高频电子发射机设计报告
高频实验报告

预习报告一、实验目的1掌握调频发射机电路的设计与调试方法2高频电路的调试中常见故障的分析与排除二、实验内容调频发射机的设计与实现,要求如下:(1)载波频率:6MHz ;(2)功率放大器:发射功率P O≥10mW(在50欧假负载电阻上测量),效率≥25% ;(3)在50欧假负载电阻上测量,输出无明显失真调频信号。
三、实验原理频率调制电路如下:其中主要芯片MC1648的内部结构如下:BB910变容二极管特性曲线如下:低通滤波器如下:功率放大器如下:功率放大器根据放大器电流导通角的范围,可以分为甲类、乙类、丙类和丁类等功率放大器。
甲类放大器的效率最高为50%,丙类放大器的效率最高为76.8%高频匹配电路如下:有如下两种电路形式可供选择:四、实验电路调试调试步骤:调试频率调制电路和低通滤波器,在不输入调制信号时,调节滑动变阻器RP2,使输出载波频率为6MHz,输出波形无明显失真;使用高频信号源加入调制信号,观看调频信号;调试功率放大器,要求采用丙类功率放大器,测试效率;系统联调。
单级调谐,可以采用扫频仪,也可以采用输入容抗小的示波器探头(×10档),或者在探头上串联一个pF级小电容(根据工作频率和示波器输入电容考虑);多级调谐,如变压器结构调谐,先调后级,再调前级。
实验报告一、实验数据记录电源电压:5.0V ; 仪器:DW2011直流稳压电源 载波频率:6.000756MHz ; 仪器:YZ -4345示波器信号源电压峰峰值:0.8V ; 仪器:YZ -4345示波器输出信号电压峰峰值:5.4V ; 仪器:YZ -4345示波器电源输入直流电流为:52.0mV; 仪器:VC9807A 电压表二、实验数据分析电源供给的输入直流功率为WW V I P 26.0052.00.5CC C0=⨯=== W R V R I I V P 0729.021212102C1m 02Clm Clm Clm o =⋅===其中0R 为50欧姆,则集电极效率如下 %03.28CCC0L 2L C ====V I R V P P η 整机调试(不加调制信号)电源输出直流电流为66.2mV电源供给的输入直流功率为W W V I P 331.00662.00.5CC C0=⨯===集电极效率为%02.22CCC0L 2L C ====V I R V P P η 由于输入级与输出级相互影响,整机联调后系统效率减小,这是在实验设计所分析出来的,效率的大小和功率放大模块输入阻抗变化有关,整体上实验数据基本满足要求,发射功率P O =0.0729W≥10mW (在50欧假负载电阻上测量),效率η=28.03%≥25% 。
高频课程设计报告_调频发射机

调频发射机课程实验报告姓名:班别:学号:指导老师:组员:小功率调频发射机课程设计一、 主要技术指标:1. 中心频率:012f MHz =2. 频率稳定度 40/10f f -∆≤3. 最大频偏10m f kHz ∆>4. 输出功率 30o P mW ≥5. 天线形式 拉杆天线(75欧姆)6. 电源电压 9cc V V =二、 设计和制作任务:1. 确定电路形式,选择各级电路的静态工作点,并画出电路图。
2. 计算各级电路元件参数并选取元件。
3. 画出电路装配图4. 组装焊接电路5. 调试并测量电路性能6. 写出课程设计报告书 三、 设计提示:通常小功率发射机采用直接调频方式,并组成框图如下所示:其中,其中高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免级功放的工作状态变化而直接影响振荡级的频率稳定度;,功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。
上述框所示小功率发射机设计的主要任务是选择各级电路形式和各级元器件参数的计算。
1.频振荡级:由于是固定的中心频率,可考虑采用频率稳定度较高的克拉泼振荡电路。
关于该电路的设计参阅《高频电子线路实验讲义》中实验六内容。
克拉泼(clapp )电路是电容三点式振荡器的改进型电路,下图为它的实际电路和相应的交流通路:实用电路 交流通路如图可知,克拉泼电路比电容三点式在回路中多一个与C1 C2相串接的电容C3,通常C3取值较小,满足C3《C1 ,C3《C2,回路总电容取决于C3,而三极管的极间电容直接并接在C1 C2上,不影响C3的值,结果减小了这些不稳定电容对振荡频率的影响,且C3较小,这种影响越小,回路的标准性越高,实际情况下,克拉泼电路比电容三点式的频稳度高一个量级,达451010--。
