fluent教程 第二章,基本方程

合集下载

(完整版)《FLUENT中文手册(简化版)》

(完整版)《FLUENT中文手册(简化版)》

FLUENT中文手册(简化版)本手册介绍FLUENT的使用方法,并附带了相关的算例。

下面是本教程各部分各章节的简略概括。

第一部分:☐开始使用:描述了FLUENT的计算能力以及它与其它程序的接口。

介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。

在本章中给出了一个简单的算例。

☐使用界面:描述用户界面、文本界面以及在线帮助的使用方法,还有远程处理与批处理的一些方法。

☐读写文件:描述了FLUENT可以读写的文件以及硬拷贝文件。

☐单位系统:描述了如何使用FLUENT所提供的标准与自定义单位系统。

☐使用网格:描述了各种计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。

还描述了非一致(nonconformal)网格的使用.☐边界条件:描述了FLUENT所提供的各种类型边界条件和源项,如何使用它们,如何定义它们等☐物理特性:描述了如何定义流体的物理特性与方程。

FLUENT采用这些信息来处理你的输入信息。

第二部分:☐基本物理模型:描述了计算流动和传热所用的物理模型(包括自然对流、周期流、热传导、swirling、旋转流、可压流、无粘流以及时间相关流)及其使用方法,还有自定义标量的信息。

☐湍流模型:描述了FLUENT的湍流模型以及使用条件。

☐辐射模型:描述了FLUENT的热辐射模型以及使用条件。

☐化学组分输运和反应流:描述了化学组分输运和反应流的模型及其使用方法,并详细叙述了prePDF 的使用方法。

☐污染形成模型:描述了NOx和烟尘的形成的模型,以及这些模型的使用方法。

第三部分:☐相变模拟:描述了FLUENT的相变模型及其使用方法。

☐离散相变模型:描述了FLUENT的离散相变模型及其使用方法。

☐多相流模型:描述了FLUENT的多相流模型及其使用方法。

☐移动坐标系下的流动:描述单一旋转坐标系、多重移动坐标系、以及滑动网格的使用方法。

FLUENT中文全教程

FLUENT中文全教程

FLUEN教程赵玉新I、目录第一章、开始第二章、操作界面第三章、文件的读写第四章、单位系统第五章、读入和操作网格第六章、边界条件第七章、物理特性第八章、基本物理模型第九章、湍流模型第十章、辐射模型第十一章、化学输运与反应流第十二章、污染形成模型第十三章、相变模拟第十四章、多相流模型第十五章、动坐标系下的流动第十六章、解算器的使用第十七章、网格适应第十八章、数据显示与报告界面的产生第十九章、图形与可视化第二十章、Alphanumeric Reporting 第二十一章、流场函数定义第二十二章、并行处理第二十三章、自定义函数第二十四章、参考向导第二十五章、索引( Bibliograp)hy 第二十六章、命令索引II、如何使用该教程概述本教程主要介绍了FLUEN的使用,其中附带了相关的算例,从而能够使每一位使用者在学习的同时积累相关的经验。

本教程大致分以下四个部分:第一部分包括介绍信息、用户界面信息、文件输入输出、单位系统、网格、边界条件以及物理特性。

第二和第三部分包含物理模型,解以及网格适应的信息。

第四部分包括界面的生成、后处理、图形报告、并行处理、自定义函数以及FLUEN所使用的流场函数与变量的定义。

下面是各章的简略概括第一部分:z 开始使用:本章描述了FLUEN的计算能力以及它与其它程序的接口。

介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。

在本章中,我们给出了一个可以在你自己计算机上运行的简单的算例。

z 使用界面:本章描述了用户界面、文本界面以及在线帮助的使用方法。

同时也提供了远程处理与批处理的一些方法。

(请参考关于特定的文本界面命令的在线帮助)z 读写文件:本章描述了FLUENT以读写的文件以及硬拷贝文件。

z单位系统:本章描述了如何使用FLUENTS提供的标准与自定义单位系统。

z 读和操纵网格:本章描述了各种各样的计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale、分区(partition等方法对网格的修改。

