FLUENT中文全教程
Fluent UDF 中文教程

第一章.介绍本章简要地介绍了用户自定义函数(UDF)及其在Fluent中的用法。
在1.1到1.6节中我们会介绍一下什么是UDF;如何使用UDF,以及为什么要使用UDF,在1.7中将一步步的演示一个UDF例子。
1.1 什么是UDF?1.2 为什么要使用UDF?1.3 UDF的局限1.4 Fluent5到Fluent6 UDF的变化1.5 UDF基础1.6 解释和编译UDF的比较1.7一个step-by-stepUDF例子1.1什么是UDF?用户自定义函数,或UDF,是用户自编的程序,它可以动态的连接到Fluent求解器上来提高求解器性能。
用户自定义函数用C语言编写。
使用DEFINE宏来定义。
UDF中可使用标准C语言的库函数,也可使用Fluent Inc.提供的预定义宏,通过这些预定义宏,可以获得Fluent求解器得到的数据。
UDF使用时可以被当作解释函数或编译函数。
解释函数在运行时读入并解释。
而编译UDF则在编译时被嵌入共享库中并与Fluent连接。
解释UDF用起来简单,但是有源代码和速度方面的限制不足。
编译UDF执行起来较快,也没有源代码限制,但设置和使用较为麻烦。
1.2为什么要使用UDF?一般说来,任何一种软件都不可能满足每一个人的要求,FLUENT也一样,其标准界面及功能并不能满足每个用户的需要。
UDF正是为解决这种问题而来,使用它我们可以编写FLUENT代码来满足不同用户的特殊需要。
当然,FLUENT的UDF并不是什么问题都可以解决的,在下面的章节中我们就会具体介绍一下FLUENT UDF的具体功能。
现在先简要介绍一下UDF的一些功能:z定制边界条件,定义材料属性,定义表面和体积反应率,定义FLUENT输运方程中的源项,用户自定义标量输运方程(UDS)中的源项扩散率函数等等。
z在每次迭代的基础上调节计算值z方案的初始化z(需要时)UDF的异步执行z后处理功能的改善z FLUENT模型的改进(例如离散项模型,多项混合物模型,离散发射辐射模型)由上可以看出FLUENT UDF并不涉及到各种算法的改善,这不能不说是一个遗憾。
Fluent按钮中文说明(最新整理-精华版)

Fluent按钮中文说明(最新整理-精华版)Fluent 使用步骤指南(新手参考)步骤一:网格1.读入网格(*.Msh)File → Read → Case读入网格后,在窗口显示进程2.检查网格Grid → Check'Fluent对网格进行多种检查,并显示结果。
注意最小容积,确保最小容积值为正。
3.显示网格Display → Grid①以默认格式显示网格可以用鼠标右键检查边界区域、数量、名称、类型将在窗口显示,本操作对于同样类型的多个区域情况非常有用,以便快速区别它们。
4.网格显示操作Display →Views(a)在Mirror Planes面板下,axis(b)点击Apply,将显示整个网格(c)点击Auto scale, 自动调整比例,并放在视窗中间(d)点击Camera,调整目标物体位置(e)用鼠标左键拖动指标钟,使目标位置为正(f)点击Apply,并关闭Camera Parameters 和Views窗口步骤二:模型1. 定义瞬时、轴对称模型Define → models→ Solver(a)保留默认的,Segregated解法设置,该项设置,在多相计算时使用。
(b)在Space面板下,选择Axisymmetric;(c)在Time面板下,选择Unsteady2. 采用欧拉多相模型Define→ Models→ Multiphase(a)选择Eulerian作为模型(b)如果两相速度差较大,则需解滑移速度方程(c)如果Body force比粘性力和对流力大得多,则需选择implicit body force 通过考虑压力梯度和体力,加快收敛(d)保留设置不变3. 采用K-ε湍流模型(采用标准壁面函数)Define → Models → Viscous(a) 选择K-ε ( 2 eqn 模型)(b) 保留Near wall Treatment面板下的Standard Wall Function 设置(c)在K-ε Multiphase Model面板下,采用Dispersed模型,dispersed 湍流模型在一相为连续相,而材料密度较大情况下采用,而且Stocks 数远小于1,颗粒动能意义不大。
