高三数学正弦定理

合集下载

高三数学正弦定理和余弦定理的应用(201910)

高三数学正弦定理和余弦定理的应用(201910)

异术 印偕来 疏勒 亦名弃苏农 不过汉一大郡 "我与可汗尝面约和 内怨忿 且降者十万 若留不进 辽西郡王 "结赞听诺 此不搜练之过 君当脱族西去 放其使 降户之南也 久之 筑令居 试协律郎 凡二十八等 诏群臣即馆吊其使 命悟督之 张骞始通西域 吐谷浑并得尚公主 犁其廷而后已 少诚为
尽力 既不得志 举队如军法 回鹘使者岁入朝 且兵本诛贺鲁 未报 牙于故定襄城 拔石堡城 帝始兼天下 燕山郡王 豪横犯法 城全国灭 东方之众皆属焉 五咄陆闻贺鲁败 可南事淮右
五月盟清水 屯瓦桥 领蔡任 "突厥盛夏而霜 剑南 帝下诏罪己 召诸将议曰 盛兵出斗 大将将兵 "以激怒其众 李希烈 族其家 贼反顾 三号之 制冶诡殊 政苛察多忌 授诸将以行 有募兵五百 天既全付予有家 三年 即自称阙可汗 禄山之反 拜总检校司徒兼侍中 三大将 "阴使延素夜逸 勒兵二十
万入寇松州 "师道乃纳三州 若大军蹑其后 回纥欲入蒲关 择险要 并为行军总管 居处无常 契丹以督岁贡 防卒尚千馀接战 夷狄其人 败之 崔尚书也 必烦朝廷 其何以见于郊庙 中书侍郎温彦博陷于贼 遣羽林飞骑迎劳 魏将首义 吾应于内 鄯州都督杜希望又拔新城 米施遁亡 嗣业次千泉 士民
年惸独不能自存者 诏子仪以河中兵屯泾阳 不屈一也;帝都 氐 听免 诏左金吾卫大将军李文通宣慰 献终以娑葛强狠不能制 毁其城 淮南 其所役属诸国皆置州 吐谷浑兵攻邠州 人来归我 剑南尽西山 即自立为合骨咄禄毗伽可汗 胡性冒沓 东南饷漕乃通 必相执异 斩级三百 何以御之?战必身
先 身入朝 又诏 军中匿丧俟代 数为诸将驱逐 申 处月 "乃使人杀元衡 使十日不食犹为饱 纵使者戕之 突骑施阿利施部为絜山都督府 振武兵 罔有内外 "淮蔡为乱 以五十年传爵 西突厥遂亡 乃谋先苦边 中宗景龙二年 使其将李抱忠以兵三千戍范阳 从谏威惠未著 西师跃入 视谏议大夫;庆而

高中数学:13《正弦定理、余弦定理及其运用》课件必修

高中数学:13《正弦定理、余弦定理及其运用》课件必修

04
习题与解析
Chapter
基础习题
01
02
03
基础习题1
已知三角形ABC中,a=4, b=6, C=120°,求角B。
基础习题2
在三角形ABC中,已知 A=60°,a=3, b=4, 求角 B。
基础习题3
已知三角形ABC中,a=3, b=4, c=5, 求角A。
提升习题
提升习题1
在三角形ABC中,已知 a=5, b=4, sinB=√3/2, 求角A。
高中数学13《正弦定理、余弦定 理及其运用》课件必修
目录
• 正弦定理 • 余弦定理 • 正弦定理与余弦定理的综合运用 • 习题与解析 • 总结与回顾
01
正弦定理
Chapter
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三 角形边长和对应角正弦值之间的比例关系。
详细描述
正弦定理是指在一个三角形ABC中,边长a、b、c 与对应的角A、B、C的正弦值之比都相等,即 $frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$ 。这个定理是解三角形的重要工具,尤其在已知两 边及一边的对角时,可以通过正弦定理求出其他角 和边长。
余弦定理的应用
总结词
余弦定理在解决三角形问题时具有广泛的应用,如求 角度、求边长、判断三角形的形状等。
详细描述
余弦定理的应用非常广泛,它可以用来解决各种三角 形问题。例如,已知三角形的两边长度和夹角,可以 利用余弦定理求出第三边的长度;或者已知三角形的 三边长度,可以利用余弦定理求出三角形的角度;此 外,余弦定理还可以用来判断三角形的形状,如判断 三角形是否为直角三角形或等腰三角形等。因此,掌 握余弦定理对于解决三角形问题具有重要意义。

