初中数学思想方法主要有哪些

合集下载

初中数学思想方法大全

初中数学思想方法大全

初中数学思想方法大全一、观察法:1.通过观察数的规律,找出数列或图形的特点,进而解决问题。

2.观察题目中的条件,找出规律,推断出解题的方法和步骤。

二、分类法:1.将题目中的条件进行分类,分别求解,再综合得出最终结果。

2.将复杂问题进行分解,分别解决每个小问题,再将结果合并。

三、逆向思维法:1.从结果出发,逆向推断出题目中的条件和方法。

2.通过反证法,假设题目中的条件不成立,然后推出矛盾,得出正确答案。

四、抽象化方法:1.将具体问题抽象成数学模型,通过代数符号和方程式进行求解。

2.通过建立几何图形的模型,求解几何问题。

五、归纳法:1.通过观察和分析已有的具体例子,总结出规律,推导出一般结论。

2.通过已知结论,推导出未知的结论。

六、对称性思想:1.利用图形的对称性质,简化问题的求解过程。

2.利用函数的奇偶性,简化函数的计算。

七、假设法:1.假设未知数的值,通过代入验证是否满足题目中的条件。

2.假设结论成立,通过逻辑推理得出结果。

八、递推法:1.利用数列或图形中前一项与后一项的关系,递推出未知项的值。

2.利用已知条件,递推出问题的解决步骤。

九、化繁为简法:1.将复杂问题简化为简单问题,逐步解决,最后得出最终结果。

2.利用等价变形,将复杂计算简化为简单计算。

十、分而治之法:1.将大问题拆分成若干个小问题,分别解决,再将结果合并得出最终答案。

2.将复杂的问题分解成几个简单的部分,分别求解。

十一、反证法:1.假设题目中的条件不成立,通过推理和逻辑推断得出矛盾,进而得出正确结论。

2.利用反证法证明一个结论的真实性。

以上是初中数学常用的思想方法,通过灵活运用这些思想方法,可以帮助我们更好地理解和解决数学问题。

初中数学思想方法举例

初中数学思想方法举例

初中数学思想方法举例数学思想方法是指在解决数学问题时所采用的思维方式和方法。

以下是初中阶段常见的数学思想方法的举例:1.抽象思维方法:根据具体问题提取出关键信息,将问题进行抽象,转化为数学语言。

例如,在解决几何题时,可以将实际图形抽象成坐标系中的几何图形,通过数学方法求解。

2.归纳思维方法:通过观察问题的特征规律,从具体情况中总结并推广出一般性的结论。

例如,在解决数列问题时,可以通过观察数列的前几项,推断出数列的通项公式。

3.反证法:假设问题的逆否命题成立,通过推理论证能推出矛盾的结论,从而得出问题的真正解答。

例如,在证明一个数是质数时,可以假设该数是合数,通过反证法排除其他可能性,证明该数是质数。

4.分类讨论法:将问题按照不同情况分类进行详细讨论,找出每种情况的解决方法,并通过分析问题的条件进行选择。

例如,在解决“甲,乙,丙三个人一起干活,甲乙两人干活是的速度比丙高1/3”的问题时,可以将丙的速度设为1,讨论其他情况下的解法。

5.数学建模:将实际问题转化为数学问题,并利用数学知识进行建模和求解。

例如,在解决一些城市出租车调度问题时,可以将车辆和乘客抽象为数学模型,并利用最优化算法来计算最佳的调度方案。

6. 迭代逼近法:通过不断逼近数值的方法来求解方程或函数的解,直至满足预设条件。

例如,在求解方程x^2 = 2的正根时,可以通过迭代公式xn+1 = (xn + 2/xn)/2来不断逼近根的值。

7. 反函数法:通过求解问题的反函数,可以将原问题转化为已知的问题求解。

例如,在解决函数y = ax + b的问题时,可以考虑函数的反函数来转化为已知的问题。

8.数量关系方法:通过数学关系式或图形关系来求解问题。

例如,在解决平行线与交叉线之间的角度关系时,可以利用平行线之间的对应角相等的性质来求解。

9.图形变换方法:通过对图形进行平移、旋转、翻折等变换操作,观察变换后图形的性质和关系,并利用这些性质求解问题。

初中数学思想方法主要有哪些

初中数学思想方法主要有哪些

初中数学思想方法主要有哪些初中数学思想方法主要有以下几种:1. 抽象思维:数学是一门抽象的学科,需要学生具备一定的抽象思维能力。

抽象思维是指根据具体问题的特征,提取出问题中的规律或者本质,用符号或公式来表示。

通过抽象思维,学生能够更好地理解数学概念和定理,解决具体问题。