FLUENT中文全教程500-750

解及精度)。
f的化学当量值的确定在下面讨论。
注:不应将中心点设得高于0.8或低于0.2。
Mixture Fraction Variance Points (混合分数变化量点):为将要建立的查询表上的2f′的离散值的数量。
混合分数变化量点数应大体上为需要的s平均混合分数点数的一半。
因为通常沿查询表的2f′轴变化量比沿f轴s慢,因此需要低解。
Secondary Partial Fraction (次要部分分数):包含与(可选的)次要部分分数相关的参数:Secondary Partial Fraction Points (次要部分分数点):为将要建立的查询表上的p的离散值数量。
像“Fuel Mixture Fraction Points”,如果为一个sec二混合分数模型在PDF选项上(见14.3.3节)FLUENT将使用次要部分分数点计算PDF。
点数越大,给出的PDF分布越精确,单是计算时间越长。
Automatic Distribution (自动分布):允许对次要部分分数及其变化量进行自动离散。
多数情况下推荐使用自动离散。
Distribution Center Point (分布中心点)(仅当“Automatic Distribution”不可用时才可用):决定了p离散值的需要数目分布。
需要的点数将分sec布在中心点的任何一边,多数点集中在近中心地,少数点在端点上。
如果中心点定义为0.5(默认),值将在在范围内0均匀分布在0到1之间。
对一种氧化剂或非反应次要流,应保持该默认值。
对次要流,通常应在p的化学当量值的富边选择该值。
这将会在化学当量范围及以下——sec在该范围内,计算将更加关键,建立更多的点(因此,会有更好的解及精度)。
f的化学当量值的确定在下面讨论。
所以可用方程14.1-3决定secp的相应值。
注:不应将中心点设为高于0.8或低于0.2。
secEquilibrium Chemistry Model (平衡化学模型):包括与平衡化学模型(见14.1.2节)相关的参数。
fluent按钮中文说明(整理-精华版)

Fluent 使用步骤指南(新手参考)步骤一:网格1.读入网格(*.Msh)File → Read → Case读入网格后,在窗口显示进程2.检查网格Grid → Check'Fluent对网格进行多种检查,并显示结果。
注意最小容积,确保最小容积值为正。
3.显示网格Display → Grid①以默认格式显示网格可以用鼠标右键检查边界区域、数量、名称、类型将在窗口显示,本操作对于同样类型的多个区域情况非常有用,以便快速区别它们。
4.网格显示操作Display →Views(a)在Mirror Planes面板下,axis(b)点击Apply,将显示整个网格(c)点击Auto scale, 自动调整比例,并放在视窗中间(d)点击Camera,调整目标物体位置(e)用鼠标左键拖动指标钟,使目标位置为正(f)点击Apply,并关闭Camera Parameters 和Views窗口步骤二:模型1. 定义瞬时、轴对称模型Define → models→ Solver(a)保留默认的,Segregated解法设置,该项设置,在多相计算时使用。
(b)在Space面板下,选择Axisymmetric;(c)在Time面板下,选择Unsteady2. 采用欧拉多相模型Define→ Models→ Multiphase(a)选择Eulerian作为模型(b)如果两相速度差较大,则需解滑移速度方程(c)如果Body force比粘性力和对流力大得多,则需选择implicit body force 通过考虑压力梯度和体力,加快收敛(d)保留设置不变3. 采用K-ε湍流模型(采用标准壁面函数)Define → Models → Viscous(a) 选择K-ε ( 2 eqn 模型)(b) 保留Near wall Treatment面板下的Standard Wall Function 设置(c)在K-ε Multiphase Model面板下,采用Dispersed模型,dispersed湍流模型在一相为连续相,而材料密度较大情况下采用,而且Stocks数远小于1,颗粒动能意义不大。
