简易发射机电路设计
短波发射机射频前端放大电路设计

短波发射机射频前端放大电路设计提纲:1. 电路拓扑结构2. 功耗及散热问题3. 外部干扰及抗干扰性能4. 射频信号质量5. 调试和实验验证1. 电路拓扑结构短波发射机射频前端放大电路的拓扑结构包括:功率放大器和驱动放大器。
功率放大器负责将低功率信号放大至一定功率,驱动放大器则将输入信号放大至合适的功率水平,以驱动功率放大器。
近年来,类F和类E功率放大器成为了主流选择,其拓扑结构简单,效率高。
类F功率放大器是一种抽取频率的方法,其拓扑与类D功率放大器相似。
类E功率放大器是综合了电容和电感的有源装置,并利用开关管的电感时保证其在高频下的效率。
这两种拓扑结构中,类E功率放大器具有更高的效率,善于处理宽带信号,但类F功率放大器的拓扑结构较为简单,容易实现。
驱动放大器的拓扑结构较为单一,通常采用差分、全差分、共模、反相等传输方式。
差分方式具有较好的共模抑制性能,可有效抑制输入信号与噪声的共模干扰;全差分方式相对复杂,但在高速传输上有明显优势;共模和反相方式可分别用于差分和全差分输出,但这两种方式都存在失真问题。
2. 功耗及散热问题功率放大器的功耗通常较大,同时也带来了散热问题。
为了实现高效且可靠的散热,常用的方法包括利用散热片、散热管和水冷等。
散热片是最常见的散热方式,但其散热效率不够高,无法满足高功率放大器的需求。
散热管则解决了这一问题,其结构类似于热管,能将热量从高处传递至低处,同时保证热传导的均匀性。
水冷方式则利用水的热传导性能,在功率放大器内部设置通道,通过水循环实现散热。
除此之外,功率放大器的电源设计和电源管理也是影响功耗和散热的重要因素。
尝试在多个单元电源之间分配负载是一种有效的电源管理策略。
当瞬态负载峰值保持在合理水平时,能降低电源出现异常的风险。
3. 外部干扰及抗干扰性能短波发射机前端放大电路需要具备较强的抗干扰能力,以避免因外部射频干扰而导致的信号质量降低。
干扰的来源可能是来自周边环境的无线电信号和其他外部信号。
简易便捷易制的Fm发射器电路集

9018简易调频发射器电路上图中的发射器线圈是用1.0mm的漆包线在3.2mm的钻头上绕6-8圈,可覆盖88-108MHz,7圈时在100MHz附近。
距离不是很远,<100米(开阔地带)!虽距离不远,但对于初学者来说是很有帮助的!本无线话筒电路设计合理、造型美观大方、传声距离远、使用寿命长、经济实惠、耗电小,非常适合普通FM调频收音机接收使用。
振荡线圈L的制作:在Ф5mm的直柄钻花上用Ф0.5mm的漆包线平绕4T脱后即成。
振荡线圈L的调整:打开收音机(置于FM段)和话筒开关,然后手持话筒,一边对话筒讲话一边调收台旋钮,直到收音机中传出自己的声音为。
如果在整个频段(即88~108MHz)仍收不到自己的声音,仔细拨动振荡线圈L,拨动时只需拉开或缩小线圈每匝之间的距离,调整时应仔细。
若调整线圈的松紧仍无凑效应将L焊下来增加一匝或者减少一匝(因电子元件参数的影响),重新焊上后继续上述调整。
在准备安装制作前,请用万用表筛选一下各个元件的质量,有条件的话将各瓷片电容测量一下电容量,这样就万无一失,一装即成功。
在焊接时要保证质量,不能出现虚焊、假焊、错焊。
1)高频三极管V1和电容C3、C5、C6组成一个电容三点式的振荡器2)C4、L组成一个谐振器:谐振频率就是调频话筒的发射频率,根据图中元件的参数发射频率可以在88~108MHZ之间,正好覆盖调频收音机的接收频率,通过调整L的数值(拉伸或者压缩线圈L)可以方便地改变发射频率,避开调频电台。