2. 推理思维:数学推理是解决问题的核心能力之一。

通过推理,学生能够根据已知条件获得新的结论。

数学推理可以分为演绎推理和归纳推理两种。

演绎推理是从已知的前提出发,通过逻辑的规则或定理推导出结论;归纳推理是从一部分特殊情况总结出整体规律。

3. 模型思维:数学是一门以建立模型为基础的学科。

学生通过建立数学模型,将问题转化为数学符号或公式的形式,从而更好地解决问题。

模型思维可以帮助学生学会抽象和建模的能力,培养学生解决实际问题的能力。

4. 反证法:反证法是数学证明中常用的一种方法,通过假设对立的结论,推导出矛盾,从而证明原来的结论是正确的。

反证法可以培养学生的逻辑思维和推理能力,帮助学生理解抽象概念和证明方法。

5. 归纳法:归纳法是从一部分特殊情况总结出整体规律的一种方法。

通过观察一些具体例子的规律,学生可以得出一个普遍的结论。

归纳法可以培养学生的观察能力和总结能力,并帮助学生理解数学定理和公式的应用。

6. 分类思维:数学中常常需要对事物进行分类和比较,通过分析不同情况的异同,找到问题的关键。

分类思维可以帮助学生理清思路,从整体和细节的关系中找到问题的解决方法。

7. 可视化思维:可视化思维是指通过图形、图表等图像展示解决问题的过程。

通过可视化思维,学生可以更直观地理解和表达数学概念和关系。

可视化思维可以培养学生的几何直观和图像思维,提高解决问题的效率。

总之,初中数学思想方法的核心是培养学生的抽象思维、推理思维和模型思维能力。

只有掌握了这些方法,学生才能更好地理解和应用数学知识,解决实际问题。

因此,在教学中应注重培养学生的思维方法,提供丰富的问题情境和解决思路,引导学生主动思考和探索,培养他们的数学思维能力和问题解决能力。

初中数学思想方法有哪些

初中数学思想方法有哪些

初中数学思想方法有哪些1、数形结合思想:就是依据数学问题的条件和结论之间的内在联系,既分析其代数含义,又显示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

2、分类讨论的思想:在数学中,我们经常必须要依据研究对象性质的差异,分各种不同状况予以考查;这种分类思索的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

3、联系与转化的思想:事物之间是互相联系、互相制约的,是可以互相转化的。

数学学科的各部分之间也是互相联系,可以互相转化的。

4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

2方法一1.对应的思想和方法在初一代数入门教学中,有代数式求值的计算题,通过计算发现:代数式的值是由代数式里字母的取值所决定的,字母的不同取值可得不同的计算结果。

这里字母的取值与代数式的值之间就建立了一种对应关系,再如实数与数轴上的点,有序实数对与坐标平面内的点都存在对应关系在进行此类教学〔制定〕时,应注意渗透对应的思想,这样既有助于培养同学用变化的观点看问题,又助于培养同学的函数观念。

2.整体的思想和方法整体思想就是合计数学问题时,不是着眼于它的局部特征,而是把注意和和着眼点放在问题的整体结构上,通过对其全面深入的观察,从宏观整体上熟悉问题的实质,把一些彼此独立但实质上又互相紧密联系着的量作为整体来处理的思想方法。

整体思想在处理数学问题时,有广泛的应用。

3.数形结合的思想和方法数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。

著名数学家华罗庚先生说:"数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。

'这充分说明了数形结合思想在数学研究和数学应用中的重要性。

4.分类的思想和方法教材中进行分类的实例比较多,如有理数、实数、三角形、四边形等分类的教学不仅可以使同学明确分类的重要性:一是使有关的概念系统化、完整化;二是使被分概念的外延更清楚、更深入、更具体,并且还能使同学掌握分数的要点方法:3方法二1、数形结合的思想和方法在同学刚接触初中数学不久,教材中设置利用"数轴'这一图形,巩固"具有相反意义的量'的概念,了解相反数,绝对值的概念,掌握有理数大小的道理,理解有理数加法、乘法的意义,掌握运算法则等。