FLUENT中文全教程_部分31

如果在你求解问题时使用了一个或多个移动参考面或者移动网格,那么你可以选择显示绝对 速度向量或者相当速度向量。选中速度选项对话框中的 Relative 选项时,会按照设定的参考 值以参考面为基础绘制向量。参看设置参考区来获得更详细的细节(如果你建立了一个旋转 参考面,你不需要指定参考区域,会以旋转参考面为基础绘制速度向量)。如果你为选中 Relative 选项,在绘制向量图时会以绝对、固定的参考面为基础进行绘制。 对于一些问题,你可能对垂直于流场部分的可视化感兴趣。这些“二次流”部分通常比沿着 流动方向的部分要小,因此当流动方向部分也显示的时候就很难观察它。为了方便的观察垂 直流场部分,可以在向量选项中选中 In Plane 选项。当该选项被选中时,FLUENT 只显示 选中面内的速度向量图。如果选中的表面时一个交叉的流对象,将会显示垂直于该流场的速 度向量图。图 2 显示了选中 In Plane 时生成的速度向量图(注意这些向量被转化到求解对象 的外部,正如在一个场景中改变求解对象的外形中所述,所以可以很方便的被观察)
3. 设置轨迹线对话框中的其它选项。
4. 单击 Display 按钮绘制轨迹线,或者单击 Pulse 按钮来显示微粒位置的动画。在动画显 示中 Pulse 按钮将变成 Stop 按钮,你可以通过单击该按钮来停止动画的运行。
第 26 章 文字报告
FLUENT 提供了许多计算和报告表面和边界积分值的工具。这些工具可以让用 户得到通过边界的物质质量流率和热量传递速率,在边界处的作用力以及动量值, 还可以得到在一个面上或者在一个体中的面积、积分、流率、平均值和质量平均值 (其它量)。另外,用户还可以得到几何形状和求解数据的直方图,设置无因次系 数的参考值以及计算投影表面积。用户也能打印或者存储一个包括当前 case 中的模 型设定、边界条件和求解设定等情况的摘要报告
FLUENT中文全教程

FLUEN教程赵玉新I、目录第一章、开始第二章、操作界面第三章、文件的读写第四章、单位系统第五章、读入和操作网格第六章、边界条件第七章、物理特性第八章、基本物理模型第九章、湍流模型第十章、辐射模型第十一章、化学输运与反应流第十二章、污染形成模型第十三章、相变模拟第十四章、多相流模型第十五章、动坐标系下的流动第十六章、解算器的使用第十七章、网格适应第十八章、数据显示与报告界面的产生第十九章、图形与可视化第二十章、Alphanumeric Reporting 第二十一章、流场函数定义第二十二章、并行处理第二十三章、自定义函数第二十四章、参考向导第二十五章、索引( Bibliograp)hy 第二十六章、命令索引II、如何使用该教程概述本教程主要介绍了FLUEN的使用,其中附带了相关的算例,从而能够使每一位使用者在学习的同时积累相关的经验。
本教程大致分以下四个部分:第一部分包括介绍信息、用户界面信息、文件输入输出、单位系统、网格、边界条件以及物理特性。
第二和第三部分包含物理模型,解以及网格适应的信息。
第四部分包括界面的生成、后处理、图形报告、并行处理、自定义函数以及FLUEN所使用的流场函数与变量的定义。
下面是各章的简略概括第一部分:z 开始使用:本章描述了FLUEN的计算能力以及它与其它程序的接口。
介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。
在本章中,我们给出了一个可以在你自己计算机上运行的简单的算例。
z 使用界面:本章描述了用户界面、文本界面以及在线帮助的使用方法。
同时也提供了远程处理与批处理的一些方法。
(请参考关于特定的文本界面命令的在线帮助)z 读写文件:本章描述了FLUENT以读写的文件以及硬拷贝文件。
z单位系统:本章描述了如何使用FLUENTS提供的标准与自定义单位系统。
z 读和操纵网格:本章描述了各种各样的计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale、分区(partition等方法对网格的修改。