发射信号通过C4耦合到天线上再发射出去。
3)R4是V1的基极偏置电阻,给三极管提供一定的基极电流,使V1工作在放大区。
4)R5是直流反馈电阻,起到稳定三极管工作点的作用。
5)话筒MIC采集外界的声音信号。
6)电阻R3为MIC提供一定的直流偏压,R3的阻值越大,话筒采集声音的灵敏度越弱,电阻越小话筒的灵敏度越高。
7)话筒采集到的交流声音信号通过C2耦合和R2匹配后送到三极管的基极。
【设计方案】简易发射机电路

简易发射机电路毕业设计说明书目录1.引言 (14)2.方案论证 (15)2.1 方案一 (15)2.2 方案二 (15)3.各电路设计和论证 (16)3.1 调幅信号源 (16)3.1.1 方案一 (16)3.1.2 方案二 (17)3.2 振幅调制 (19)3.2.1 方案一 (19)3.2.2 方案二 (20)3.3 功率放大前置级 (21)3.3.1 方案一 (21)3.3.2 方案二 (21)3.4 高频功率放大 (21)3.4.1 方案一 (21)3.4.2 方案二 (21)4.单元电路设计 (22)4.1 调幅信号源 (22)4.2 振幅调制 (25)4.3 高效高频功率放大 (29)4.3.1 前级激励级 (29)4.3.2 高频功率放大级 (30)5. 软硬件的系统测试 (33)6.附录 (34)7.参考文献 (36)简易发射机电路摘要:简易调幅发射机,主要由调幅信号源和高频高效功率放大器组成。
采用锁相频率合成技术,将载波频率精确的锁定在15MHz,输出载波的稳定度和准确度达到1×10-5;振幅调制采用集成模拟乘法器MC1496,调制度固定为30%,输出幅度调节范围宽;高频功率放大级应用功率合成技术,采用反相推挽功率合成电路,在50Ω负载上输出功率大于60mw。
关键词:锁相幅度调制乘法器功率合成1、引言调幅发射机主要由高频振荡器、调制器、高频放大器、天线等组成。
高频振荡器是产生高频载波。
调制器是将放大后的音频信号加在高频电磁波上。
高频放大器把调制后的电磁波放大后经天线发射到空中传到各地。
它的基本原理是,将要传送的调制信号(这里我们以话音信号为例)从低频率搬移到高频,使它能通过电离层反射进行传输,在远距离接收端我们用适当的解调装置再把原信号不失真的恢复出来,就达到了传输话音低频信号的目的。
例如调幅,我们不可能直接传送话音,我们先用一个转换装置将话音信号(也就是人说的话)转换成振幅平缓变化的电压信号,这就是我们要传输的信号,叫做调制信号,然后将调制信号与一个高频率的信号在一个相乘器里相乘,再经过一个加法电路,就会得到一高频率的信号,它的包络(所谓包络就是连接周期信号每个周期内波峰的假想线)随着调制信号幅度的变化而变化,我们把这个高频信号叫做载波,把已经调制好的信号叫调幅波。
简易无线电遥控系统设计报告

简易无线电遥控系统设计报告一、设计任务:设计并制作无线电遥控发射机和接收机。
一、无线电遥控发射机。
图1.1 无线电遥控发射机二、无线电遥控接收机。
图1.2 无线电遥控接收机3、要求。
(1)工作频率:fo=6~10MHz中任选一种频率。
(2)调制方式:AM、FM或FSK……任选一种。
(3)输出功率:不大于20mW(在标准75Ω假负载上)。
(4)遥控对象:8个。
(5)接收机距离发射机不小于10m。
(6)增加信道抗干扰方法。
(7)尽可能降低电源功耗。
二、系统方案设计。