初中数学八大思想方法

初中数学八大思想方法

初中数学八大思想方法一、联系实际数学学习的第一步就是要联系实际,引起学生学习数学的兴趣,让学生体会数学在实际生活中的用途。

要帮助学生认识到数学是科学知识系统的一部分,在实际学习之前,要开展各类活动,让学生体会到数学运用的方方面面,形成对数学的基本认识。

二、发现规律发现规律是学习数学的重要环节,它是数学学习的核心任务和难点。

要通过实际活动引发学生思考,培养学生发现规律的能力,注重发现数学规律和总结数学规律的培养。

三、原则论证原则论证是数学学习方法中最重要的部分,在学习数学的过程中,要培养学生构建数学模型,将客观实际情况表述成数学模型,然后通过精心的证明过程,根据一定的数学原则得出结论,要培养学生归纳推理、证明、分析、推断和思维逻辑的能力。

四、分析解题分析解题是数学学习的重要部分,通过解题要求学生首先对题干整理思想,利用数学工具将题意转化为数学问题,再选择合适的解法解决问题,将运算结果展开,说明分析问题思路,得出结论,最后判断问题解答的准确性。

五、图像化思维学习数学过程中要灵活运用图像表示形式,把复杂的数学概念及问题用简单的图像表示出来,便于理解和计算,促进有效的解决数学问题,激发学生对数学要素的分析、综合,运用空间想象力构造多维的概念,形成深入的理解和本质思维。

六、数据流图数据流图是源于计算机科学的一种有效工具,它是用控制结构图来展示问题求解过程,并优化这一过程,将复杂的求解过程表示在一张图片上,使原本复杂的计算过程变得简洁、清晰,便于学生的学习和理解。

七、算术分析算术分析是一种加强抽象能力的有效工具,要求学生用算术公式逐步梳理数学知识考查学生数学知识和思想方法,使学生学习数学知识更有系统性。

八、思维编程思维编程是软件语言教学的一种方式,其实就是通过让学生学习一定的编程语言知识,文化和运用编程式思维“把计算问题变为计算过程”,逐步拆解问题,利用计算机的自动计算能力完成计算,从而引导学生形成结构化的思维编程方法,使学生能够把定向问题变为求解问题,进行数学实践性的活动,从而提升学生的创新能力。

初中数学思想方法有哪些

初中数学思想方法有哪些

初中数学思想方法有哪些
初中数学思想方法从接受的难易程度可分为三个层次:
一是基本具体的数学方法,如配方法、换元法、待定系数法、归纳法与演绎法等;
二是科学的逻辑方法,如观察、归纳、类比、抽象概括等方法,以及分析法、综合法与反证法等逻辑方法;
三是数学思想,如数形结合的思想、函数与方程的思想、分类讨论的思想及化归与转化的思想。

例如:
1、数形结合思想。

数形结合思想就是根据数学题目所给的条件和结论之间的内在关系,即分析其代数的意义,又分析其几何的意义,把题目所展示出的数量关系与图形(画图)相结合起来,利用这样的结合,找到解题的思路,使问题得到解决。

2、分类讨论思想。

在数学中,有时候根据题目所给出的条件,可能存在各种不同的情况,这时候就需要通过分类讨论,将所有可能出现的情况整合在一起,得出最后的结果,这种分类思考的方法,是一种重要的数学思想方法,也是一种重要的解题策略。

3、换元法。

在解决题目的过程过程中,将一个或者某个字母的式子看成一个整体,用一个新的字母来表示,达到简化式子的目的。

换元法可以把一个比较复杂的式子化简,把问题归结为比原来更基本的问题,达到化繁为简、化难为易的效果。

4、配方法。

将一个式子设法构成平方式,然后再进行所需要的转化。

当在求二次函数最值问题、解决实际问题最省钱、盈利最大化等问题时,经常要用到此方法。

5、待定系数法法。

当我们所研究的数学式子具有某种特定形式时,要确定它,就需要求出式子中待定的字母的值;为此,需要把已知的条件代入到这个待定的式子中,往往会得到含待定字母的方程或者方程组,然后解这个方程或者方程组就可以使问题得到解决。