FLUENT中文全教程

FLUENT中文全教程1.FLUENT简介2.安装和启动FLUENT3.建立几何模型在FLUENT中,可以使用多种方法来建立几何模型,包括导入现有的CAD文件、绘制单个几何体或使用几何建模工具。
建立几何模型时,应注意几何的准确性和合理性。
4.网格生成几何模型建立好后,需要生成网格。
FLUENT提供了多种网格生成工具,可以根据需要选择合适的方法。
生成的网格应该具有一定的精度和合适的网格尺寸,以确保计算结果的准确性。
5.设置物理模型在开始计算之前,需要设置相应的物理模型。
FLUENT支持多种物理模型,包括流体流动、传热、化学反应等。
根据实际问题选择合适的物理模型,并进行相应的设定。
6.边界条件在FLUENT中,需要为模型的各个边界设置适当的边界条件。
边界条件描述了流体在该边界上的运动规律和特性。
根据实际问题选择合适的边界条件,并进行相应的设定。
7.数值求解器数值求解器是FLUENT中的核心组件,用于求解流体流动、传热和化学反应等方程。
FLUENT提供了多种数值求解器,可以根据问题类型和计算精度选择合适的求解器。
8.设置求解控制参数在开始求解之前,需要设置一些求解控制参数,包括迭代次数、收敛准则和时间步长等。
这些参数的设定直接影响到求解的精度和计算效率。
9.运行计算所有设置和参数设定完成后,可以开始运行计算。
FLUENT会自动根据设置进行迭代计算,直到满足设定的收敛准则为止。
计算时间的长短取决于模型的复杂程度和计算机性能。
10.结果分析计算完成后,可以对计算结果进行分析和后处理。
FLUENT提供了丰富的后处理工具,可以可视化流场、温度场和压力场等信息,并进行数据提取和报告生成。
11.优化和改进根据分析结果,可以对模型进行优化和改进。
可以调整边界条件、网格密度和物理模型等,进一步提高计算精度和计算效率。
12.汇报和展示最后,根据实际需要,可以将计算结果进行汇报和展示。
可以生成图片、动画和报告,以便更好地与他人交流和分享。
FLUENT中文全教程

FLUENT 教程赵玉新I、目录第一章、开始第二章、操作界面第三章、文件的读写第四章、单位系统第五章、读入和操作网格第六章、边界条件第七章、物理特性第八章、基本物理模型第九章、湍流模型第十章、辐射模型第十一章、化学输运与反应流第十二章、污染形成模型第十三章、相变模拟第十四章、多相流模型第十五章、动坐标系下的流动第十六章、解算器的使用第十七章、网格适应第十八章、数据显示与报告界面的产生第十九章、图形与可视化第二十章、Alphanumeric Reporting第二十一章、流场函数定义第二十二章、并行处理第二十三章、自定义函数第二十四章、参考向导第二十五章、索引(Bibliography)第二十六章、命令索引II、如何使用该教程概述本教程主要介绍了FLUENT 的使用,其中附带了相关的算例,从而能够使每一位使用者在学习的同时积累相关的经验。
本教程大致分以下四个部分:第一部分包括介绍信息、用户界面信息、文件输入输出、单位系统、网格、边界条件以及物理特性。
第二和第三部分包含物理模型,解以及网格适应的信息。
第四部分包括界面的生成、后处理、图形报告、并行处理、自定义函数以及FLUENT 所使用的流场函数与变量的定义。
下面是各章的简略概括第一部分:z开始使用:本章描述了FLUENT 的计算能力以及它与其它程序的接口。
介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。
在本章中,我们给出了一个可以在你自己计算机上运行的简单的算例。
z使用界面:本章描述了用户界面、文本界面以及在线帮助的使用方法。
同时也提供了远程处理与批处理的一些方法。
(请参考关于特定的文本界面命令的在线帮助)z读写文件:本章描述了FLUENT 可以读写的文件以及硬拷贝文件。
z单位系统:本章描述了如何使用FLUENT 所提供的标准与自定义单位系统。
z读和操纵网格:本章描述了各种各样的计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