整个系统由发射系统和接收操纵系统两部份组成。
发射系统和接收操纵系统组成结构框图如图1.1和1.2所示。
系统的工作原理是第一通过按键编址电路输入所需操纵电路的位号,同时启动编码电路产生带有地址编码信息和开关状态信息的编码脉冲信号,再通过无线电发射电路将该信号发射出去。
而无线电接收电路将接收到的编码脉冲信号通过解码电路进行编码地址确认,确认是不是为本遥控开关系统地址,然后通过驱动电路来驱动8个遥控对象。
1、发射机。
图2.1 无线电遥控发射机1.1 调制方式的选择。
依照要求,操纵对象是8盏灯,被控状态采纳二进制编码。
因设计对频带宽度没有限制,为了提高抗干扰能力,实现方式简单,载波传输采纳FSK调制方式。
图2.2 FSK示用意FSK(Frequency-shift keying)- 频移键控是利用载波的频率转变来传递数字信息,最多见的FSK是用两个频率承载二进制1和0的双频FSK系统,如图2.2所示。
产生FSK 信号最简单的方式是依照输入的数据比特是0仍是1,在两个独立的振荡器中切换,如图2.3所示。
采纳这种方式产生的波形在切换的时刻相位是不持续的,因此这种FSK 信号称为不持续FSK 信号。
图2.3 非持续相位FSK的调制方式由于相位的不持续会造频谱扩展,这种FSK 的调制方式在传统的通信设备中采纳较多。
随着数字处置技术的不断进展,愈来愈多地采纳连继相位FSK调制技术。
适合初学的简单袖珍发射机diy

适合初学的简单袖珍发射机diy几乎每个电子爱好者都有利用无线电的雄心壮志,不论遥控一架飞机或者与外界通讯,都表达他们发射的期望讯号。
这里向各位介绍的一部袖珍发射机,十分适合初学者,电路简单易制,造价低廉,输出功率不超过5-8mW,发射范围在房屋区可至300米左右,用一部普通的FM收音机接收,显示其灵敏度和清晰度俱佳,电路设计中最富挑战性的部份就是只需用3V电源和半波天线便有如此的发射能力。
另外,由于电路需要的零件十分之少,故可将之安放在一个火柴盒(比国内-般火柴盒大一些)里,作为偷听器,可谓神不知、鬼不觉,不过,并非限于这方面用途上,可将之安置在婴孩房、闸门或走廊通道,监视实际情况,此外亦可当作为夜间保安装置。
电路之电流损耗少于5mA,用两枚干电池可连续工作80至100小时之间。
电路在正常工作下非常稳定,频率漂移极小,测试:工作8小时之后,仍不需再校接收机。
唯一影响输出频率是电池的状况,当电池老化时,频率有轻微改变。
借这个制作,学习有关FM发送,可了解其优越的地方,特别它产生无噪声的极高质讯号,即使利用低功率发送,也很容易取得良好的范围。
电路图如下电路工作原理从图(1)电路可见分两级,一级音频放大器和一级RF振荡器。
驻极体话筒内实际藏有一枚FET,如您喜欢的话,可视之为一级,FET 将话筒前振膜之电容变化放大,这就是驻极休话筒很灵敏的原因。
音频放大级乃由其射极晶休管Q1担任,增益约20至50,将放大的讯号送往振荡级之基极。
听器电路图SCH点此下载振荡级Q2工作于约88MHz之频率,这频率由振荡线圈(共5圈)和47pF电容器调整的,该频率也决定于晶体管、18pF回输电容器及还有少数偏压元件,例如470Ω射极电阻和22K基极电阻。
电源接通时,1nF基极电容器通过22K电阻逐渐充电,而18pF则经振荡线圈的470Ω电阻充电,但更加之快,47pF电容也充电(其两端虽仅得小的电压),线圈产生磁场。
基极电压渐渐上升时,晶体管导通,并有效地将内阻并接在18pF两侧。
调频发射机电路设计