fluent手册

fluent手册

FLUENT教程赵玉新I、目录第一章、开始第二章、操作界面第三章、文件的读写第四章、单位系统第五章、读入和操作网格第六章、边界条件第七章、物理特性第八章、基本物理模型第九章、湍流模型第十章、辐射模型第十一章、化学输运与反应流第十二章、污染形成模型第十三章、相变模拟第十四章、多相流模型第十五章、动坐标系下的流动第十六章、解算器的使用第十七章、网格适应第十八章、数据显示与报告界面的产生第十九章、图形与可视化第二十章、Alphanumeric Reporting第二十一章、流场函数定义第二十二章、并行处理第二十三章、自定义函数第二十四章、参考向导第二十五章、索引(Bibliography)第二十六章、命令索引II、如何使用该教程概述本教程主要介绍了FLUENT的使用,其中附带了相关的算例,从而能够使每一位使用者在学习的同时积累相关的经验。

本教程大致分以下四个部分:第一部分包括介绍信息、用户界面信息、文件输入输出、单位系统、网格、边界条件以及物理特性。

第二和第三部分包含物理模型,解以及网格适应的信息。

第四部分包括界面的生成、后处理、图形报告、并行处理、自定义函数以及FLUENT所使用的流场函数与变量的定义。

下面是各章的简略概括第一部分:开始使用:本章描述了FLUENT的计算能力以及它与其它程序的接口。

介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。

在本章中,我们给出了一个可以在你自己计算机上运行的简单的算例。

●使用界面:本章描述了用户界面、文本界面以及在线帮助的使用方法。

同时也提供了远程处理与批处理的一些方法。

(请参考关于特定的文本界面命令的在线帮助)●读写文件:本章描述了FLUENT可以读写的文件以及硬拷贝文件。

●单位系统:本章描述了如何使用FLUENT所提供的标准与自定义单位系统。

●读和操纵网格:本章描述了各种各样的计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。

Fluent软件学习笔记

Fluent软件学习笔记

Fluent软件学习笔记Fluent软件学习笔记⼀、利⽤Gambit建⽴计算区域和指定边界条件类型1)⽂件的创建及其求解器的选择软件基本知识:Geometry 绘制图形Mesh ⽹格划分Zones 指定边界条件类型和区域类型Operation绘图⼯具⾯板Tools 指定坐标系统等视图控制⾯板:全图显⽰(Fit to window)选择象限显⽰视图选择显⽰项⽬撤销或重复上⼀步⿏标键:左键单击——旋转模型中键单击——平移模型右键单击——放缩模型Shift+⿏标左键——选择点、边、⾯等①建⽴新⽂件:Flie New②选择求解器:Solver2)创建控制点:Operation-Geometry-Vertex创建边:Operation-Geometry-Edge创建⾯:Operation-Geometry-Face3)划分⽹格对边进⾏划分:对⾯进⾏划分:Operation-Mesh-Face-Mesh Faces注:打开的⽂本框中:Quad-四边形⽹格Elements- Tri-三⾓形⽹格Quad/Tri-混合型⽹格Map映射成结构化⽹络Submap分块/区映射块结构化⽹络Type- Pave平铺成⾮结构化⽹络Tri Primitive 将⼀个三⾓形区域分解为三个四边形区域在划分结构化⽹格Interval size:指定⽹格间距Interval count:指定⽹格个数4)边界条件类型的指定:Operation-ZonesAdd添加Name:为边界命名Action- Modify修改Type:指定类型Delete删除Entity :选择边/⾯5)Mesh⽹格⽂件的输出:File-Export-Mesh注:对于⼆维情况,必须选中Export2-D(X-Y)Mesh总结:建⽴⼏何模型划分⽹格定义边界条件输出⽹格⽂件(即建⽴计算区域)⼆、利⽤Fluent求解器求解1)Fluent求解器的选择2d:⼆维、单精度求解器2ddp:⼆维、双精度求解器3d:三维、单精度求解器3ddp:三维、双精度求解器2)⽂件导⼊和⽹格操作①导⼊⽹格⽂件:File-Read-Case②检查⽹格⽂件:Grid-Check(若minimum volume即最⼩⽹格的体积的值⼤于0,则⽹格可以⽤于计算)③设置计算区域尺⼨:Grid-ScaleFluent中默认的单位为m,⽽Gambit作图时候采⽤的单位为mm④显⽰⽹格:Display-Grid3)选择计算模型①求解器的定义:Define-Models-Solver(压⼒基、密度基)②其他操作模型的选定Multiphase多相流模型Energy考虑传热与否Species反应及其传热相关Viscous层流或湍流模型选择Define-Models-Viscous:打开粘性模型Inviscid⽆粘模型Laminar层流模型Spalart-Allmaras单⽅程湍流模型(S-A模型)K-epsilon双⽅程模型(k-ε模型)K-omega双⽅程模型以及雷诺应⼒模型③操作环境的设置:Define-Operating