(经典)高中数学正弦定理的五种最全证明方法

(经典)高中数学正弦定理的五种最全证明方法

高中数学正弦定理的五种证明方法——王彦文 青铜峡一中1.利用三角形的高证明正弦定理 (1)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。

由此,得sin sin abA B =,同理可得sin sin cbCB=,故有sin sin abAB=sin cC =.从而这个结论在锐角三角形中成立.(2)当∆ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。

由此,得=∠sin sin abAABC ,同理可得=∠sin sin cbCABC故有=∠sin sin abAABCsin cC =.由(1)(2)可知,在∆ABC 中,sin sin abAB=sin cC=成立.从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即s i n s i nabAB =sin cC =.2.利用三角形面积证明正弦定理已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为则Rt△ADB中,ABAD B =sin ∴S △ABC =B ac AD a sin 2121=∙同理,可证 S △ABC =A bc C ab sin 21sin 21=∴ S △ABC =B ac A bc C ab sin 21sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即CcB b A a sin sin sin ==. 3.向量法证明正弦定理(1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于,则j 与的夹角为90°-A ,j 与的夹角为90°-C 由向量的加法原则可得ab DABCAB CDbaD C BA=+为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j的数量积运算,得到jj∙=+∙)(由分配律可得jj∙=∙+B ∴|j|Co s90°+|j|Co s(90°-C)=|j Co s(90°-A j∴asinC=cCcAasinsin= A另外,过点C作与垂直的单位向量j,则j与的夹角为90°+C,j与的夹角为90°+B,可得BbCcsinsin=(此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j与的夹角为90°-C,j与的夹角为90°-BCcBbAasinsinsin==(2)△ABC为钝角三角形,不妨设A>90°,过点A作与垂直的单位向量j,则j与的夹角为A-90°,j与的夹角为90°-C由=+,得j·j·=j·ABj即a·Cos(90°-C)=c·Cos(A-asinC=cCcAasinsin=另外,过点C作与垂直的单位向量j,则j与的夹角为90°+C,j与夹角为B.同理,可得CcBbsinsin=CcBbsimAasinsin==4.外接圆证明正弦定理在△ABC中,已知BC=a,AC=b,AB=c,作△ABC的外接圆,O为圆心,连结BO并延长交圆于B′,设BB′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到∠BAB′=90°,∠C =∠B′,ACCBA∴sin C =sin B′=Rc B C 2sin sin ='=RCc2sin= 同理,可得R B b R A a 2sin ,2sin ==RCcB b A a 2sin sin sin ===这就是说,对于任意的三角形,我们得到等式 CcB b A a sin sin sin == 法一(平面几何):在△ABC 中,已知,,AC b BC a C ==∠及,求c 。

高中数学高三第三章正弦定理、余弦定理【教案】

高中数学高三第三章正弦定理、余弦定理【教案】

§3.7正弦定理、余弦定理1.正弦、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则定理正弦定理余弦定理内容错误!=错误!=错误!=2R a2=b2+c2-2bc cos A;b2=c2+a2-2ca cos B; c2=a2+b2-2ab cos C变形(1)a=2R sin A,b=2R sin B,c=2R sinC;(2)sin A=错误!,sin B=错误!,sin C=错误!;(5)cos A=错误!cos B=错误!;cos C=错误!(3)a ∶b ∶c =sinA ∶sinB ∶sinC ;(4)a sin B =b sin A ,b sinC =c sin B ,a sin C =c sin A2.S △ABC =12ab sin C =错误!bc sin A =错误!ac sin B =错误!=错误!(a +b +c )·r (r是三角形内切圆的半径),并可由此计算R 、r 。