调频发射机电路设计首先是音频放大模块。
音频放大模块用于放大音频信号,使其达到适合调频发射机工作的电平。
一般采用放大器电路实现,常用的放大器有运放放大器和晶体管放大器。
运放放大器具有高输入阻抗、低输出阻抗、高增益和低噪声等特点,适合用于音频放大。
晶体管放大器具有宽带特性和较高的功率放大能力,适合用于调频发射机的音频放大部分。
接下来是频率调制模块。
频率调制模块将音频信号转换为无线电信号,一般采用频率调制技术,如调频(FM)和调幅(AM)等。
其中,调频技术是调频发射机最常用的调制方式。
调频技术通过改变载波信号的频率来携带音频信号,常用的调频电路包括震荡器和相移调制器等。
震荡器产生频率稳定的载波信号,相移调制器将音频信号转换为频率变化,从而实现调频。
接着是射频功率放大模块。
射频功率放大模块将调频信号放大到足够的功率,以便能够远距离传输。
射频功率放大器一般采用晶体管放大器或功率放大管实现。
晶体管放大器具有较高的功率放大能力和宽带特性,适合用于调频发射机的射频功率放大。
功率放大管功率更大,适用于大功率调频发射机。
最后是天线驱动模块。
天线驱动模块将射频信号传输到天线上,以便进行无线传输。
天线驱动模块一般采用驱动器电路实现,其中常用的驱动器电路包括匹配网络、功率放大器和驱动放大器等。
匹配网络用于匹配射频源和天线阻抗,以提高功率传输效率。
功率放大器和驱动放大器用于将低功率的射频信号放大至足够的功率,以满足天线传输的需求。
综上所述,调频发射机的电路设计主要包括音频放大、频率调制、射频功率放大和天线驱动等多个模块。
这些模块通过相应的电路设计,协同工作实现无线信号的传输。
在实际设计中,还需要考虑电路参数的调整与匹配,以及抗干扰和抗干扰等性能的优化,以确保调频发射机的正常工作与稳定传输。
短波广播发射机的集成电路设计与优化

短波广播发射机的集成电路设计与优化【引言】短波广播发射机是一种用于传送广播节目的无线设备,其在信息传递中起着重要的作用。
而集成电路设计与优化是为了提高广播发射机的性能和效率,使其能够更好地适应现代通信需求。
本文将介绍短波广播发射机集成电路的设计原理和相关优化方法。
【I. 集成电路设计原理】短波广播发射机的集成电路设计是基于传统的通信原理和电子电路设计原理。
它主要包括以下几个方面:1. 频率合成器设计:频率合成器是广播发射机中的一个重要组成部分,用于产生所需的广播频率。
在集成电路设计中,采用锁相环(PLL)或者直接数字频率合成(DDS)技术来实现频率合成功能,以提高广播信号的质量和稳定性。
2. 功率放大器设计:功率放大器用于放大来自频率合成器的信号,以达到所需的输出功率。
集成电路设计中,采用高效的功放设计和线性放大技术,以实现高功率输出和低失真度。
3. 调制电路设计:调制电路用于将广播节目信号与载波信号进行调制,以便传输和接收。
集成电路设计中,常采用调频(FM)或者调幅(AM)调制技术,以提高广播节目的音质和覆盖范围。
4. 反馈控制设计:反馈控制是保证广播发射机稳定性和性能的关键因素之一。
在集成电路设计中,采用自动增益控制(AGC)和自适应调节技术,使发射机能够自动调整功率和频率,以适应不同的工作环境。
【II. 集成电路优化方法】为了提高短波广播发射机的性能和效率,需要进行一系列的集成电路优化。
以下是常用的优化方法:1. 电路参数优化:通过对电路参数的深入研究和优化,提高功率放大器的效率和线性度,减小误差和失真,并降低功耗。
