初中数学解题思想方法全部内容
初中数学解题方法思想总结

初中数学解题方法思想总结初中数学解题方法思想总结在初中数学学习中,掌握正确的解题方法是非常重要的。
良好的解题方法不仅能够帮助学生更好地理解问题,还能够提高解题效率和解题的准确性。
下面将对初中数学解题方法的思想进行总结。
一、问题分析思想在解题过程中,首先需要对问题进行充分的分析。
这包括理解问题的内容,确定已知条件和要求,并分清问题的关键点。
只有充分理解问题,才能够清楚地有针对性地进行解题。
例如,在解决几何题时,需要充分理解题目中的几何图形和相关概念。
通过分析几何图形的特征和已知条件,确定几何性质和关系,从而找到解决问题的途径。
二、抽象思想在数学解题过程中,抽象思想是非常重要的。
通过将问题中的具体情形抽象成符号、变量或数学模型,可以使问题更加简化和明确。
通过抽象,可以将问题归结为一般性的数学模型,从而利用数学方法进行求解。
例如,在解决代数方程问题时,可以将未知数和已知数用字母表示,建立方程,并通过解方程的方法求得未知数的值。
抽象思想还可以应用于几何问题的解答中。
例如,在解决面积、体积问题时,可以将图形或立体体积进行分割,抽象成一些常见的几何形状,从而利用相应形状的面积或体积公式进行求解。
三、归纳思想归纳思想在数学解题中起着重要的作用。
通过观察和总结问题中的规律和特点,可以推导出一般性的结论,并应用于类似的问题中。
例如,在解决数列问题时,可以通过观察数列中的数值变化规律,归纳出通项公式,从而求得任意项的值。
在解决几何问题时,也可以通过观察图形的特点和几何性质,总结出几何关系,进而应用到其他问题中去。
归纳思想还可以帮助学生发现一些数学运算规律,例如四则运算中的交换律、结合律等。
通过归纳,可以不仅更好理解运算的性质,还能够运用到解题中去。
四、推理思想推理思想是数学解题过程中的关键思维。
通过逻辑推理和推导,能够从已知条件出发,推出所要求的结论。
例如,在解决证明题时,需要根据已知条件,运用一定的推理方法,推导出所要证明的结论。
七年级数学必备的个解题思维方法

七年级数学必备的个解题思维方法七年级数学必备的 10 个解题思维方法数学是一门充满智慧和挑战的学科,对于七年级的同学来说,掌握一些有效的解题思维方法至关重要。
以下是 10 个在七年级数学学习中必备的解题思维方法。
一、方程思维方程是解决数学问题的有力工具。
当遇到一些涉及数量关系的问题时,通过设未知数,找出等量关系,列出方程,可以使问题变得清晰明了。
例如,有一道题:一个数的 3 倍加上 5 等于 20,求这个数。
我们就可以设这个数为 x,根据题意列出方程 3x + 5 = 20,然后解方程得出答案。
方程思维能够帮助我们将复杂的问题转化为数学表达式,从而更容易求解。
二、分类讨论思维很多数学问题的答案并不是唯一的,需要根据不同的情况进行分类讨论。
比如,在绝对值的问题中,当绝对值符号内的数大于 0、等于 0 和小于 0 时,计算方法是不同的。
再比如,在求解不等式组时,需要分别讨论每个不等式的解集,然后综合得出最终的解集。
分类讨论思维要求我们考虑问题全面,不遗漏任何一种可能的情况。
三、数形结合思维数与形是数学中的两个重要方面,将它们结合起来往往能让问题更直观、更容易理解。
比如,在学习数轴时,通过在数轴上表示数,可以清晰地看出数的大小关系和距离。
在解决函数问题时,画出函数图像能帮助我们直观地看到函数的性质和变化趋势。
四、逆向思维有时候,从问题的正面思考可能会遇到困难,这时可以尝试从反面或者结果出发进行逆向思考。
例如,证明“如果两个角是对顶角,那么这两个角相等”,可以逆向思考“如果两个角不相等,那么这两个角不是对顶角”。
逆向思维可以帮助我们打破常规,开拓解题思路。
五、整体思维在解决问题时,有时可以将某些部分看作一个整体,从而简化计算和推理。
比如,在代数式的化简和求值中,如果式子比较复杂,可以先将其中的一部分看作一个整体进行变形和处理。
整体思维能够提高解题效率,避免繁琐的计算。
六、转化思维把一个陌生的、复杂的问题转化为熟悉的、简单的问题是数学解题中常用的策略。
初中数学思想方法大全