高频课设总结报告——发射机和接收机

FM发射机与接收机设计2014 年 5 月题目一、单管FM发射机一.设计内容:采用三极管S9018设计单管FM发射机,发射频率为88MHz—108MHz范围内任意频率。
二.设计原理与分析:(分析下图原理,指出各个器件功能。
给出电感L的绕制方法)如图一:(见附录)1.原理简述上原理图采用三极管直接调频的方法。
通过驻极体话筒将声音信号转换成电压信号,送入由三极管S9018 、C3和'b e C 、C6、C8和L 组成的共基极振荡器,由于三极管的结电容'b e C 会随着be U 变化,从而引起振荡器的振荡频率随之变化,达到直接调频的目的。
2.原理及器件详述(1)麦克风简介: FM 频段的无线麦克风频率都高过108MHz 。
一般要110-120MHz 之间,所以FM 电台的信号不会对FM 段的无线麦克风造成干扰,不过会受到其它杂波的干扰[1] 。
FM 无线麦克风的优点是:电路结构简单,成本低,利于厂家生产,缺点是:音质差,频率会随时间/环境温度的变化而变化,经常会出现接收不良,断讯的情况,受到的干扰大。
对着话筒大声叫会出现断音,使用场合:对使用要求很低,对音质没有多大要求。
只要求有声音的这种情况下就可以选用FM 无线麦克风了[1] 。
(2)电源电路:此部分包括3V 的直流电源、C1(104)、C4(104)。
3V 的直流电源为整个电路提供工作电压;C1和C4为电源滤波电容,滤除电源中的高频杂波分量。
(3)声信号采集电路(输入电路):此部分包括MIC 、C5(104)、R1(2K2)。
MIC 是驻极体话筒,其功能为采集外界的声音信号,它的作用就是当驻极体膜片遇到声波振动时,引起电容两端的电场发生变化,从而产生了随声波变化而变化的交变电压。
R1是MIC驻极话筒的偏置电阻,为MIC提供一定的直流偏压。
驻极话筒的输出阻抗值很高,约几十兆欧以上,这样高的阻抗是不能直接与后级电路相匹配的,所以在话筒内接入一只结型场效应晶体三极管来进行阻抗变换。
小功率高频(FM)发射机的设计

课题:小功率高频(FM)发射机的设计系别:专业:班级:姓名:学号:指导老师:目录1、引言 (3)2、摘要 (4)3、设计课题 (4)4、设计报告正文 (5)4.1 方案比较与选择 (5)4.1.1直接调频 (5)4.1.2间接接调频 (6)4.2 总体方案设计 (7)4.2.1系统框图 (7)4.2.2方案原理分析 (7)5、各单元模块说明 (8)5.1 获取音频信号电路 (8)5.2 前级音频放大电路 (8)5.3 高频振荡电路 (9)5.4 末级功率放大电路 (10)6、系统安装于调试 (11)6.1 原理设计图纸 (11)6.2 PCB设计图纸 (12)6.3 系统调试 (12)7、设计总结 (13)8、参考文献 (14)9、附录 (14)1、引言无线电发射与接收设备是高频电子线路的综合应用,是现代化通信系统、广播与电视系统、无线安全防范系统、无线遥控和遥测系统、雷达系统、电子对抗系统、无线电制导系统等,必不可少的设备。
发射机就是可以将信号按一定频率发射出去的装置。
广泛应用与电视,广播,雷达等各种民用,军用设备。
主要可分为调频发射机、调幅发射机、光发射机、哈里斯发射机等多种类型。
调频发射机,首先将音频信号和高频载波调制为调频波,使高频载波的频率随音频信号发生变化,再对所产生的高频信号进行放大、激励、功放和一系列的阻抗匹配,使信号输出到天线,并将信号发送出去的装置.高频信号的产生现在有频率合成、PLL等方式.现在我国商业调频广播的频率范围为88-108MHZ,校园为76-87MHZ,西方国家为70-90MHZ。
2、摘要本次课程设计围绕人们熟悉的调频发射机进行展开,随着经济的飞速发展,调频发射机也进行着高速的更新与换代,性能明显提升,性价比也有所下降,同时在人们的生活中扮演着越来越重要的角色。
这次我们主要来设计一个小功率调频发射机,它主要是由前级音频放大、西勒振荡器和一级功率放大器组成,各单元电路共同作用,最终将音频信号通过天线辐射到空间。
高频课设实验报告