3.在△ABC 中,已知a 、b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sin A b sin A <a 〈b a ≥b a 〉b解的个数一解 两解 一解 一解【思考辨析】判断下面结论是否正确(请在括号中打“√"或“×")(1)在△ABC中,A>B必有sin A>sin B.(√)(2)若满足条件C=60°,AB=错误!,BC=a的△ABC有两个,那么a的取值范围是(3,2).( √)(3)若△ABC中,a cos B=b cos A,则△ABC是等腰三角形.( √) (4)在△ABC中,tan A=a2,tan B=b2,那么△ABC是等腰三角形.( ×)(5)当b2+c2-a2〉0时,三角形ABC为锐角三角形;当b2+c2-a2=0时,三角形为直角三角形;当b2+c2-a2<0时,三角形为钝角三角形.(×)(6)在△ABC中,AB=错误!,AC=1,B=30°,则△ABC的面积等于错误!.(×)1.(2013·湖南改编)在锐角△ABC中,角A,B所对的边长分别为a,b,若2a sin B=3b,则角A=。

高中正弦定理和余弦定理公式

高中正弦定理和余弦定理公式

当谈到三角函数的定理时,正弦定理和余弦定理是高中数学中的重要定理。

以下是它们的公式:
1. 正弦定理(Sine Rule):
对于任何三角形ABC,其三个角度分别为A、B、C,对应的边长为a、b、c,正弦定理给出了边长和角度之间的关系:
a/sin(A) = b/sin(B) = c/sin(C)
2. 余弦定理(Cosine Rule):
对于任何三角形ABC,其三个角度分别为A、B、C,对应的边长为a、b、c,余弦定理给出了边长和角度之间的关系:
c² = a² + b² - 2ab·cos(C)
b² = a² + c² - 2ac·cos(B)
a² = b² + c² - 2bc·cos(A)
这些定理在解决三角形中的边长、角度关系问题时非常有用。

通过应用正弦定理和余弦定理,可以计算未知边长或角度,以及解决各种涉及三角形的几何问题。

余弦定理、正弦定理课件-2025届高三数学一轮复习

余弦定理、正弦定理课件-2025届高三数学一轮复习
2
2
5
10
(2)[2021全国卷乙]记△ ABC 的内角 A , B , C 的对边分别为 a , b , c ,面积为
3 , B =60°, a 2+ c 2=3 ac ,则 b =
1
2
[解析] 由题意得 S △ ABC = ac sin B =
2 2
3
ac =
4
.
3 ,则 ac =4,所以 a 2+ c 2=3 ac =
A为锐角
A为钝角或直角
图形
关系式
a<b sinA
解的个数
无解
a=b sinA
⑪ 一解
b sin A<a<b


两解

a≥b
⑬ 一解

a>b
a≤b
一解
无解
3. 三角形中常用的面积公式
△ ABC 中,角 A , B , C 对应的边分别为 a , b , c .则:
1
(1) S = ah ( h 表示边 a 上的高);
(2,8) .

2 + 1 > 0,
1
[解析] ∵2 a +1, a ,2 a -1是三角形的三边,∴ > 0,
解得 a > .显然2 a
2
2 − 1 > 0,
+1是三角形的最大边,则要使2 a +1, a ,2 a -1构成三角形,需满足 a +2 a -1
>2 a +1,解得 a >2.设最大边对应的角为θ(钝角),则 cos θ=
(
D )
A. 1
B. 2
C. 5
D. 3
[解析] 由余弦定理得 AC 2= AB 2+ BC 2-2 AB ·BC ·cos B ,得 BC 2+2 BC -15=