初中数学思想方法大全一、观察法:1.通过观察数的规律,找出数列或图形的特点,进而解决问题。
2.观察题目中的条件,找出规律,推断出解题的方法和步骤。
二、分类法:1.将题目中的条件进行分类,分别求解,再综合得出最终结果。
2.将复杂问题进行分解,分别解决每个小问题,再将结果合并。
三、逆向思维法:1.从结果出发,逆向推断出题目中的条件和方法。
2.通过反证法,假设题目中的条件不成立,然后推出矛盾,得出正确答案。
四、抽象化方法:1.将具体问题抽象成数学模型,通过代数符号和方程式进行求解。
2.通过建立几何图形的模型,求解几何问题。
五、归纳法:1.通过观察和分析已有的具体例子,总结出规律,推导出一般结论。
2.通过已知结论,推导出未知的结论。
六、对称性思想:1.利用图形的对称性质,简化问题的求解过程。
2.利用函数的奇偶性,简化函数的计算。
七、假设法:1.假设未知数的值,通过代入验证是否满足题目中的条件。
2.假设结论成立,通过逻辑推理得出结果。
八、递推法:1.利用数列或图形中前一项与后一项的关系,递推出未知项的值。
2.利用已知条件,递推出问题的解决步骤。
九、化繁为简法:1.将复杂问题简化为简单问题,逐步解决,最后得出最终结果。
2.利用等价变形,将复杂计算简化为简单计算。
十、分而治之法:1.将大问题拆分成若干个小问题,分别解决,再将结果合并得出最终答案。
2.将复杂的问题分解成几个简单的部分,分别求解。
十一、反证法:1.假设题目中的条件不成立,通过推理和逻辑推断得出矛盾,进而得出正确结论。
2.利用反证法证明一个结论的真实性。
以上是初中数学常用的思想方法,通过灵活运用这些思想方法,可以帮助我们更好地理解和解决数学问题。
初中数学解题思想及解题方法一览

初中数学解题思想及解题方法一览1.数形结合思想就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2.联系与转化的思想事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3.分类讨论的思想在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4.待定系数法当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5.配方法就是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
6.换元法在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
7.分析法在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。
这种思维过程通常称为“执果寻因”8.综合法在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”9.演绎法由一般到特殊的推理方法。
初中数学思想方法有哪些

初中数学思想方法有哪些1、数形结合思想:就是依据数学问题的条件和结论之间的内在联系,既分析其代数含义,又显示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、分类讨论的思想:在数学中,我们经常必须要依据研究对象性质的差异,分各种不同状况予以考查;这种分类思索的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
3、联系与转化的思想:事物之间是互相联系、互相制约的,是可以互相转化的。
数学学科的各部分之间也是互相联系,可以互相转化的。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
2方法一1.对应的思想和方法在初一代数入门教学中,有代数式求值的计算题,通过计算发现:代数式的值是由代数式里字母的取值所决定的,字母的不同取值可得不同的计算结果。
这里字母的取值与代数式的值之间就建立了一种对应关系,再如实数与数轴上的点,有序实数对与坐标平面内的点都存在对应关系在进行此类教学〔制定〕时,应注意渗透对应的思想,这样既有助于培养同学用变化的观点看问题,又助于培养同学的函数观念。
2.整体的思想和方法整体思想就是合计数学问题时,不是着眼于它的局部特征,而是把注意和和着眼点放在问题的整体结构上,通过对其全面深入的观察,从宏观整体上熟悉问题的实质,把一些彼此独立但实质上又互相紧密联系着的量作为整体来处理的思想方法。
整体思想在处理数学问题时,有广泛的应用。
3.数形结合的思想和方法数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。
著名数学家华罗庚先生说:"数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。
'这充分说明了数形结合思想在数学研究和数学应用中的重要性。
4.分类的思想和方法教材中进行分类的实例比较多,如有理数、实数、三角形、四边形等分类的教学不仅可以使同学明确分类的重要性:一是使有关的概念系统化、完整化;二是使被分概念的外延更清楚、更深入、更具体,并且还能使同学掌握分数的要点方法:3方法二1、数形结合的思想和方法在同学刚接触初中数学不久,教材中设置利用"数轴'这一图形,巩固"具有相反意义的量'的概念,了解相反数,绝对值的概念,掌握有理数大小的道理,理解有理数加法、乘法的意义,掌握运算法则等。
初中数学八大思想方法