通信电路课程设计小功率调频发射机的设计与制作姓名:同组:专业班级:信息工程类(4)班指导老师:时间:2014 年9 月18 日小功率发射机的设计与制作一、设计和制作任务1、确定电路形式,选择各级电路的静态工作点,画出电路图;2、计算各级电路元件参数并选取元件;3、画出电路装配图;4、组装焊接电路;5、调试并测量电路性能;6、写出课程设计报告书,内容包括: 1任务及性能指标要求;2电路和方案选择的依据,元件的理论值计算和选择; 3调试方法和步骤,调试中的问题的分析及解决; 4测试仪器,实验结果分析; 5改进设想,实验心得。
二、主要技术指标1.中心频率 M H z f 120=2.频率稳定度 10/0≤∆f f -43.最大频偏 k H z f m 10>∆ 4输出功率 mW 30P 0≥5.天线形式 拉杆天线(75欧姆)6.电源电压 V V c c 9=三、原理框图和整体电路图1、原理框图通常小功率发射机采用直接调频方式,并组成框图如下所示:图3-1 调频发射机组成框图其中,其中高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免级功放的工作状态变化而直接影响振荡级的频率稳定度;功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。
上述框所示小功率发射机设计的主要任务是选择各级电路形式和各级元器件参数的计算。
2、整体电路图电路中的Vin 为调制信号输入端,RL 处为天线(本例用75欧负载替代),Vcc 为9V 电源。
C 13为去耦电容,C 16为滤波电容,减小电源纹波对电路的影响,R 6、R 12、C 7、C 8、C 17、C 18使得调频震荡级、缓冲级、功率输出级的供电分离,消除三级之间因电源引起的干扰。
四、原理分析1、调频振荡级--克拉泼振荡电路由于是固定的中心频率,考虑采用平率稳定度较高的克拉波振荡电路。
高频发射机设计

编号:(高频电路设计与制作)实训论文说明书题目:调频发射机院(系):信息与通信学院专业:电子信息工程学生姓名:学号:指导教师:2012年12月27日摘要我的高频实训主要是设计一个调频立体声发射器。
发射器的主要任务是完成有用的低频信号对高频载波的调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。
实训重点在于设计能给发射机电路提供稳定频率的振荡调制电路。
首先通过放大器适当放大语音信号,以配合调制级工作;然后用电容三点式构成振荡电路为发射机提供基准频率载波,接着通过改变语音信号完成语音信号对载波信号的频率调制,最终利用丙类功率放大器,使已调制信号功率大大提高,经过串联滤波网络滤除高次谐波,最后通过拉杆天线发射出去。
通过后续电路的调试,可以证明本课题的电路基本成熟,基本能完成语音信号的电压放大、频率调制和功率放大,达到发射距离的要求。
本次所设计的调频发射机调试结果为:中心频率101MHZ、峰峰值210mv、传输距离21m、音质一般,达到了设计要求。
该发射机可用于家庭娱乐、婴儿睡眠监护以及室内外各种声音的监听。
关键字:调频;立体声;发射器;LC振荡;高频放大;功率放大;输出滤波AbstractMy design is a high frequency training design a FM stereo transmitters. Launcher is the main task of the complete useful low frequency signal of the high frequency modulation of the carrier, and turn it into a center in frequency has certain bandwidth, suitable for through the launch of the electromagnetic wave antenna. Training focus is to design can give transmitter circuits provide stability of the oscillation frequency modulation circuit. First through the amplifier amplification appropriate speech signal to match a level; Then use capacitance