可以采用仿真软件和数据分析工具,对电路进行仿真和优化,以达到最佳效果。
2. 射频滤波器设计:射频滤波器在广播发射机中起到重要作用,它能够滤除不必要的频率成分,提高信号的纯净度和信噪比。
在集成电路设计中,通过设计合适的射频滤波器,可以有效地抑制噪声和干扰,提高接收效果。
3. 低功耗设计:广播发射机通常需要长时间工作,因此低功耗设计是非常重要的。
简易调频发射机设计

《通信基本电路》课程设计报告简易传声器调频发射机的设计专业:电子信息工程班级:姓名:学号:指导教师:随着信息时代对人才高素质和信息化的需求,随着高等教育发展的趋势,人们的生活水平提高,对精神生活的要求也就更高,这对电子领域提出了更高的要求。
本课题设计围绕人们熟悉的调频发射机进行展开,随着经济的飞速发展,调频发射机也进行着高速的更新与换代,性能明显提升,性价比也有所下降,同时在人们的生活中扮演着越来越重要的角色。
这次我们主要来设计一个无线调频发射机,它主要是由西勒振荡器,变容二极管间接调频电路,缓冲放大器,功率放大器组成各单元电路,各单元电路共同作用,最终将已调信号通过天线辐射到空间。
本设计首先根据设计的要求构建设计的总框图,充分考虑各个单元电路之间的信号传输和阻抗匹配。
理解各个要求的参数的意义,针对各参数再分别在各具体电路中加以实现,并且保证电路的正常运行。
该设计开始由西勒振荡器产生70兆赫兹的载频信号,然后一同与音频的放大信号(300Hz-3.4kHz)接入由变容二极管构成的间接调频电路进行调频,之后又经过缓冲隔离级消除级间的影响,使得电路运行的更加稳定,最后用两级功率放大电路对已调波进行功率放大,再由天线发送到空间去。
关键词振荡器变容二极管间接调频缓冲器功率放大器1 选题意义 (4)2 系统总体设计与实现的功能 (4)2.1 频发射机的主要性能指标 (4)2.2 系统总体设计思路 (5)2.3 系统设计流程图 (5)2.3.1总设计框图 (5)2.3.2 各部分实现的功能 (6)3 各部分电路设计及原理分析 (6)3.1 西勒振荡级 (6)3.1.1西勒振荡级电路设计思路 (6)3.1.2 西勒振荡级电路原理图 (7)3.2 变容二极管间接调频电路 (8)3.2.1 变容二极管间接调频电路设计思路 (8)3.2.2 变容二极管间接调频电路原理图 (11)3.3 缓冲隔离级 (12)3.3.1 缓冲隔离级电路设计思路 (12)3.3.2 缓冲隔离级电路原理图 (12)3.4 功率激励与末级功放级 (13)3.4.1 功率激励与末级功放级电路设计思路 (13)3.4.2 功率激励与末级功放电路原理图 (13)4 参数选择 (13)4.1 荡级电路参数选择 (13)4.2 变容二极管间接调频电路参数选择 (14)4.3缓冲级电路参数选择 (15)4.4 功率激励级参数选择 (16)4.4.1计算电路参数 (16)4.4.2计算电路静态工作点 (17)4.5 末级功放级参数选择 (17)4.5.1基本关系式 (17)4.5.2确定丙类放大器的工作状态 (18)4.5.3计算谐振回路及耦合回路的参数 (18)4.5.4基极偏置电路 (18)5 结论 (19)6 心得体会 (19)7 参考文献 (20)1 选题意义高频电子线路本是一门较为复杂的电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简易发射机电路设计作者:2011 年月日目录1.引言 (2)2.方案论证 (3)2.1 方案一 (3)2.2 方案二 (3)3.