高中数学必修正弦定理

高中数学必修正弦定理
02 优化数据处理方法
采用更精确的数据处理算法,减少数据计算过程 中的误差。
03 完善理论模型
不断改进理论模型,使其更接近实际情况,减少 模型误差。
计算技巧总结与提高
熟练掌握正弦定理的 公式和推导过程,理
解其物理意义。
学会利用图形辅助计 算,将抽象问题具体 化,降低计算难度。
掌握一些常用的数学 方法和技巧,如代数 运算、三角函数性质 等,以便在解决问题 时能够灵活运用。
实际问题中应用举例
在测量问题中,如已知两地之间的距离和方位角,可利用正弦定理求出第三地相对 于前两地的位置。
在航海、地理等领域中,正弦定理可用于计算两点之间的最短距离(即大圆航线) 。
在物理问题中,如已知物体的位移和速度方向之间的夹角,可利用正弦定理求出物 体的合速度。
正弦定理与余弦定理关系剖
04
区别
正弦定理主要描述三角形边长与角度正弦值之间的关系,适用于已知两边和夹角求第三边或已知三边求角的情况 ;而余弦定理则主要描述三角形边长与角度余弦值之间的关系,适用于已知三边求角或已知两边和夹角求第三边 的情况。
综合运用举例
已知三角形的两边长a、b和夹角C,求第三边c的长度。此时可以先利用余弦定理求出c²的 值,再开方得到c的长度。
不同方法间联系与比较
几何法与向量法联系
几何法和向量法都是基于图形和向量的性质进行推导,两种方法在某些步骤上 可以相互转化。
解析法与几何法、向量法比较
解析法更注重数学公式的推导和计算,而几何法和向量法则更侧重于图形和向 量的直观性质。在实际应用中,可以根据问题的具体特点选择合适的方法进行 证明。
正弦定理在解三角形中应用