SanDianShi constitute oscillating circuit for transmitter provide benchmark frequency carrier, and then through the change of speech signal to finish speech signal carrier signal frequency modulation, finally using c class power amplifier, make already modulation signal power greatly improved, after series filtering network higher harmonic filter, the last through the bars antenna launch out. Through subsequent circuit debugging, can prove this topic circuit basic mature, basic can finish speech signal voltage amplifier, frequency modulation and power amplifier, to launch the distance of the requirements. The design of the FM transmitter commissioning of the results: center frequency 101 MHZ, fengfeng value 210 mv, the transmission distance 21 m, sound quality general and meet the design requirements. The transmitter can be used in home entertainment, baby sleep monitoring and all kinds of indoor and outdoor sound monitor.Keywords: FM ;Stereo;Transmitter;LC oscillator;High-frequency amplifier目录引言 (1)1 实训目的 (1)2 主要技术指标 (1)3 实训内容及要求 (2)3.1设计内容 (2)3.2设计要求 (2)4 调频发射器的设计 (2)4.1 基础知识 (2)4.2高频电子线路的基础知识 (2)4.3 设计原理 (4)4.4发射机原理图及介绍 (5)4.4.1 发射机原理图 (5)4.4.2 BA1401简介 (6)4.5 参数 (8)5电路调试 (9)结论 (10)参考文献 (13)引言高频电子技术的研究对象是产生、发射、接收和处理高频信号的有关电路,主要解决无线广播、电视和通信中发射和接收高频信号的有关技术问题。
高频课程设计报告_调频发射机

高频课程设计报告_调频发射机目录1. 内容概述 (2)1.1 课程背景 (3)1.2 报告目的 (3)1.3 报告结构 (4)2. 调频发射机概述 (5)2.1 调频通信原理 (6)2.2 调频发射机组成 (7)3. 调频发射机设计要求 (8)3.1 系统指标 (10)3.2 性能要求 (11)4. 设计方案与实现 (11)4.1 发射机结构设计 (13)4.2 高频电路设计 (14)4.3 调制和解调电路设计 (15)4.4 电源模块设计 (17)5. 调试与优化 (19)5.1 测试方法 (21)5.2 调试过程 (22)5.3 性能优化 (23)6. 测试结果与分析 (25)6.1 发射功率 (26)6.2 频谱纯度 (27)6.3 调制质量 (28)6.4 系统稳定性 (30)7. 结论与展望 (31)7.1 设计总结 (32)7.2 存在问题 (34)7.3 未来改进方向 (35)1. 内容概述本报告详细介绍了调频发射机的高频课程设计,围绕其工作原理、设计要点、实现路径以及未来改进方向展开深入探讨。
从调频发射机的基本原理出发,我们讨论了信号调制、载波频率的调整以及功率放大等关键技术点。
报告紧密结合实际工程需求,详尽阐述了调频发射机的工作著魔步骤和各个模块的功能设计,包括射频前端、调制器、功率放大器等核心部件。