初中数学八大思想方法总结

初中数学八大思想方法总结

初中数学八大思想方法总结初中数学的八大思想方法是指数学学科中的八种基本思想方法,即归纳、演绎、分类、比较、抽象、联想、推测和分析。

这些思想方法在数学学习和问题解决过程中起到了重要的指导作用,能够帮助学生理解和掌握数学知识,培养数学思维能力。

下面将对每一种思想方法进行详细阐述。

首先是归纳。

归纳思想方法是通过观察和实验,从具体的个别事物或现象中寻找共同点、相似之处,从而总结出一般规律或定律。

归纳是数学研究和解决问题的重要手段,能够培养学生的观察能力和归纳能力。

第二是演绎。

演绎思想方法是从已知事实、条件或前提出发,运用逻辑推理的方法,得出结论。

演绎是数学推理的基本方法,能够帮助学生分析问题、确定解题步骤,并推导出准确的答案。

第三是分类。

分类思想方法是将事物或现象按照某种规则或特征进行划分和组织。

分类能够帮助学生理清数学概念之间的关系,搞清楚各个概念的边界和特点,从而更好地理解和应用数学知识。

第四是比较。

比较思想方法是将不同事物或现象进行对比和分析,找出它们的共同点和差异点。

比较能够帮助学生深入理解数学概念和知识,发现问题的本质和特点,从而培养学生的分析思维能力和解决问题的能力。

第五是抽象。

抽象思想方法是将具体的事物或现象中的共同特点联系起来,形成一个更为一般的概念或理论体系。

抽象是数学研究和发展的核心方法之一,能够帮助学生理解和应用抽象概念,拓展数学思维的广度和深度。

第六是联想。

联想思想方法是在解决问题时,将已有的知识和经验与新的问题进行联系和应用。

联想能够帮助学生迅速找到解决问题的思路和方法,提高解题效率和准确性。

第七是推测。

推测思想方法是根据已有的事实、条件或观察结果,推断出可能的结论或规律。

推测是数学研究和创新的重要方法,能够培养学生的假设能力和创造性思维。

最后是分析。

分析思想方法是将复杂的问题或现象进行分解和研究,找出其中的关键因素和规律。

分析能够帮助学生深入思考问题的本质和特点,提高解决问题的能力和水平。

初中数学有哪些解题的思想方法

初中数学有哪些解题的思想方法

初中数学有哪些解题的思想方法
1,首先也是最重要的是转化思想。

无论是求解还是证明题,最核心的方法就是转化法。

例如要证明a=b,又已知a=c就设法证明b=c即可。

已知MN垂直平分线段AB,则MA=MB。

这样转化就用到了已知条件得到了新的条件,无形中离答案近了一步!
2.按类别讨论想法。

几何题如果没有图形,往往会有两个答案甚至更多。

最常见的是等腰三角形问题。

3,方程思想。

很多几何题需要利用勾股定理和相似作为等量关系列方程求出来。

还有些题则需要设x,但不需要列方程,最后x可以抵消。

4、整体思路。

需要用到一些复杂的求导过程,几何代数就是用这个思路来解题的。

比如郭的数学公益课,我们可以用整体论的思维去解一元二次方程。

5,数形结合思想。

解各类函数问题经常用到,数缺形时少直观,形少数时难入微,数形结合百般好,数形结合百般好,隔离分家万事休。

如果不能体会数形结合的妙处,不可能学好函数!
6、临界值思想。

经常用到求取值范围的问题。

郭老师,有十几年的初中数学教学经验,是数学教研组成员,辅导全国各地的学生。

开设公益教学课程:郭数学公益课系列,每天发布初中数学各章节考点及解题方法。

欢迎关注,免费学习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学思想方法主要有哪些
初中数学中蕴含的数学思想很多,其中最主要的数学思想方法包括转化思想、数形结合思想、分类讨论思想、函数与方程思想等.基本方法主要指待定系数法、消元法、配方法、换元法、图象法等。