ConditionsPascal(环境压强)、Gravity(重⼒影响)4)定义流体的物理性质:Define-MaterialsFluent Database中调出5)设置边界条件:Define-Boundary Conditions①设置Fluid流体区域的物质:Zone-Fluid--Set②设置Inlet的边界条件:Zone-Inlet-Set③设置Outlet的边界条件④设置Wall的边界条件6)求解⽅法的设置及控制①求解参数的设置:Solve-Controls-Solutions...Equations:需要求解的控制⽅程Pressure-Velocity Coupling:压⼒-速度耦合求解⽅式Discretization:所求解的控制⽅程Under-Relaxation Factor:松弛因⼦②初始化:Solve-Initialize-Initialize...设置Compute Form为Inlet,依次点击Init和Close图标完成对流场的初始化③打开残差监控图:Solve-Monitors-Residuai...④保存当前的Case⽂件:File-Write-Case...⑤开始迭代计算:Solve-Iterate...⑥保存计算后的Case和Date⽂件:File-Write-Case&Date...7)计算结果显⽰显⽰速度等值线图:Display Contours...Contous of-------选中Velocity...Surfaces-------指定平⾯Levels--------等值线数⽬(默认)Options-----------选中Filled绘制的是云图注:轴对称问题,可通过镜像选择显⽰整个圆管的物理量分布镜像选择显⽰的设置:Display-Views... 在Mirror Planes中选择axial为镜像平⾯,然后点击Apply图标接受设置绘制速度⽮量图:Display-Vectors...Vectors of-------选中VelocityStyle----------箭头类型Scale---------⽮量被放⼤倍数Skip----------⽮量密集程度显⽰某边上速度的速度剖⾯XY点线图:Plot-XY Plot...注:Plot Direction:表⽰曲线将沿什么⽅向绘制显⽰迹线F ile—path lines在release from surface列表中选择释放粒⼦的平⾯设置step size和step的数⽬,step size设置长度间隔steps设置了⼀个微粒能够前进的最⼤步数单击display三、⼆维⽰例⼆维定常可压缩流场分析——NACA 0006翼型⽓动⼒计算⼆维定常不可压缩流场分析——卡门涡街动画的设置:Solve-Animate-Define三维定常可压缩流动⽰例第⼆章:流体⼒学基本⽅程及边界条件三⼤控制⽅程:质量守恒、动量守恒及能量守恒⽅程初始条件边界条件:速度⼊⼝三维定常速度场的计算1、内部⽹格的显⽰打开examine mesh对话框温度场的计算Fluent处理中选中能量⽅程求解器:define/models/energy设置wall边界条件时候,convection热对流边界条件多相流模型VOF模型的选择define/models/multiphase基本相及第⼆相的设置define/phase动画的设置。

fluentns方程

fluentns方程

fluentns方程摘要:1.FluentNS 方程的概述2.FluentNS 方程的基本原理3.FluentNS 方程的应用领域4.FluentNS 方程的优缺点正文:1.FluentNS 方程的概述FluentNS 方程是一种用于模拟流体流动的数学模型,其中“Fluent”代表流体流动,“NS”则代表Navier-Stokes,这是由法国物理学家克劳德·路易·马里·纳维耶和英国物理学家乔治·加布里埃尔·斯托克斯在19 世纪提出的描述流体运动的基本方程。

FluentNS 方程广泛应用于计算机流体力学(CFD)领域,以模拟各种流体流动现象,如湍流、热传导和对流传热等。

2.FluentNS 方程的基本原理FluentNS 方程基于质量守恒和动量守恒原理,描述了流体在空间和时间上的变化。

具体来说,它包括以下三个方程:(1) 质量守恒方程:描述流体在各个区域内的质量分布随时间如何变化,即流体流入和流出一个给定区域的速率之和等于该区域内流体质量的变化率。