在分析过程中,我们考虑了复杂信号环境下的抗干扰性设计,确保信号传输的稳定性和清晰度。
通过对调频发射机的仿真和数据分析,本报告优化了不同负载条件下的性能表现,为实际生产提供了有效的理论支持。
本课程设计报告还包括了项目实施过程中的遇到的挑战和解决方案,同时讨论了调频发射机在现代无线通信技术中的应用及其市场潜力。
报告最后展望了的未来科技发展趋势,提出了进一步提升调频发射机性能的潜在技术和创新方向。
通过本报告的学习与应用,读者能够获得关于高频调频发射机设计过程的全面了解,并为后续相关研究提供有益的参考和指导。
高频课程设计方案调幅发射机8

说明书目录一.设计总体思路,基本原理和框图61. 调幅发射机系统设计6<1)点频调幅发射机框图7<2)各部分的作用7二.单元电路设计分析81.本机振荡82倍频电路93缓冲电路94.调制电路115.高频功率放大14<1).集电极电源提供的直流功率14<2).集电极输出基波功率15<3).集电极效率ηc15<4)、偏置电路186.匹配网络19四.附录21五.总结与体会22六.参考文献24七.整机原理图25一.设计总体思路,基本原理和框图1. 调幅发射机系统设计通信系统中的发送设备是将信息发送者送来的非电量原始信息<信源)如语音、文字和图像等转变成电信号,再把信号处理成适合于信道传输的信号形式送至信道。
信源信号在通信系统中称为基带信号。
基带信号是频谱在零频附近的宽带信号,这种信号一般具有从零频开始的较宽的频谱,而且在频谱的低端分布较大的能量,所以称为基带信号,这种信号不宜直接在信道中传输。
如果将消息信号对频率较高的载波进行调制,就能使信号的频谱搬移到适合信道的频率范围内进行传输。
例如声音基带信号的频率范围是20Hz~20kHz,这样的基带信号是不能在无线信道上传输的。
即使在某些可以传输直流的有限信道上,为了提高信道的通信容量,基带信号的传输方式也很少采用。
一般是用基带信号去改变某个高频正弦电压<载波)的参数,使载波的振幅、频率或相位随基带信号而变化,这一过程称为调制。
在通信系统中,调制有三个主要作用:1调制的过程就是一个频谱搬移的过程,将原来不适宜传输的基带信号频谱搬移到适宜传输的某一个频段上,然后传输至信道;2调制的另一个重要作用是实现信道复用,即把多个信号分别安排在不同的频段上同时进行传输,以提高信道容量;3调制可以提高通信系统抗干扰的能力,例如将信号频率搬移,从而离开某一特定干扰频率。
对不同的信道,根据经济技术等因素,可以采用不同的调制方式。
以模拟信号为调制信号,对连续的正<余)弦载波进行调制,亦即载波的参数随着调制信号的作用而变化,这种调制方式称为模拟调制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频课程设计报告专业:班级:姓名:学号:指导老师:设计时间:学期第周福建工程学院电子信息与电气工程系通信教研室目录序言 (3)1.设计题目 (4)2.实践目的 (4)3.设计要求 (4)4.电路原理及方案选择 (4)4.1 FM调频原理 (4)4.2调频方案选择 (7)5.电路设计 (7)5.1总体电路设计介绍 (8)5.2单元电路 (9)6.系统调试及测试结果 (13)7.心得体会 (15)8.设计拓展 (16)9.参考文献 (16)10.附录 (17)附件1:调频发射机电路原理图 (17)附件2:调频发射机发射机PCB图 (17)附件3:元器件清单 (18)附录4:调频发射机实物图 (18)序言发射机就是可以将信号按一定频率发射出去的装置。
是一个比较笼统的概念。
广泛应用与电视,广播,雷达等各种民用,军用设备。
主要可分为调频发射机,调幅发射机,光发射机,哈里斯发射机等多种类型。
调频发射机作为一种简单的通信工具,它首先将音频信号和高频载波调制为调频波,使高频载波的频率随音频信号发生变化,再对所产生的高频信号进行放大,激励,功放和一系列的阻抗匹配,使信号输出到天线,发送出去的装置。
高频信号的产生现在有频率合成,PLL等方式。
现在我国的商业调频广播的频率范围为88-108MHZ,校园为76-87MHZ,西方国家为70-90MHZ。
一般来讲调频发射机的传输距离和发射机功率、发射天线的高度、当地的传输环境(地理条件)有关,一般来讲50W以下发射机覆盖半径在10公里以内,3KW调频发射机可以覆盖到60KM。
由于它不需要中转站和地面交换机站支持,就可以进行有效的移动通信,因此深受人们的欢迎。