各电路设计和论证 (4)3.1 调幅信号源 (4)3.1.1 方案一 (4)3.1.2 方案二 (5)3.2 振幅调制 (7)3.2.1 方案一 (7)3.2.2 方案二 (8)3.3 功率放大前置级 (9)3.3.1 方案一 (9)3.3.2 方案二 (9)3.4 高频功率放大 (9)3.4.1 方案一 (9)3.4.2 方案二 (9)4.单元电路设计 (10)4.1 调幅信号源 (10)4.2 振幅调制 (13)4.3 高效高频功率放大 (17)4.3.1 前级激励级 (17)4.3.2 高频功率放大级 (18)5. 软硬件的系统测试 (21)6.参考文献 (22)简易发射机电路摘要:简易调幅发射机,主要由调幅信号源和高频高效功率放大器组成。
采用锁相频率合成技术,将载波频率精确的锁定在15MHz,输出载波的稳定度和准确度达到1×10-5;振幅调制采用集成模拟乘法器MC1496,调制度固定为30%,输出幅度调节范围宽;高频功率放大级应用功率合成技术,采用反相推挽功率合成电路,在50Ω负载上输出功率大于60mw。
关键词:锁相幅度调制乘法器功率合成1、引言调幅发射机主要由高频振荡器、调制器、高频放大器、天线等组成。
高频振荡器是产生高频载波。
调制器是将放大后的音频信号加在高频电磁波上。
高频放大器把调制后的电磁波放大后经天线发射到空中传到各地。
它的基本原理是,将要传送的调制信号(这里我们以话音信号为例)从低频率搬移到高频,使它能通过电离层反射进行传输,在远距离接收端我们用适当的解调装置再把原信号不失真的恢复出来,就达到了传输话音低频信号的目的。
例如调幅,我们不可能直接传送话音,我们先用一个转换装置将话音信号(也就是人说的话)转换成振幅平缓变化的电压信号,这就是我们要传输的信号,叫做调制信号,然后将调制信号与一个高频率的信号在一个相乘器里相乘,再经过一个加法电路,就会得到一高频率的信号,它的包络(所谓包络就是连接周期信号每个周期内波峰的假想线)随着调制信号幅度的变化而变化,我们把这个高频信号叫做载波,把已经调制好的信号叫调幅波。
就是说,我们要传输的话音信号已经包含在了调幅波中,换句话,就是我们把调制信号从低频搬移到了高频,以便利用电离层传播。
这样我们通过发射装置将已调信号发射出去,在接收端接收信号。
发射机设计必须考虑以下几个参数谐波输出、寄生输出、宽带噪声、相位噪声,频率和相位的稳定度,信号的最大输出功率以及平均输出功率。
由中频信号IF或其谐波与本振混频产生的三阶互调干扰必须专门考虑。
其他比如所需射频载波信号的谐波、本振信号LO与与中频信号IF的馈通等多余信号都会将产生干扰。
如果发射机将噪声发射出去将会导致接收机的噪声基数提高、信噪比SNR降低,从而将会减少通信所能达到的最大距离。
因此功率放大器必须进行相应设计,以保证输出的附加带宽噪声最小化。
本设计的课题为简易发射机电路,所要达到的目标并不是很多,及其考虑的因素也不是很专业化,主要目的只是检验所学知识的系统结构与密度,培养学生的创新能力与实践能力。
经过细致调研,本设计决定主要采用锁相技术将预先得到的载波信号精确锁定在要求的15MHz。
振幅调制主要应用集成模拟乘法器,性能稳定,抗干扰能力强。
功率放大部分主要采用传输线变压器的形式,其主要特点就是工作频带宽;并利用反相功率合成技术将功率放大到接近要求的目标值,效率高,非线性失真较小。
虽然设计过程很粗略化,但是我觉得学到的东西很多,自己的能力也相应地得到了提高;毕竟由于自己的能力有所限制,设计难免有所纰漏,恳请指正!2 方案论证本次毕业设计课题为简易发射机电路。