(2) 动量守恒方程:描述流体在各个区域内的动量分布随时间如何变化,即流体受到的各种外力之和等于流体动量的变化率。

(3) 能量守恒方程:描述流体在各个区域内的能量分布随时间如何变化,即流体的内能、热传导和对流传热之和等于流体能量的变化率。

3.FluentNS 方程的应用领域FluentNS 方程在许多工程领域都有广泛的应用,包括:(1) 航空航天:用于研究飞机翼型、机身形状等对流体运动的影响,以及气流对飞行性能的影响。

(2) 汽车工程:用于研究汽车外形、发动机冷却系统等对流体运动的影响,以及气流对汽车性能的影响。

(3) 船舶工程:用于研究船体形状、船舱设计等对流体运动的影响,以及水流对船舶性能的影响。

(4) 能源工程:用于研究热传导、对流传热等现象,以提高热能利用效率。

(5) 环境工程:用于研究大气污染扩散、水污染扩散等现象,以改善环境质量。

Fluent理论手册(2)—旋转坐标系

Fluent理论手册(2)—旋转坐标系

2.3 多旋转参考系流动
许多涉及到多运动部分以及包含了一些静止非旋转表面(无法使用 SRF 模 型) 。在这些问题中,必须将模型分成多个流体/固体区域,使用分界面边界将其
20
分隔开。包含运动部分的区域可以采用运动参考系方程进行求解,而静止区域可 以通过静止参考系方程求解。Fluent 支持两种方法对这些问题进行处理。 多旋转参考系 多参考系模型(MRF) 混合平面模型(MPM)
中相同。能量方程采用相对内能
=ℎ− + ( = 2、绝对速度表达式 +
在绝对速度表达式中,稳定旋转系中流体流动控制方程可以写成以下形式: 质量守恒方程: + ⋅ =0 (2.2.9)
19
动量守恒方程: + ⋅( )+ ( × )=− + ⋅ ̿+ (2.2.10)
能量守恒方程: + ⋅( + )= ⋅( + ̿⋅ )+ (2.2.11)
CFD 问题 题关于旋转系 系的计算域 域中任意点位 位置通过位 位置向量 及 及旋转域的原 原点 进行 行确定。 能使用以下关系将速 速度从静止 止系转化为旋 旋转系。 = 式中 = × (2.2.3)
18

(2.2.2)
上式中, 为相对速度(旋转系中观察的速度) , 为绝对速度(静止系中观 察的速度) , 为牵连速度(由于旋转系所导致的速度) 。
2.3.2 混合面模型
混合面模型是 ANSYS FLUENT 提供的一种解决一个或多个相对运动区域 替代 MRF 模型和滑移网格模型的方法。 本节提供此模型的简单描述及使用限制。 2.3.2.1 概述 正如 2.3.1 节所述, MRF 模型主要用于相邻运动区域间流动为几乎一致的情 况。如果分界面上流动不一致,则 MRF 模型可能给出不真实的物理解。在这种 情况下,使用滑移网格模型可能是最适合的,但是在许多情况下,使用滑移网格 式不实际的。例如,在多级透平机械中,如果每级叶片数量不相同,则为了获得 周向上周期性,则必须使用大量的叶片,此外,滑移网格计算必须采用非稳态, 因此需要非常多的计算时间以达到最终时间周期解。 对于一些不适合采用滑移网 格模型的地方,采用混合面模型可能是一个比较节省的方法。 在混合模型方法中,每一个流体域均当做稳态问题求解。相邻区域的流场数

FLUENT中文全教程_部分2

FLUENT中文全教程_部分2

Radio Buttons这类按钮中,只有一个选项可以打开。

Text EntryInteger Number Entry一般说来用鼠标点击上下箭头,会增加或者减少1。

如果结合键盘点击一次鼠标就可以增加更多的数量。

用法如下表:Key Factor of IncreaseShift 10Ctrl 100Real Number Entry可以输入实数如10, -10.538, 50000.45和5.e-4),一般都会带有相应的单位。

单选列表许多面板响应鼠标的双击功能,在实践中多试几次就熟练了多选列表鼠标点击一次选上;再点击一次取消选择下拉菜单使用方法和Windows的一样。

标尺可以用鼠标操作,也可以用鼠标选择之后再用键盘左右选择图形显示窗口Figure 1: 图形显示窗口的例子显示选项面板可以控制图形显示的属性也可以打开另一个显示窗口。