目前它广泛的用于生产、保安、野外工程等领域的小范围移动通信工程中。
1、设计题目调频(或调幅)发射机设计2、实践目的无线电发射与接收设备是高频电子线路的综合应用,是现代化通信系统、广播与电视系统、无线安全防范系统、无线遥控和遥测系统、雷达系统、电子对抗系统、无线电制导系统等,必不可少的设备。
本次设计要达到以下目的:(1) 进一步认识射频发射与接收系统;(2) 掌握调频(或调幅)无线电发射机的设计;(3) 学习无线电通信系统的设计与调试。
3、 设计要求(1)发射机采用FM 、AM 或者其它的调制方式; (2) 若采用FM 调制方式,要求发射频率覆盖范围在88-108MHz,传输距离>20m;(3)若采用AM 调制方式,发射频率为中波波段或30MHz 左右,传输距离>20m ;(4) 为了加深对调制系统的认识,发射机建议采用分立元件设计;(采用集成电路的设计方法建议作为备选方案;)(5)已调信号通过AM/FM 多波段收音机进行接收测试。
4、电路原理及方案选择4.1 FM 调制原理4.1.1载波()t w U t u c cm c cos )(=,调制信号()t u Ω;通过FM 调制,使得)(t u c 频率变化量与调制信号()t u Ω的大小成正比。
即已调信号的瞬时角频率()()t u k w t w f c Ω⋅+=已调信号的瞬时相位为()()t d t u k t w t d t w t tf c t ''+=''=⎰⎰Ω)(00ϕ 实现调频的方法分为直接调频和间接调频两大类。
(1) 直接调频直接调频的基本原理是利用调制信号直接控制振荡器的振荡频率,使其反映调制信号变化规律。
要用调制信号去控制载波振荡器的振荡频率,就是用调制信号去控制决定载波振荡器振荡频率的元件或电路的参数,从而使载波振荡器的瞬时频率按调制信号变化规律线性地改变,就能够实现直接调频。
直接调频可用如下方法实现:a.改变振荡回路的元件参数实现调频在LC 振荡器中,决定振荡频率的主要元件是LC 振荡回路的电感L 和电容C 。
在RC 振荡器中,决定振荡频率的主要元件是电阻和电容。
因而,根据调频的特点,用调制信号去控制电感、电容或电阻的数值就能实现调频。
调频电路中常用的可控电容元件有变容二极管和电抗管电路。
常用的可控电感元件是具有铁氧体磁芯的电感线圈或电抗管电路,而可控电阻元件有二极管和场效应管。
b.控制振荡器的工作状态实现调频在微波发射机中,常用速调管振荡器作为载波振荡器,其振荡频率受控于加在管子反射极上的反射极电压。
因此,只需将调制信号加至反射极即可实现调频。
若载波是由多谐振荡器产生的方波,则可用调制信号控制积分电容的充放电电流,从而控制其振荡频率。
(2)间接调频如图5所示,不直接针对载波,而是通过后一级的可控的移相网络。
将Ωu 先进行积分()⎪⎭⎫ ⎝⎛⎰Ωt dt t u k 01,而后以此积分值进行调相,即得间接调频。
()()⎪⎭⎫ ⎝⎛''+=⎰Ωt f c cm FM t d t u k t w V t u 0cos图5 间接调频实现可控移相网络的实现方法如下图6所示。
将变容二极管接在高频放大器的谐振回路里,就可构成变容二极管调相电路。
电路中,由于调制信号的作用使回路谐振频率改变,当载波通过这个回路时由于失谐而产生相移,从而获得调相。
图6 单级回路变容管调相电路4.1.2.系统框图采用FM调制的调频发射机其原理框图如下图所示,它由调制器、前置功放、末级功放和直流稳压电源等部分组成。
发射天线FM调制器前置功放末级功放直流稳压源图7 FM发射机原理方框图4.2调频方案选择利用通信原理和高频电子线路的相关知识,为确保电路能高效率输出足够大的高频功率,并馈送到天线进行发射,可进行如下设计方案的选择:方案一:通过音频信号改变载波的幅值实现载波调幅发射,调幅发射机实现调制简便,调制所占的频带窄,并且与之对应的调幅接收设备简单,所以调幅发射机广泛地应用于广播发射,但是调幅发射机的信号容易失真且发射距离不远。
方案二:以晶体振荡器做成的高精度高稳定度的调频电路。
虽然是以晶体振荡器做成的高精度高稳定度的调频电路,很能达到我们的要求。
但考虑到元件使用问题,我们继而找寻更符合实际的方案。
方案三:通过音频信号改变载波的频率实现调频发射,调频发射机发射的频率带宽较宽,但其在高频段因所占的相对频带较调幅波发射更窄,发射距离远,信号失真小。