了一个可以在你自己计算机上运行的简单的算例。 z 使用界面:本章描述了用户界面、文本界面以及在线帮助的使用方法。同时也提供了远 程处理与批处理的一些方法。 (请参考关于特定的文本界面命令的在线帮助) z 读写文件:本章描述了 FLUENT 可以读写的文件以及硬拷贝文件。 z 单位系统:本章描述了如何使用 FLUENT 所提供的标准与自定义单位系统。 z 读和操纵网格: 本章描述了各种各样的计算网格来源, 并解释了如何获取关于网格的诊 断信息,以及通过尺度化(scale) 、分区(partition)等方法对网格的修改。本章还描述 了非一致(nonconformal)网格的使用. z 边界条件:本章描述了 FLUENT 所提供的各种类型边界条件,如何使用它们,如何定 义它们 and how to define boundary profiles and volumetric sources. z 物理特性:本章描述了如何定义流体的物理特性与方程。FLUENT 采用这些信息来处 理你的输入信息。 第二部分: z 基本物理模型:本章描述了 FLUENT 计算流体流动和热传导所使用的物理模型(包括 自然对流、周期流、热传导、swirling、旋转流、可压流、无粘流以及时间相关流) 。以 及在使用这些模型时你需要输入的数据,本章也包含了自定义标量的信息。 z 湍流模型:本章描述了 FLUENT 的湍流模型以及使用条件。 z 辐射模型:本章描述了 FLUENT 的热辐射模型以及使用条件。 z 化学组分输运和反应流: 本章描述了化学组分输运和反应流的模型及其使用方法。 本章 详细的叙述了 prePDF 的使用方法。 z 污染形成模型:本章描述了 NOx 和烟尘的形成的模型,以及这些模型的使用方法。 第三部分: z 相变模拟:本章描述了 FLUENT 的相变模型及其使用方法。 z 离散相变模型:本章描述了 FLUENT 的离散相变模型及其使用方法。 z 多相流模型:本章描述了 FLUENT 的多相流模型及其使用方法。 z Flows in Moving Zones(移动坐标系下的流动) :本章描述了 FLUENT 中单一旋转坐标 系,多重移动坐标系,以及滑动网格的使用方法。 z Solver 的使用:本章描述了如何使用 FLUENT 的解法器(solver) 。 z 网格适应:本章描述了 explains the solution-adaptive mesh refinement feature in FLUENT and how to use it 第四部分: z 显示和报告数据界面的创建:本章描述了 explains how to create surfaces in the domain on which you can examine FLUENT solution data z 图形和可视化:本章描述了检验 FLUENT 解的图形工具 z Alphanumeric Reporting:本章描述了如何获取流动、力、表面积分以及其它解的数据。 z 流场函数的定义:本章描述了如何定义 FLUENT 面板内出现的变量选择下拉菜单中的 流动变量,并且告诉我们如何创建自己的自定义流场函数。 z 并行处理:本章描述了 FLUENT 的并行处理特点以及使用方法 z 自定义函数:本章描述了如何通过用户定义边界条件,物理性质函数来形成自己的 FLUENT 软件。 如何使用该手册 z 根据你对 CFD 以及 FLUENT 公司的熟悉,你可以通过各种途径使用该手册 对于初学者,建议如下:
图一:基本程序结构 我们可以用 GAMBIT 产生所需的几何结构以及网格(如想了解得更多可以参考 GAMBIT 的帮助文件,具体的帮助文件在本光盘中有,也可以在互联网上找到) ,也可以在 已知边界网格(由 GAMBIT 或者第三方 CAD/CAE 软件产生的)中用 Tgrid 产生三角网格, 四面体网格或者混合网格,详情请见 Tgrid 用户手册。也可能用其他软件产生 FLUENT 所 需 要 的 网 格 , 比 如 ANSYS(Swanson Analysis Systems, Inc.) 、 I-DEAS (SDRC) ; 或 者 MSC/ARIES,MSC/PATRAN 以及 MSC/NASTRAN (都是 MacNeal-Schwendler 公司的软件)。 