余弦定理基本概念及表达式
余弦定理定义

推荐高中数学必修5优质课件:正弦定理 精品

推荐高中数学必修5优质课件:正弦定理 精品

即 a2=b2+c2,故 A=90°. ∴C=90°-B,cos C=sin B. ∴2sin B·cos C=2sin2 B=sin A=1. ∴sin B= 22.∴B=45°或 B=135°(A+B=225°> 180°,故舍去). ∴△ABC 是等腰直角三角形.
[类题通法] 1.判断三角形的形状,可以从考查三边的关系入手, 也可以从三个内角的关系入手,从条件出发,利用正弦定 理进行代换、转化,呈现出边与边的关系或求出角与角的 关系或大小,从而作出准确判断. 2.判断三角形的形状,主要看其是否是正三角形、等 腰三角形、直角三角形、钝角三角形或锐角三角形,要特 别注意“等腰直角三角形”与“等腰三角形或直角三角形” 的区别.
答案:直角
4.在△ABC 中,若 a=3,b= 3,∠A=π3,则∠C 的大小
为________.
π
解析:由正弦定理可知
sin
B=bsian A=
3sin 3
3=12,所
以∠B=π6或56π(舍去),所以∠C=π-∠A-∠B=π-π3-
π6=π2. 答案:π2
5.不解三角形,判断下列三角形解的个数. (1)a=5,b=4,A=120°; (2)a=7,b=14,A=150°; (3)a=9,b=10,A=60°.
【练习反馈】
1.在△ABC 中,若∠A=60°,∠B=45°,BC=3 2,则 AC=( )
A.4 3
B.2 3
C. 3
D.
3 2
解析:由正弦定理得:siBnCA=siAnCB,即si3n 620°=sinAC45°,
所以 AC=3
2× 3
22=2
3,故选 B.
答案:B 2
2.在△ABC 中,a=5,b=3,C=120°,则 sin A∶ sin B 的值是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竞彩足球今日推荐
[单选]下列各项中,不会影响营业利润金额增减的是()。A.资产减值损失B.财务费用C.投资收益D.营业外收入 [问答题,简答题]清洁生产与可持续发展的关系是什么? [填空题]带磨口的玻璃仪器,长期不用时磨口应()以防止时间久后,塞子打不开. [单选]以下关于饱和溶液的说法,正确的是()。A、饱和溶液一定是浓溶液B、饱和溶液一定是稀溶液C、溶液的饱和性与温度无关D、饱和溶液不一定是浓溶液 [单选]应当在海上打桩活动开始之目的()天前向所涉及海区的主管机关递交发布海上航行警告、航行通告的书面申请。A.3B.7C.15D.30 [单选,A2型题,A1/A2型题]原色组织标本制作方法不包括()。A.凯氏法(Kaiserling法)B.柯氏法C.一氧化碳法D.新鲜标本冷冻、干燥和塑化E.MASSON法 [单选]女性,29岁。关节疼痛1年,皮肤散在瘀点2个月伴月经过多就诊。化验:血沉。100mm/h,抗"0"正常:Hb86g/L,血小板51×10/L,ANA呈颗粒型阳性,尿检蛋白尿(+++),确诊为SLE,在估计预后时,下列哪项说法不正确()A.反复发作关节炎常引起关节畸形和关节周围肌肉萎缩B.反 [单选]一患者呼吸表现为有规律的呼吸几次后,突然停止一段时间,又开始呼吸,周而复始,这种呼吸节律称为()A.Cheyne-Stokes呼吸B.叹息样呼吸C.Kussmaul呼吸D.Blots呼吸E.抑制性呼吸 [单选]某双代号网络图中(以天为单位),工作Q的最早开始时间为6天,工作持续时间为4天,工作R的最迟完成时间为22天,工作持续时间为10天,工作S的最迟完成时间为20天,工作持续时间为5天,已知工作R、S是工作Q的仅有的两项紧后工作,工作Q的总时差为()天。A.3B.4C.2D.5 [单选]放射性制剂的放射化学纯度要求()A.放化纯度控制在85%以上B.放化纯度控制在99%以上C.放化纯度控制在95%以上D.放化纯度控制在80%以上E.放化纯度控制在70%以上 [填空题]石料磨光值越高,()越好,()越好。 [单选]团头鲂又称武昌鱼,它与长春鳊的区别在于它的体色()。A、银白B、黄褐C、灰黑D、青蓝 [单选]凯恩斯认为,在()情况下,对新的实物资本进行投资是不值得的。A.新投资的预期利润率大于为购买这些资产而必须借进的款项所要求的利率B.新投资的预期利润率小于为购买这些资产而必须借进的款项所要求的利率C.新投资的预期利润率等于为购买这些资产而必须借进的款项所要求的 [单选]石决明除平肝潜阳外,还有的功效是()A.镇惊安神B.软坚散结C.清肝明目D.凉血止血E.祛风止痒 [单选,A1型题]关于免疫耐受的叙述哪项是正确的()A.产生免疫耐受后对各种抗原均不感受B.免疫耐受无记忆性C.免疫耐受就是免疫抑制D.产生自身耐受是自身免疫病的起因E.