2019高考数学专题题库及解析 附加题(BC)

合集下载

2019年高考数学真题及答案(含全国1卷,全国2卷,全国3卷共3套)

2019年高考数学真题及答案(含全国1卷,全国2卷,全国3卷共3套)

绝密★启用前 全国卷Ⅰ2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A . B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为A .B .C . D二、填空题:本题共4小题,每小题5分,共20分。

2019年高考数学试题(带答案)

2019年高考数学试题(带答案)
共有_____________种.(用数字填写答案)
19.已知 OA 1 , OB 3 , OA • OB 0 ,点 C 在 AOB 内,且 AOC 30 ,设
OC
mOA
nOB

(m,
n
R)
,则
m n
__________.
20.若函数 f (x) x2 x 1 a ln x 在 (0, ) 上单调递增,则实数 a 的最小值是
附:参考数据与公式 6.92 2.63 ,若 X ~ N , 2 ,则①
P( X ) 0.6827 ;② P( 2 X 2 ) 0.9545;③ P( 3 X 3 ) 0.9973 . (1)根据频率分布直方图估计 50 位农民的年平均收入 x (单位:千元)(同一组数据用
A. 2
B. 3
C. 2 2
D. 3 2
6.若干年前,某教师刚退休的月退休金为 6000 元,月退休金各种用途占比统计图如下面
的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折
线图.已知目前的月就医费比刚退休时少 100 元,则目前该教师的月退休金为( ).
A.6500 元
2019 年高考数学试题(带答案)
一、选择题
1.如图,点 是抛物线
的焦点,点 , 分别在抛物线 和圆
线部分上运动,且 总是平行于 轴,则
周长的取值范围是( )
的实
A.
B.
ห้องสมุดไป่ตู้C.
D.
2. 1
1 x2
1
x6 展开式中
x2
的系数为(

A.15
B.20
C.30
D.35
3.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.

2019年高考数学试卷(带答案)

2019年高考数学试卷(带答案)
A.直角三角形
B.钝角三角形
C.等边三角形
D.等腰三角形但不是等边三角形.
11.已知 ,函数 ,若函数 恰有三个零点,则( )
A. B.
C. D.
12.已知 是非零向量且满足 , ,则 与 的夹角是()
A. B. C. D.
二、填空题
13.已知曲线 在点 处的切线与曲线 相切,则a=.
14.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.
附:参考数据与公式 ,若 ,则① ;② ;③ .
(1)根据频率分布直方图估计50位农民的年平均收入 (单位:千元)(同一组数据用该组数据区间的中点值表示);
(2)由频率分布直方图可以认为该贫困地区农民年收入X服从正态分布 ,其中 近似为年平均收入 近似为样本方差 ,经计算得: ,利用该正态分布,求:
故选:B
【点睛】
本题主要考查了长方体的外接球的性质,以及球的表面积的计算,其中解答中熟练应用长方体的对角线长等于其外接球的直径,求得球的半径是解答的关键,着重考查了运算与求解能力,属于基础题.
2.C
解析:C
2019年高考数学试卷(带答案)
一、选择题
1.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )
A. B. C. D.都不对
2.下列函数图像与x轴均有公共点,其中能用二分法求零点的是( )
A. B. C. D.
3. 展开式中的常数项为()
A.80B.-80C.40D.-40
17.已知 , , ,且 ,则 的最小值为_________.