与其他 CAD/CAE 软件的界面可能根据用户的需要酌情发展, 但是大多数 CAD/CAE 软件都 可以产生上述格式的网格。 一旦网格被读入 FLUENT,剩下的任务就是使用解算器进行计算了。其中包括,边界 条件的设定,流体物性的设定,解的执行,网格的优化,结果的查看与后处理。 PreBFC 和 GeoMesh 是 FLUENT 前处理器的名字, 在使用 GAMBIT 之前将会用到它们。 对于那些还在使用这两个软件的人来说,在本手册中,你可以参考 preBFC 和 GeoMesh 的 详细介绍。 本程序的能力 FLUENT 解算器有如下模拟能力: z 用非结构自适应网格模拟 2D 或者 3D 流场,它所使用的非结构网格主要有三角形/五边 形、四边形/五边形,或者混合网格,其中混合网格有棱柱形和金字塔形。 (一致网格和 悬挂节点网格都可以) z 不可压或可压流动 z 定常状态或者过渡分析 z 无粘,层流和湍流 z 牛顿流或者非牛顿流 z 对流热传导,包括自然对流和强迫对流 z 耦合热传导和对流 z 辐射热传导模型 z 惯性(静止)坐标系非惯性(旋转)坐标系模型 z 多重运动参考框架,包括滑动网格界面和 rotor/stator interaction modeling 的混合界面 z 化学组分混合和反应,包括燃烧子模型和表面沉积反应模型 z 热,质量,动量,湍流和化学组分的控制体源 z 粒子,液滴和气泡的离散相的拉格朗日轨迹的计算,包括了和连续相的耦合 z 多孔流动 z 一维风扇/热交换模型 z 两相流,包括气穴现象 z 复杂外形的自由表面流动 上述各功能使得 FLUENT 具有广泛的应用,主要有以下几个方面 z Process and process equipment applications z 油/气能量的产生和环境应用 z 航天和涡轮机械的应用 z 汽车工业的应用 z 热交换应用 z 电子/HVAC/应用 z 材料处理应用 z 建筑设计和火灾研究
z
ቤተ መጻሕፍቲ ባይዱ
第一章 开始 赵玉新(国防科技大学航天学院) 注意:此文只用于流体力学的教学和科学研究,如若涉及到版权问题请于本人联系。 本章对 FLUENT 做了大致的介绍,其中包括:FLUENT 的计算能力,解决问题时的指 导,选择解的形式。为了便于理解,我们在本章演示了一个简单的例子,该例子的网格文件 在安装光盘中已准备好。 引言 FLUENT 是用于模拟具有复杂外形的流体流动以及热传导的计算机程序。它提供了完 全的网格灵活性,你可以使用非结构网格,例如二维三角形或四边形网格、三维四面体/六 面体/金字塔形网格来解决具有复杂外形的流动。甚至可以用混合型非结构网格。它允许你 根据解的具体情况对网格进行修改(细化/粗化) 。 对于大梯度区域,如自由剪切层和边界层,为了非常准确的预测流动,自适应网格是非 常有用的。与结构网格和块结构网格相比,这一特点很明显地减少了产生“好”网格所需要 的时间。对于给定精度,解适应细化方法使网格细化方法变得很简单,并且减少了计算量。 其原因在于:网格细化仅限于那些需要更多网格的解域。 FLUENT 是用 C 语言写的,因此具有很大的灵活性与能力。因此,动态内存分配,高 效数据结构,灵活的解控制都是可能的。除此之外,为了高效的执行,交互的控制,以及灵 活的适应各种机器与操作系统,FLUENT 使用 client/server 结构,因此它允许同时在用户桌 面工作站和强有力的服务器上分离地运行程序。 在 FLUENT 中,解的计算与显示可以通过交互界面,菜单界面来完成。用户界面是通 过 Scheme 语言及 LISP dialect 写就的。高级用户可以通过写菜单宏及菜单函数自定义及优 化界面。 程序结构 该 FLUENT 光盘包括:FLUENT 解算器;prePDF,模拟 PDF 燃烧的程序;GAMBIT, 几 何图形模拟以及网格生成的预处理程序;TGrid, 可以从已有边界网格中生成体网格的附加 前处理程序; filters (translators)从 CAD/CAE 软件如: ANSYS, I-DEAS, NASTRAN, PATRAN 等的文件中输入面网格或者体网格。图一所示为以上各部分的组织结构。注意:在 Fluent 使用手册中 "grid" 和 "mesh"是具有相同所指的两个单词