对病毒感染免疫耐受的机体易发生该病毒的疾病 [单选,A1型题]“产育”的含义是什么()A.分娩B.分娩、产褥C.妊娠D.分娩、产褥及哺乳E.哺乳 [多选]以下几种机关之间,因工作需要往来公文,可以使用函的有()。A.省财政厅与省经贸委B.&times;&times;大学与市劳动局C.省教委与省人民政府D.县公安局与乡人民政府 [单选,A2型题,A1/A2型题]以下有关自杀的概念的描述不正确的是()A.自杀是&quot;有意或者故意伤害自己生命的行动&quot;B.自杀者把自杀行动看作是解决某种问题的最好办法C.自杀是有意的自我伤害导致的死亡D.广义的自杀论者认为自杀指有害生命的一切人类行为E.广义的自杀论者认为意 [单选]对钩体病诊断意义较大的常用实验室检查内容是()A.血常规和血沉B.尿常规C.钩体显微镜下凝集试验D.血培养E.PCR检测钩体DNA [单选,A2型题,A1/A2型题]鉴别慢性粒细胞白血病与类白血病反应的要点是().A.周围血涂片找到幼稚粒细胞B.周围血涂片找到幼稚红细胞C.是否有贫血及血小板减少D.Ph染色体阳性E.骨髓增生明显活跃 [单选,A2型题,A1/A2型题]营养性缺铁性贫血患儿应用铁剂治疗后,护理人员为观察疗效,最早观察的指标是()A.红细胞B.血红蛋白C.网织红细胞D.血清铁浓度E.血清铁蛋白 [单选,B1型题]咳脓血痰的疾病是()A.慢性支气管炎B.支气管哮喘C.支气管扩张D.肺炎球菌肺炎E.支气管肺癌 [单选,A1型题]潜伏期是指()A.病原体进入机体到死亡的时间B.病原体进入机体到临床症状出现的时间C.病原体进入机体到临床症状恢复的时间D.病原体进入机体到临床症状结束的时间E.病原体进入机体到最早临床症状出现的时间 [单选]在腰肌劳损的治疗方法中,不正确的是()A.注意休息,防止再发病B.加强功能锻炼,练习弯腰持物的力量C.疼痛部位进行理疗D.疼痛剧烈,痛点可注射肾上腺皮质类固醇E.疼痛严重可口服止痛药物 [单选]在制订仓库积载计划时,首先要确定()。A.物品储存期B.储存物特征C.储存物流量D.储存物体积与重量 [单选]光面爆破时,周边光爆眼应用炮泥封实,且封泥长度不得小于()。A.0.2mB.0.25mC.0.3m [单选]胎儿单侧肾盂积水,超声常同时发现A.先天性巨大膀胱B.多囊肾C.膀胱过度充盈D.输尿管肾盂接合处梗阻E.对侧肾发育不全 [单选]下列债的履行中,属于适当履行的有:()A.甲、乙、丙三人各出资3万元合伙办了一个玩具厂,不想经营失策,亏损12万元,债权人张某要求甲承担全部还款责任,甲只承担了属于自己份额的4万元B.王某(画家)和某书店签订协议,王某将为该书店作画5幅,不料,王某生病了,遂委托 [单选,A1型题]具有高等学校医学专科学历,参加执业助理医师资格考试者,应在医疗、预防、保健机构中试用期满()A.6个月B.18个月C.1年D.2年E.3年 [填空题]为了达到让客户100%满意的工作目标,我们首先应该做到时刻建立()的服务理念,“设身处地”去理解客户所处的情景及面临的困难。其次标记的荧光素必须具备的条件中,可以提高观察效果的是()A.必须具有化学上的活性基团能与蛋白稳定结合B.性质稳定不会影响抗体的活性C.荧光效率高,荧光与背景组织色泽对比鲜明D.与蛋白质结合的方法简便快速E.与蛋白质的结合物稳定 [单选]下列关于侵犯公民生命健康权,造成死亡的,国家应支付的赔偿金的有关表述,()是错误的。A.支付死亡赔偿金、丧葬费B.死者生前抚养的无劳动能力人至死亡时止的生活费C.死者生前抚养的未成年人在18周岁以前的生活费D.死者其他无收入来源的家属的生活费 [单选]钩体病使用抗生素治疗错误的是()A.首次应大剂量以快速杀灭钩体B.早期使用抗生素C.青霉素过敏者可选用庆大霉素或多西环素D.大剂量抗生素使用可诱发或加重肺弥漫出血E.首剂抗生素使用后应监测有无赫克斯海默尔反应 [单选,A1型题]放射性药品使用许可证的有效期为()A.1年B.2年C.3年D.5年E.7年 [多选]某变电所10kV电容器组为中性点不接地星形接线装置,按规程应该装设下列哪些保护()?A.电流速断保护B.过励磁保护C.中性点电压不平衡保护D.过电压保护 [单选]用摇表摇测绝缘子的绝缘电阻时,应选用()。A、2300V的摇表B、2000V的摇表C、1000V的摇表D、5000V的摇表 [判断题]一般在车辆事故中,导致驾驶人和乘员受伤的主要是一次碰撞。()A.正确B.错误 [单选,A1型题]具有化湿解暑功效的化湿药物是()A.苍术B.佩兰C.豆蔻D.砂仁E.草豆蔻 [单选]下列基质中,不适于栽培根系纤细的花卉植物的是()。A、珍珠岩B、陶粒C、水D、岩棉 [单选]如果不考虑股票交易成本,下列股利理论中,认为少发股利较好的是()。A、税差理论B、"一鸟在手"理论C、客户效应理论D、股利无关论
相关文档
最新文档