2019年全国高考试题数学江苏卷附答案详解

2019年全国高考试题数学江苏卷附答案详解

2019年全国高考试题数学江苏卷I 卷一、填空题1.已知集合{1,0,1,6}A =-,{|0,}B x x x R =>∈,则A B = .答案:{1,6}2.已知复数(2)(1)a i i ++的实部为0,其中i 为虚数单位,则实数a 的值是 . 答案:23.右图是一个算法流程图,则输出的S 的值是 . 答案:54.函数y =的定义域是 . 答案:{1,7}-5.已知一组数据6,7,8,9,10,则该组数据的方差是 . 答案:536.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 . 答案:7107.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 .答案:y = 解析:由题知0,11692>=-b b,所以2=b,所以渐近线方程为y = 8.已知*{|()}n a n N ∈是等差数列,n S 是其前n 项和,若2340a a a +=,427S =,则n S 的值是 . 答案:169.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E BCD -的体积是 . 答案:10解析:因为121212131313111=⨯⨯===∆∆-C C EC S S C C S ECS VV ABCD BCD ABCD BCD BCDE10120121121=⨯==-V V BCD E10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点, 则点P 到直线0x y +=的距离的最小值是 .答案:4解析:由题设)4,(xx x P +,0>x 所以424222422|4|=⋅≥+=++=x x x x x x x d11.在平面直角坐标系xOy 中,点A 在曲线ln y x =上,且该曲线在点A 处的切线经过点(,1)e --(e 为自然对数的底数),则点A 的坐标是 . 答案:(,1)e12.如图,在ABC ∆中,D 是BC 的中点,E 在边AB 上,2BE EA =,AD 与CE 交于点O ,若6AB AC AO EC ⋅=⋅,则ABAC的值是 .13.已知tan 23tan()4απα=-+,则sin(2)4πα+的值是 .答案:10解析: 法一32tan 1)tan 1(tan )4tan(tan -=+-=+αααπαα,解得2tan =α或31-ααααααααπα2222cos sin sin cos cos sin 22)2cos 2(sin 22)42sin(+-+=+=+102tan 1tan 1tan 2222=+-+=ααα 法二 令y x =+=4,παα,则y tan 2tan 3-=α,22)sin(=-x y 则,cos sin 2cos sin 3x y y x -=22sin cos cos sin =-x y x y解得1023sin cos ,52cos sin =-=y x y x 则102sin cos cos sin )42sin(=+=+y x y x πα 14.设()f x ,()g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数,当(0,2]x ∈时,()f x =(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中0k >,若在区间(0,9]上,关于x 的方程()()f x g x =有8不同的实数根,则k 的取值范围是 .答案:1[3解析:当]2,0(∈x 时,2)1(1)(--==x x f y 等价于)0(1)1(22≥=+-y y x又)(x f 是周期为4的奇函数,可作出)(x f 在(0.9]上的图象 因为当]2,1(∈x 时,21)(-=x g 且)(x g 的周期为2由图可知:当]8,7(]6,5(]4,3(]2,1(⋃⋃⋃∈x 时, )(x f 与)(x g 的图象有2个交点 由已知, )(x f 与)(x g 的图象在区间(0,9]上有8个交点所以当]9,8(]7,6(]5,4(]3,2(]1,0(⋃⋃⋃⋃∈x 时, )(x f 与)(x g 的图象有6个交点 又当]1,0(∈x 时,)2()(+==x k x g y 表示的直线恒过定点)0,2(-A ,且斜率0>k又)(x g 的周期为2及)(x f 的图象可知:当]7,6(]3,2((⋃∈x 时, )(x f 与)(x g 的图象无交点 所以当]9,8(]5,4(]1,0(⋃⋃∈x 时, )(x f 与)(x g 的图象有6个交点 由)(x f 与)(x g 的周期性可知]1,0(∈x 时, )(x f 与)(x g 的图象有2个交点如图,当线段)10)(2(≤<+=x x k y 与圆弧)10,0(1)1(22≤<≥=+-x y y x 相切时8111|3|22=⇒=+=k k k d 又0>k .所以42=k (此时恰有1个交点) 当线段)10)(2(≤<+=x x k y 过点B(1、1)时,31==AB k k (此时恰有2个交点) 结合图形分析可知:k 的取值范围是)42,31[ 二、解答题15.