FLUENT 教程 赵玉新
I、目录 第一章、开始 第二章、操作界面 第三章、文件的读写 第四章、单位系统 第五章、读入和操作网格 第六章、边界条件 第七章、物理特性 第八章、基本物理模型 第九章、湍流模型 第十章、辐射模型 第十一章、化学输运与反应流 第十二章、污染形成模型 第十三章、相变模拟 第十四章、多相流模型 第十五章、动坐标系下的流动 第十六章、解算器的使用 第十七章、网格适应 第十八章、数据显示与报告界面的产生 第十九章、图形与可视化 第二十章、Alphanumeric Reporting 第二十一章、流场函数定义 第二十二章、并行处理 第二十三章、自定义函数 第二十四章、参考向导 第二十五章、索引(Bibliography) 第二十六章、命令索引 II、如何使用该教程 概述 本教程主要介绍了 FLUENT 的使用,其中附带了相关的算例,从而能够使每一位使用 者在学习的同时积累相关的经验。本教程大致分以下四个部分:第一部分包括介绍信息、用 户界面信息、文件输入输出、单位系统、网格、边界条件以及物理特性。第二和第三部分包 含物理模型,解以及网格适应的信息。第四部分包括界面的生成、后处理、图形报告、并行 处理、自定义函数以及 FLUENT 所使用的流场函数与变量的定义。 下面是各章的简略概括 第一部分: z 开始使用:本章描述了 FLUENT 的计算能力以及它与其它程序的接口。介绍了如何对 具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。在本章中,我们给出
为了对 FLUENT 的计算能力以及启动方式有所了解,最好是阅读“开始”这一章。本 章为你提供了选择解形式的建议, 同时为你提供了一个简单的自学教程, 在该教程中我 们使用 FLUENT 解决了一个简单的问题。 z 要想知道如何使用界面与远程控制,请参阅“使用界面”一章 z 读写文件的方法在“读写文件”一章 z 在开始解决问题之前我们需要输入网格, 要想知道如何输入及检查网格请参阅 “读与操 纵网格”一章。要想知道解适应过程,请参阅“网格适应”一章 z 选择物理模型请参阅“基本物理模型—动坐标系下的流动” z 对于边界条件的信息请参阅“边界条件”一章。对于流体性质请参阅“物理特性”一章 z 设定解的参数请参阅“Using the Solver”一章 z 显示和分析结果请参阅“数据显示和数据报告界面的创建—-Alphanumeric Reporting” 一章 z 检查 FLUENT 中流动变量的定义请参阅“流场函数定义”一章 z 关于 FLUENT 并行计算解请参阅“并行处理”一章 z 关于如何使用 FLUENT 的在线帮助请参阅“用户界面”一章 z 对于特定的问题和你所要使用的工具,请查阅相关内容的列表以及索引 对于有经验的使用者,建议如下: 如果你是一个有经验的使用者, 只需要查找一些特定的信息, 那么有三种不同的方法供 你使用该手册。 目录列表和主题列表是按程序顺序排列的, 从而使你能够按照特定程序的步 骤查找相关资料。本手册为你提供了两个不同的索引:一、命令索引,该索引为你提供特定 了面板和文本命令的使用方法。二、分类索引,该索引为你提供了特定类别的信息(在线帮 助中没有此类索引,只能在印刷手册中找到它) 。 本手册的排版协定 为了方便用户的学习,本教程有几个约定成俗的排版协定。 z 在下拉菜单中进入控制面板的过程我们采用 "/"。例如, Define/Materials..告诉我 们在 Define 下拉菜单中选择 Materials...。 z 因尚未翻译完全,其它排版情况待定。 什么时候使用 Support Engineer Support Engineer 能够帮助你计划你的 CFD 模型工程并为你解决在使用 FLUENT 中所 遇到的困难。在遇到困难时我们建议你使用 Support Engineer。但是在使用之前有以下几个 注意事项: z 仔细阅读手册中关于你使用并产生问题的命令的信息 z 回忆导致你产生问题的每一步 z 如果可能的话,请记下所出现的错误信息 z 对于特别困难的问题,保存 FLUENT 出现问题时的日志以及手稿。在解决问题时,它 是最好的资源。