鼠标按钮面板可以用于设定鼠标在图形显示窗口点击时所执行的操作。

当为图形显示处理数据时要取消显示操作可以按Ctrl+C,已经开始画图的话就无法取消操作了。

输出图形显示窗口是Windows NT系统的特有功能,UNIX系统没有此项功能。

页面设置面板也是Windows NT系统独有的功能Windows NT系统的特有的输出图形显示窗口功能如果你选择的是Windows NT版本的FLUENT,点击图形窗口的左上角便可以显示图形窗口系统菜单,该菜单包括常用系统命令如:move,size和close。

连同系统命令一起,FLUENT 为支持打印机和剪贴板增加了三条命令:1.复制到剪贴板:将当前图形复制到Windows的剪贴板。

可以用页面设置面板改变复制的属性。

图形窗口的大小影响了图形中所使用的字的大小。

2.打印:将当前图形复制到打印机。

可以用页面设置面板改变打印的属性。

3.页面设置:显示页面设置面板。

Windows NT系统独有的页面设置面板功能:在图形显示窗口的system菜单中点击Page Setup..菜单,弹出页面设置面板如下:第一个Color:允许你选择是否使用彩色图第二个Color:选择彩色图形Gray Scale:选择灰度比例图Monochrome:选择黑白图Color Quality:允许你指定图形的色彩模式True Color:创建一个由RGB值定义的图,这假定了你的打印机或者显示器有至少65536个色彩或无限色彩。

fluent中文简明教程

fluent中文简明教程

第一章Fluent 软件的介绍 fluent 软件的组成:软件功能介绍:GAMBIT专用的CFD 前置处理器(几何/网格生成)Fluent4.5 基于结构化网格的通用CFD 求解器Fluent6.0 基于非结构化网格的通用CFD 求解器Fidap 基于有限元方法的通用CFD 求解器Polyflow 针对粘弹性流动的专用CFD 求解器Mixsim 针对搅拌混合问题的专用CFD 软件Icepak 专用的热控分析CFD 软件软件安装步骤:前处 理 gambit 软件Fluent6.0 Fluent5.5&4.5 Fidap Polyflow Mixsim Icepack 通用软件专用软件step 1: 首先安装exceed软件,推荐是exceed6.2版本,再装exceed3d,按提示步骤完成即可,提问设定密码等,可忽略或随便填写。

step 2: 点击gambit文件夹的setup.exe,按步骤安装;step 3: FLUENT和GAMBIT需要把相应license.dat文件拷贝到FLUENT.INC/license目录下;step 4:安装完之后,把x:\FLUENT.INC\ntbin\ntx86\gambit.exe命令符拖到桌面(x为安装的盘符);step 5: 点击fluent源文件夹的setup.exe,按步骤安装;step 6: 从程序里找到fluent应用程序,发到桌面上。

