a+2=0有没有根?有根情况下,需比较根与x-2=0的根2的大小?),①当a=1时,原不等式化为 x-2>0,所以不等式的解为{x|x>2}②当a>1时,原不等式变为③当a<1时,原不等式变为(这一步,两根大小不定,要写出不等式的解集,必须分清的大小,故先解解决。
)例2.3、在6名运动员中,选4人参加400米接力,其中甲不跑第一棒,已不跑第四棒,共有多少种参赛方法?分析:本题中甲、乙两名运动员是特殊元素,第一棒、第四棒是两个特殊位置,所以可依据从特殊元素、特殊位置来分类,要先特殊后一般,先选后排,合理分类。
解法一:依据甲运动员跑第几棒可分为两类(1)甲跑第四棒时,有 =60种参赛方法;(2)甲不跑第四棒,选派第四棒有种方法,选第一棒有种不同方法,余下的中间两棒在剩下的4人中任意选排有种方法,共有 =192种参赛方法。
综上可得,共有参赛方法 =252种。
解法二、依据甲乙两人参赛,可分为三类(1)、甲乙两人无人参赛,共有 =24参赛方法;(2)、甲乙两人只有一人参赛,共有 =144种方法;(3)、甲乙两人都参加比赛,有 =84种参赛方法;综上可得,共有参赛方法24+144+84=252种。
3. 分类讨论的教学策略三、力争避免讨论有时候分类讨论是解决问题的必须,但有时候通过认真分析问题的本质意义,采用代换的方法,换一种思维方式解决问题,常可避免繁杂的讨论,给出简洁的解法。
例3.1求中心在原点,两对称轴都在坐标轴上,并且经过P 和Q 两点的双曲线方程。
分析:已知中缺乏双曲线定位的条件,焦点坐标或准线方程,可以讨论焦点在哪一个坐标轴上,分别求解,得出结论,过程复杂,运算量大且容易出错。
若采用双曲线的变化形式来表示焦点在不同坐标轴上的标准方程,利用待定系数法,即得出要求的结论,又避免了讨论。
解:设双曲线的方程为由已知双曲线经过,代入,解得所以所求的双曲线方程为:(类比可解决椭圆类似的问题)例3.2、已知双曲线的渐近线方程为,并且焦点都在圆上,求双曲线方程。
分析:从已知渐近线方程,焦点位置知,焦点可能在x轴上,也可能在y轴上,故可以分两种情况讨论求解。
解、(1)当焦点在x轴时,设双曲线方程为,因渐近线方程为,则,①又有焦点在圆上知C=10,即有②由式①,②解得a=6,b=8,所以双曲线方程为(2)当焦点在y轴上时,设双曲线方程为,由已知得(评析,给出双曲线的渐近线,但不能确定焦点位置,可以设双曲线方程为,或取不同值得到的是一系列具有相同渐近线的双曲线)解法二、设双曲线方程为。
一般而言,若双曲线的渐近线方程为:则其共轭双曲线方程形式为例3.3、(2000北京春季高考)设函数分析:如何转化,方法一是分类讨论,据零点分为三步去掉绝对值,分别推出;方法二是根据绝对值的性质,两边平方,去掉绝对值号,分解因式得。
解、由已知f(x)=|lgx|,方法一:方法二:。