反射机的方案很简单,大致可以分为两种。
2.1 方案一:直接变换法,是将调制和上变频和二为一,通过一个电路来实现。
2.2 方案二:两次变换法,将调制和上变频分开,先进行较低的中频上的调制,然后将已调信号上变频搬移到发射的载频上。
直接变换法和两次变换法如图1、2所示。
图1 直接变换法示意图图2 两次变换法示意图基于任务书的要求和实际的需求,决定采用方案二。
器件少,实现简单。
整个电路部分的系统框图如图3所示。
电路主要由调幅信号源模块、调制模块、高频功率放大模块构成。
采用锁相频率合成技术将压控振荡器输出的载波频率进行精确锁定,以达到设计任务要求的稳定度和准确度。
准确稳定的载波信号然后和外加的基带信号被送到模拟乘法器中进行调制。
集成芯片的应用,可以很方便地实现调制功能,而且可以达到预期的调制系数。
对调制器输出的电压进行幅度调整,以满足输出波形不失真的目的。
功放级采用广泛运用的功率合成技术和传输线变压器,调谐范围宽,功率和效率都很大,频带宽,可以说优点很多。
图3 电路系统框图锁相 振荡 电路 高频功率放大 调制器 功放 激励级 幅值调 整 功放级供电电源输出3 各电路设计和论证下面详细对本次毕业设计所考虑的方案进行初步的论证和简要的分析。
3.1 调幅信号源为了使振荡器输出尽可能的稳定、准确的频率,以达到设计任务书所要求的目标,下面浅谈一下关于频率稳定度和准确度方面的原理,以及本设计所采用的合适方案。
(1)频率准确度的定义频率准确度分为绝对频率准确度,又称频偏。
用振荡器的实际工作频率f与标称频率f c 之间的偏差Δf,即Δf=f-f c来表示。
相对频率准确度用Δf / f c 来表示。
(2)频率稳定度的定义频率稳定度通常定义为在一定时间间隔内,振荡器频率的相对偏差的最大值,用max /|cf f时间间隔表示。
这个数值越小,频率稳定度越高。
按照时间间隔长短不同,通常可分为下面三种频率稳定度。
长期频率稳定度:一般指一天以上以至几个月的时间间隔内的频率相对变化。
这种变化通常是由振荡器中元器件老化而引起的。
短期频率稳定度:一般指一天以内,以小时、分或秒计算的时间间隔内的频率相对变化。
产生这种频率不稳的因素有温度、电源电压等。
瞬时频率稳定度:一般指秒或毫秒时间间隔内的频率相对变化。
这种频率变化一般都具有随机性质并伴随着有相位的随机变化。
引起这类频率不稳定的主要因素是振荡器内部噪声。
目前,一般的短波、超短波发射机的相对频率稳定度约在10-4~10-5量级,一些军用、大型发射机及精密仪器的振荡器的相对频率稳定度可达10-6量级甚至更高。
3.1.1 方案一:采用普通的振荡电路。
一采用晶体振荡电路。
晶体谐振器是晶体振荡器中最重要的稳频元件,其性能直接决定了振荡器系统的性能好坏。
晶体谐振器可以等效为一个谐振电路来表示,如图4所示。
虽然晶振产生的频率稳定度和准确度都可以做得很高,但是一般找不到15MHz的晶振。
二采用西勒LC振荡电路产生一接近15MHz的正弦波。
西勒电路是依克拉泼电路改进的电容反馈振荡器,它与克拉泼电路的主要不同点在于它在回路电感L两端并联了一个可变电容C4,用C4改变振荡频率,电路如图5所示,但是功能不能保证准确和稳定,因此虽然两种振荡电路设计比较简单,但不可取。
LqC0CqRq(a)符号(b)等效电路图4 石英晶体谐振器图5 西勒电路及等效电路3.1.2 方案二:锁相频率合成。