注:安装可能出现的几个问题:1.出错信息“unable find/open license.dat",第三步没执行;2.gambit在使用过程中出现非正常退出时可能会产生*.lok文件,下次使用不能打开该工作文件时,进入x:\FLUENT.INC\ntbin\ntx86\,把*.lok文件删除即可;3.安装好FLUENT和GAMBIT最好设置一下用户默认路径,推荐设置办法,在非系统分区建一个目录,如d:\usersa)win2k用户在控制面板-用户和密码-高级-高级,在使用fluent用户的配置文件修改本地路径为d:\users,重起到该用户运行命令提示符,检查用户路径是否修改;b)xp用户,把命令提示符发送到桌面快捷方式,右键单击命令提示符快捷方式在快捷方式-起始位置加入D:\users,重起检查。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空气
Density
2.5 2 1.5 1 100 200
300
400
Temperature
Y方向速度等值线
流函数等值线
自然对流问题举例
• 房间内内热源问题
房间1米宽,1米高
直径10CM热源
当求解高Rayleigh 数(108)流动问题时,根据下 列步骤将能得到最好结果
j
不可压缩气体
h m j h j
j
p
Hale Waihona Puke m j是组分
j
的质量分数,组分
j
的焓定义为:
h j c p , j dT
Tref
T
PDF模型的能量方程
u k t H ( H ) ( u i H ) ( ) ik i S h t xi xi c p xi x k
0 0 0
0
浮力驱动流计算用户输入
• 求解能量方程(define-models-Energy) • 激活重力加速度项(define-operating conditions) • 决定流体(理想气体,不可压缩理想气体 (operating pressure不能设零) • 密度设定(给定密度与温度之间关系, Boussinesq假设中,给定参考密度和热膨 胀系数)
计算传热过程中用户输入
• 如果用FLUENT计算有传热的问题时候,必须击活相关模型和提供热 边界条件,并且给出材料物性。这一系列过程如下: • 击活能量面板。Define-Models-Energy • (对于segregated solver)如果模拟粘性流动过程,而且要考虑粘性加 热,击活Viscous Heating;Define-Models-Viscous Heating • 定义热边界条件(包括流体进口,出口和壁面)Define-Boundary Conditions。在流动进口和出口要给定温度,但壁面可以有如下边界 条件选择:
第二章,基本流动模拟
Fluent用途
• 提供了很多数学模型用以模拟复杂几何结构下的 输运现象(如传热与化学反应)。 • 该软件能解决比较广泛的工程实际问题,包括处 理设备内部过程中的层流非牛顿流体流动,透平 机械和汽车发动机过程中的湍流传热过程,锅炉 炉里的粉煤燃烧过程,还有可压射流、外流气体 动力学和固体火箭中的可压反应流动等
• 能量方程
T ( E) (ui ( E p)) (keff ) h j J j u j ( ij )eff Sh t xi xi xi j
u i2 E h 2 p
FLUENT可以计算流体和(或者)固体区域之间的传热问题。如果是周期性换热 流动,则流动边界要给定周期边界条件。如果计算计算模型包括两个流动区域, 中间被固体或者墙壁隔开的换热问题,则要特别注意:1,两个流体都不能用流 出边界条件(outflow);2,两个区域的流动介质可以不同,但要分别定义流体 性质(如果计算组分,只能给一个混合组分)。流体1流体2
传热问题求解过程
• 对于一些简单的传热过程FLUENT的默认设置可以成功进行模拟,但 如果要加快你的问题的收敛速度或者提高计算过程的稳定性,下面的 一些过程就比较重要了
松弛因子确定:在求解温度和焓时候,FLUENT默认设置能量方程松弛因子为1。在一些问题里, 能量场影响流动场(物性随温度变化,或者有浮力),这时候松弛因子要小些,比如在0.8到1之间。 如果流动场和温度场不是耦合的(没有随温度变化的热物性或者浮力影响),松弛因子就可以采用 1。 如果我们求解的是焓方程(非绝热PDF燃烧模型),温度需要设置松弛因子。焓的变化中不是 所有的都用来计算温度的变化。这对于一些问题,你需要流动场焓变化快,而温度不能变化太快 (影响流体热物性太快)的解决很有好处。 组分扩散项:如果用segregated solver求解组分输运方程,如果考虑组分扩散,计算收敛会比 较困难。为了提高收敛性,可以在define-models-species处取消对组分扩散的考虑。这时候组分扩 散对能量的影响就被忽略了。如果我们选择coupled solver求解,那么组分扩散一定是存在的。 耦合和非耦合流动场与温度场计算:如果流动和传热不是耦合的(没有温度变化的热物性或者 浮力影响),那么我们可以先求解绝热流动场,然后加进能量方程。这时候可以暂时先关闭动量或 者能量方程中的一个,先求解另外的一个。Solve-controls-solution. 如果流动和温度场是耦合的, 你可以先求解流动方程,收敛后再击活能量方程,一起求解。需要注意的是,Coupled solver 总是 同时求解流动与能量方程。
粘性加热项选择
• 粘性耗散项是考虑流体中的粘性剪切作用 产生的热量。如果用segregated solver求解, 默认设置并没有考虑。如果Brinkman U 数( Br kT , T 是系统温度差)大于1 时,粘性加热一定不能忽略。这时候一定 要设置Viscous Heating选项。对于可压缩 流动,一般Br>1,如果还用segregated solver求解,一定要考虑粘性加热。如果是 coupled solver求解,粘性加热会自动考虑。
房间5米宽,3米高 换热器高度1米
密度随温度变化: 1,多项式拟合密度随温度变化
a0 a1T a2T 2 a3T 3 ...
2,理想气体 3,不可压缩理想气体。。。。
4 3.5 3
POLYNOMIAL FIT DATA: Pwr,Coef 0 | 1.068325923373E+001 1 | -1.242011989331E-001 2 | 7.162733710290E-004 3 | -2.188174783828E-006 4 | 3.386736047985E-009 5 | -2.088821851188E-012
固体区域的能量方程
• 在固体区域,FLUENT采用的能量方程为如 下形式
T h (u i h) (k ) q t xi xi xi
方程左边第二项表示由于固体旋转或者平移运动热传 输。方程右边两相分别为固体导热和体积热源。
固体内部导热各向异性的影响
• 当用segregated solver求解时,FLUENT允 许你指定材料的各向导热系数。固体导热 各向异性方程形式如下:
T (k ij ) xi xi