并且在要求传输距离不是很远的情况下,我们用直接载波调频很容易实现载波调频发射机的设计,在能满足我的课程设计的技术指标要求的情况下,我门选择直接载波调频的方案来设接调频发射机。
直接调频最常见有变容二极管调频,使用VCO实现变容二极管直接调频。
许多中小功率的调频发射机都采用变容二极管直接调频技术,即在工作于发射载频的LC振荡回路上直接调频,采用晶体振荡器和锁相环路来稳定中心频率。
较之中频调制和倍频方法,这种方法的电路简单、性能良好、副波少、维修方便,是一种较先进的频率调制方案。
另外一种更为简单的直接调频方法是用三极管直接调频。
原理是三极管组成共基极超高频振荡器,基极与发射极的电压随基极输入的音频信号变化而变化,从而改变高频振荡的频率,最终实现频率的调制。
由于采用变容二级管调频,对高频轭流圈的参数要求比较苛刻。
这样会使设计电路变得困难。
因此采用三极管直接调制的方法,这样不仅能够实现FM调频,而且使电路变得非常简洁。
此方案也有以下三种方案选择:方案四:本方案的调频发射机主要由四个基本模块组成,第一级是由驻极体话筒构成的声-电转换电路;第二级是超高频振荡调制器;第三级音频放大电路;第四级高频功率放大器;总体电路如下图(1),该电路由声--电转换、音频放大器、高频振荡调制器和高频功率放大器等部分组成。
声--电转换器由驻极体话筒M1担任,它拾取周围环境声波信号后即输出相应电信号,经C2送至Q1的基极进行频率调制,Q1组成共基极超高频振荡器,基极与集电极的电压随基级输入的音频信号变化而变化,从而改变高频振荡的频率,最终实现频率的调制。
再经C6输入到晶体管Q2,Q2担任音频放大器,对已调音频信号进行放大,再经过C10输入到晶体管Q3,Q3担任功率放大器,对信号再次放大,使信号功率足够大,达到发射远的目的。
且元件利用少,且成本低廉,接线简单。
具体方案和有关原理如下所述:5、电路设计5.1 总体电路设计介绍如图(1)所示,这个设计的声音调频电路采用常用分立元件构成的电路。
射频电路有高频振荡器,缓冲放大器,末级功率放大器及天线组成。
高频振荡器用来产生载频信号,频点落在60MHz内,通过改变电感量即可改变发射频率。
在音频信号的作用下,通过改变晶体管极间电容实现调频,产生相应的调频波,射频信号由Q1的发射极输出,送到Q2,L2,C8,R5等组成的缓冲放大器进行功率提升,并可减轻末级放大电路对振荡器的影响。
末级为高频丙类窄带放大,对射频功率再进一步放大,经C13耦合到发射天线向周围空间辐射。
由于高频电路受干扰严重,如果电源从前级接进去,干扰信号会经过每一级的放大,越来越强,所以Vcc应该从末级接入。
调频电路是通过改变晶体管极间电容实现调频的,由于任何PN结在输入电压时,输入电压的变化将会引起结电容变化,即所谓的变容效应。
因此,利用变容效应也可实现调频。
图(1)中,Q1,L1,C3,C5, C7, C4,Cb’c构成电容三点式振荡电路,其工作原理如下:对高频而言,Q1基极是接地的,所以是共基极电路。
基极-基极间的结电容Cb’c并联在L1C3谐振回路两端,能影响振荡频率。
调制电压加于Q1基极,可改变Q1的基极电压,使发射极与基极间的输入电压发生变化,从而使结电容Cb’c跟随调制电压而变化,这就实现了调频。
在经过Q2,Q3放大后由天线发射出去。
经查三极管9018的静态结电容Cb’c为2pF,取C3,C5,C7,C4的值分别为:15pF,10Pf,39Pf,102pf根据以下频率公式的计算电感值。
电路的中心频率计算公式如下:f0=1/(2∏(L1C∑)½)C∑=(C4C7/(C4+C7) +Cb’c )C5/((C4C7/(C4+C7) +Cb’c )+C5)+C3得 L1= 1/(2∏f0) ²/C∑在实际电路中,电感L1需要微调一满足中心频率的要求。
5.2单元电路设计(1)由于要接入麦克风,所以要给麦克风提供驱动电压,驱动电压要适当,防止直流电通过防止过大的电流将晶体三极管烧坏,但又不能太大,通过22k 的电阻R1实现, C1的作用是滤波减小干扰,C2为耦合电容有隔直通交的作用,准许音频信号加载到后一级。
图(3)(2)LC调频振荡器——主振级:是正弦波自激振荡器,用来产生频率为57MHz~80MHZ的高频振荡信号,由于整个发射机的频率稳定度由它决定,因此要求主振级有较高的频率稳定度,同时也有一定的振荡功率(或电压),其输出波形失真要小。