它是利用锁相环路的窄带跟踪特性,在晶振提供的基准频率源作用下,产生一系列离散的频率。
锁相就是相位同步的自动控制。
完成两个信号相位同步的自动控制系统叫做锁相环路(称锁相环)。
锁相环路能使每秒振荡百万次以上的两个信号精确地、自动地相位同步。
图6 锁相环路基本框图一个最基本的锁相环路的方框图如图6所示,它包括三个部件:鉴相器(PD)、低通滤波器(LPF)、电压控制振荡器(VCO),构成一个闭合的相位反馈控制系统。
现将三个基本部件的作用分述如下:鉴相器(PD)是进行相位比较的装置,它把压控振荡器的输出信号Vo(t)与输入信号vi(t)的相位进行比较,产生对应于两信号相位差的误差电压Vd(t),起到相位差—电压变换作用。
低通滤波器(LPF)是个线性电路,它的作用是:滤除鉴相器输出电压Vd(t)中的高频分量和噪声,起平滑滤波的作用,以保证系统所要求的性能,增加系统的稳定性。
电路通常由电阻、电容或电感等组成,有时也包含运算放大器。
电压控制振荡器(VCO)是一个电压—频率(或称电压—相位)变换电路,其振荡瞬时角频率受控制电压的控制,使输出信号频率向输入信号频率靠拢,两个信号间的相位差减小。
锁相环路的具体工作过程如下:相位比较器把输入信号作为标准,将它的频率和相位与从VCO输出端送来的信号进行比较。
如果在它的工作范围内检测出任何相位(频率)差,就产生一个误差信号Vd(t),这个误差信号正比于输入信号和VCO输出信号之间的相位差,通常是以交流分量调制的直流电平。
由低通滤波器滤除误差信号中的交流分量,产生信号Ve(t)去控制VCO,强制VCO朝着减小相位/频率误差的方向改变其频率,使输入基准信号和VCO输出信号之间的任何频率或相位差逐渐减小直至为0,这时我们就称环路已被锁定。
对于已经锁定的环路,若输入信号的频率或相位稍有变化,立刻会在两个输入信号的相位差上反映出来,鉴相器的输出也会随着改变并驱动VCO的频率和相位以同样的规律跟着变化。
环路的这种状态称为跟踪状态。
因此可以说锁相环是一个相位自动控制系统,其锁定状态的取得是靠相位差的作用,锁定状态的维持也仍然依靠相位差的作用。
锁相环路基本特性有(1)环路锁定后,没有频率误差。
当锁相环路锁定时,压控振荡器的输出频率严格等于输入信号频率,而只有不大的剩余相位误差。
(2)频率跟踪特性。
锁相环路锁定时,压控振荡器的输出频率能在一定的范围内跟踪输入信号频率变化。
(3)窄带滤波特性。
锁相环路通过环路滤波器的作用后具有窄带滤波特性。
当压控振荡器输出信号的频率锁定在输入信号上时,位于信号频率附近的频率分量,通过鉴相器变成低频信号而平移到零频率附近,这样环路滤波器的低通作用对输入信号而言,就相当于一个高频带通滤波器,只要把环路滤波器的带通做的比较窄,整个环路就具有很窄的带通特性。
例如,可以在几十兆赫的频率上,做到几赫的带宽,甚至更小。
锁相环路的这些特点,使它在自动频率控制中得到应用,以达到精确的频率控制,而其它的频率控制系统总是存在剩余频差。
早期的频率合成方法主要采用混频、倍频和带通滤波器等电路对晶体振荡器产生的频率进行四则运算,产生出一系列离散频率信号。
通常称这种方法为直接合成法,其优点是频率转换时间短,缺点是频率数目不能太多且电路复杂、体积大、重量重,成本高。
随后利用出现了利用锁相技术的锁相频率合成,也称间接合成法。
随着数字技术的发展,又出现了直接数字式频率合成,其特点是将频率合成器与微处理器结合在一起,特别有利于进行程序控制和实时处理。