k ij
其中,是导热系数矩阵。
进口热扩散
• 进口的净能量输运包括对流和扩散两部分。指定 进口温度就可以确定对流部分,但扩散项取决于 计算出来的温度场梯度。因此我们不能给定扩散 分量或者净能量输运。但在一些问题中,我们更 希望能给定净能量输运,而不是给定进口温度。 如果用segregated solver求解时,可以在 dfine/models/energy中去掉进口能量扩散,从而 达到给定净进口能量输运。但是我们用coupled solver时,不能去掉能量扩散部分。
假定刘易斯数为1,方程右边第一项为组分扩散和导热项的合并项; 第二项为粘性耗散,为非守恒形式。总焓H定义为:
H m j H j
j
组分
j
的总焓定义为
T
H j c p , j dT h 0 (Tref , j ) j
Tref , j
虽然能量的标准形式里包括了压力做功和动能项,但在采用segregated solver求解不 可压问题时候都可以忽略掉。当然,如果想不忽略它们的作用,可以在 define/models/energy中设置。对于可压缩流动问题,在用coupled solvers求解时总 是考虑压力做功和动能项。
第三节,浮力驱动的流动和自 然对流
混合对流问题:
Gr gh 2 Re v 2
自然对流问题: Ra gTL3 /
如果 Ra 10 8,自然对流处于层流状态, 在 为层流到湍流的过渡区域。
01
01 aR 8 01
Boussinesq模型
• 对于许多的自然对流问题,采用Boussinesq模 型比定义密度是温度的函数有更好的收敛性。 该模型在所有求解方程中,认为密度是常数。 但是,在动量方程中的浮力项中,密度才随温 度变化。 ( ) g (T T ) g ,因 而用 (1 T ) 计算浮力项。这样的近 似对密度变化很小的流动问题有较好计算结果。 • 该模型对封闭区域里的自然对流问题适合,如 果模拟温度变化很小的流动场也同样适用。但 是,如果计算组分,燃烧或者有化学反应的问 题时,该方法不适合。
Fluent用途(续)
• 为了能模拟工业设备和过程中的流动及相关的输 运现象,FLUENT提供了许多解决工程实际问题的 选择,其中包括多孔介质流动,(风扇和热交换 器)的集总参量计算,流向周期流动与传热,有 旋流动和动坐标系下流动问题。随精确时间滑移 网格的动坐标方法可以模拟计算涡轮流动问题。 • FLUENT还提供了离散相模型用以模拟喷雾过程或 者稀疏颗粒流动问题。还有些两相流模型可供大 家选用。
浮力驱动流计算用户输入(续)
• 压力进口与出口边界条件下,应该输入等 s 小压力 p 0 gx p s 条件是进口和出口没 有外部压力梯度 • 压力离散方法确定,如果用四边形网格、 六面体网格,并采用非耦合求解器求解, 建议采用Presto方法。
自然对流问题举例
• 房间内换热器引起的自然对流问题
– – – – – 指定热流量 指定温度 对流换热 外部辐射 对流换热+辐射换热
• 定义材料热物性。Define-Materials. 比热和导热系数都要给出,并且 可以用温度函数的形式给出。
温度限制
• 为了计算的稳定性,FLUENT对计算出来的温度 给了范围限制。给定温度限制,一方面是为了计 算稳定的需要,同时,真实温度也有其相应的范 围。由于给定材料物性不好,或者其它原因,计 算出的中间超过了物理应该达到的温度。 FLUENT中,给定的最高温度5000K,最小温度 1K,如果计算过程中的温度超过这个范围,那么 就在这最高温度或最低温度值处锁定。如果你觉 得这个限制不合理,你可以自己调节。Solvecontrol-limits
相关文档
最新文档