由于数学方法在教材中大都有具体陈述,而数学思想却是隐含在知识系统之中,这为强化数学思想方法带来了一定困难。

为此,下面我想谈谈转化、分类讨论、数形结合等数学思想在初中数学中的表现。

1、转化思想
所谓转化思想是指一种研究对象在一定条件下转化为另一种研究对象的思维
方式。

转化思想是数学思想方法的核心,其它数学思想方法都是转化的手段或策略。

初中数学中运用转化思想具体表现在以下三个方面:(l)把新问题转化为原来研究过的问题,如有理数减法转化为加法,除法转化为乘法等(2)把复杂的问题转化为简单的问题,新问题用已有的方法不能或难以解决时,建立新的研究方式如引进负数,建立数轴;变利用逆运算的性质解方程为利用等式的性质解方程,等等。

2、分类讨论思想
所谓分类讨论是指对于复杂的对象,为了研究的需要,根据对象本质属性
的相同点和差异性,将对象区分为不同种类,通过研究各类对象的性质,从而
认识整体的性质的思想方式。

在分类讨论中要注意标准的同一性,即划分始终
是同一个标准,这个标准必须是科学合理的;分域的互斥性,即所分成的各类
既要互不包含,又要使各类总和等于讨论的全集;分域的逐级性,有的问题分
类后还可在每类中继续分类。

运用分类讨论思想指导数学教学,有利于学生归纳、总结所学的数学知识,使之系统化、条理化,并逐步形成一个完整的知识结构网
络,这有利于学生严密、清晰、合理地探索解题思路,提高数学思维能力。

在初中数学中需要分类讨沦的问题主要表现三个方面:(1)有的数学概念、定理的论证包含多种情况,这类问题需要分类讨论。

如平面几何中三角形的分类、四边形的分类、角的分类、圆周角定理、弦切角定理等的证明,都涉及到分类讨论;(2)解含字母参数或绝对值符号的方程、不等式,讨论二次函数中二次项系数与图象的开口方向等,由于这些参数的取值不同或要去掉绝对值符号就有不同的结果,这类问题就需要分类讨论;(3)有的数学问题,虽结论惟一但导致这结论的前提不尽相同,这类问题也要分类讨论。

3、数形结合思想
所谓数形结合是指抽象的数学语言与形象直观的图形结合起来,从而实现由抽象向具体转化的一种思维方式。

著名数学家华罗庚说过:“数缺形时不直观,形少数时难入微”。

有些数最关系,借助于图形的性质,可以使许多抽象的概念和复杂的关系直观化、形象化、简单化;而图形的一些性质,借助于数量的计算和分析得以严谨化。

在初中阶段,数形结合的“形”可以是数轴、函数的图象和几何图形等等,它们都具有形象化的特点。

数形结合思想在初中数学中主要表现在以下两个方面:(l)以形助数,帮助学生深刻理解数学概念如教师可以用数轴上点和实数之间的对应关系来讲清相反数、绝对值的概念以及比较两个数大小的方法;运用函数图象的性质讨沦一元二次方程的根以及讨论一元一次不等式等等;(2)以数助形,帮助学生简化解题方法。

4、函数与方程思想
函数与方程思想就是用函数的观点和方法分析问题、解决问题.函数思想是客观世界中事物运动变化、相互联系、相互制约的普遍规律在数学中的具体反映.函数与方程思想的本质是变量之间的对应,即用变化的观点和函数的形式将所研究的数量关系表示出来,然后用函数的性质进行研究,从而使问题获得解决.如果函数的形式用解析式的方式表示,那么就可以将函数解析式看作方程,并通过解方程和对方程的研究使问题得到解决,这就是方程思想.
譬如初中数学中大量涉及一次函数、反比例函数、二次函数等内容的数学问题都要用到函数与方程思想来解决.由于函数思想与方程思想的内容和形式相一致,因而往往将其并称为函数与方程思想,并将二者结合学习与运用.
初中数学中还渗透了类比、归纳、联想等数学思想方法,这些思想方法之间,是相互渗透、互相促进的,在数学教学中要有机地结合起来。

相关文档
最新文档