初中数学八大思想方法一、联系实际数学学习的第一步就是要联系实际,引起学生学习数学的兴趣,让学生体会数学在实际生活中的用途。
要帮助学生认识到数学是科学知识系统的一部分,在实际学习之前,要开展各类活动,让学生体会到数学运用的方方面面,形成对数学的基本认识。
二、发现规律发现规律是学习数学的重要环节,它是数学学习的核心任务和难点。
要通过实际活动引发学生思考,培养学生发现规律的能力,注重发现数学规律和总结数学规律的培养。
三、原则论证原则论证是数学学习方法中最重要的部分,在学习数学的过程中,要培养学生构建数学模型,将客观实际情况表述成数学模型,然后通过精心的证明过程,根据一定的数学原则得出结论,要培养学生归纳推理、证明、分析、推断和思维逻辑的能力。
四、分析解题分析解题是数学学习的重要部分,通过解题要求学生首先对题干整理思想,利用数学工具将题意转化为数学问题,再选择合适的解法解决问题,将运算结果展开,说明分析问题思路,得出结论,最后判断问题解答的准确性。
五、图像化思维学习数学过程中要灵活运用图像表示形式,把复杂的数学概念及问题用简单的图像表示出来,便于理解和计算,促进有效的解决数学问题,激发学生对数学要素的分析、综合,运用空间想象力构造多维的概念,形成深入的理解和本质思维。
六、数据流图数据流图是源于计算机科学的一种有效工具,它是用控制结构图来展示问题求解过程,并优化这一过程,将复杂的求解过程表示在一张图片上,使原本复杂的计算过程变得简洁、清晰,便于学生的学习和理解。
七、算术分析算术分析是一种加强抽象能力的有效工具,要求学生用算术公式逐步梳理数学知识考查学生数学知识和思想方法,使学生学习数学知识更有系统性。
八、思维编程思维编程是软件语言教学的一种方式,其实就是通过让学生学习一定的编程语言知识,文化和运用编程式思维“把计算问题变为计算过程”,逐步拆解问题,利用计算机的自动计算能力完成计算,从而引导学生形成结构化的思维编程方法,使学生能够把定向问题变为求解问题,进行数学实践性的活动,从而提升学生的创新能力。
初中数学有哪些解题的思想方法

初中数学有哪些解题的思想方法
1,首先也是最重要的是转化思想。
无论是求解还是证明题,最核心的方法就是转化法。
例如要证明a=b,又已知a=c就设法证明b=c即可。
已知MN垂直平分线段AB,则MA=MB。
这样转化就用到了已知条件得到了新的条件,无形中离答案近了一步!
2.按类别讨论想法。
几何题如果没有图形,往往会有两个答案甚至更多。
最常见的是等腰三角形问题。
3,方程思想。
很多几何题需要利用勾股定理和相似作为等量关系列方程求出来。
还有些题则需要设x,但不需要列方程,最后x可以抵消。
4、整体思路。
需要用到一些复杂的求导过程,几何代数就是用这个思路来解题的。
比如郭的数学公益课,我们可以用整体论的思维去解一元二次方程。
5,数形结合思想。
解各类函数问题经常用到,数缺形时少直观,形少数时难入微,数形结合百般好,数形结合百般好,隔离分家万事休。
如果不能体会数形结合的妙处,不可能学好函数!
6、临界值思想。
经常用到求取值范围的问题。
郭老师,有十几年的初中数学教学经验,是数学教研组成员,辅导全国各地的学生。
开设公益教学课程:郭数学公益课系列,每天发布初中数学各章节考点及解题方法。
欢迎关注,免费学习。
(完整版)初中数学解题必备10大思想方法

初中数学解题必备10大思想方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学解题思想方法全部内容
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。
运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。
反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。
用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一个、一个也没有;至少有n个、至多有(n一1)个;至多有一个、至少有两个;唯一、至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。
推理必须严谨。
导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。
运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。
面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。
所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。
所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。
中学数学中所涉及的变换主要是初等变换。
有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。
另一方面,也可将变换的观点
渗透到中学数学教学中。
将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10、客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。
选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。
下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。
当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。
这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。
图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。