在ABC D 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若3a c =,b =2cos 3B =,求c 的值; (2)若sin cos 2A B a b =,求sin()2B p+的值. 解答:(1)22222222cos 292363b ac ac B c c c c c c=+-?+-创??(2)sin cos cos sin 22A B BB a b ===,sin()cos 2B B p +==16.如图,在直三棱柱111ABC A B C -中,D ,E 分别为BC ,AC 的中点,AB BC =.求证:(1)11//A B 平面1DEC ; (2)1BE C E ^. 解答:(1)证明:“直三棱柱111ABC A B C -,∴四边形11ABB A 是平行四边形,∴11//A B AB又∵D 、E 分别是BC 、AC 的中点,//DE AB ,∴11//A B DE , 又DE Ì平面1DEC ,111A B DEC Ë, ∴11//A B 平面DEC .(2)证明:∵直三棱柱111ABC A B C -,.∴1AA ^平面ABC ,又∵BE Ì平面ABC ,∴1AA BE ^,又∵AB BC =,E 是AC 的中点,∴AC BE ^,∵1AC AA A =I ,AC Ì平面11ACC A ,1AA Ì平面11ACC A , ∴BE ^平面11ACC A ,又1EC Ì平面11ACC A ,∴1BE C E ^.17.如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的焦点为(1,0)F -,2(1,0)F .过2F 作x 轴的垂线l ,在x 轴的上方,l 与圆2222:(1)4F x y a -+=交于点A ,与椭圆C 交于点D .连结AG ,并延长交圆2F 于点B ,连结2BF 交椭圆C 于点E ,连结DF .已知152DF =. (1)求椭圆C 的标准方程; (2)求点E 的坐标.解:(1)设椭圆C 的焦距为2c因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c=1.又因为DF 1=25,AF 2⊥x 轴,所以23221212=-=F F DF DF 因此2a=DF 1+DF 2=4,从而a=2;由b 2=a 2-c 2,得b 2=3因此,椭圆C 的标准方程为13422=+y x (2)解法一 由(1)知,椭圆13422=+y x ,a=2 因为AF 2⊥x 轴,所以点A 的横坐标为1.将x=1代入圆F2的方程(x-1)2+y2=16,解得y=±4因为点A 在x 轴上方,所以A(1,4);又F 1(-1,0),所以直线AF 1:y=2x+2由⎩⎨⎧=+-+=16)1(2222y x x y 得5x 2+6x-11=0,解得x=1或511-=x 将511-=x 代入22+=x y ,得 512-=y ,因此)512,511(--B 又F 2(1,0),所以直线BF 2:)1(43--=x y由()⎪⎪⎩⎪⎪⎨⎧=+-=13414322y x x y ,得013672=--x x ,解得1-=x 或713=x ,又因为E 是线段2BF 与椭圆的交点,所以1-=x ,将1-=x 代入)1(43-=x y ,得23-=y ,因此,⎪⎭⎫ ⎝⎛--23,1E解法二 由(1)知,椭圆13422=+y x ,如图,连接1EF 因为a BF 22=,a EF EF 221=+ ,所以EB EF =1,从而.1B E BF ∠=∠因为B F A F 22=,所以B A ∠=∠,所以E BF A 1∠=∠,从而A F EF 21// , 因为x AF ⊥2轴,所以x EF ⊥1轴;因为()0,11-F ,由⎪⎩⎪⎨⎧=+-=134122y x x ,得23±=y ,又因为E 是线段2BF 与椭圆的交点,所以.23-=y 因此得又因为E 是线段BF2与椭圆的交点,所以3因此E(-1,-),由⎪⎭⎫ ⎝⎛--23,1E 18.如图、一个湖的边界是圆心为O 的绩、湖的一侧有一条直线型公路l 、湖上有桥AB (AB 是湖O 的直径)、规划在公路l 上选两个点P 、Q 、并修建两段直线的道路PB 、QA 、规划要求:线段PB 、QA 上的所有点O 的距离不小于圆O 的半径,已知点A ,8到直线l 的距离分为AC 和BD (C ,D 为垂足)(单位:百米)(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明雅由: (3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米),求当d 最小时,P 、Q 两点简的距离. 解答:解法一 (1)过A 作AE⊥B D,垂足为E.由已知条件得,四边形ACDE 为矩形,DE=BE=AC=6,AE=CD=8 因为PB⊥AB,所以os∠PBD=sin∠ABE=54108==,所以15cos =∠=PBDBD PB 因此道路PB 的长为15(百米)(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B.E)到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求若Q 在D 处,连结AD,由(1)知1022=+=ED AE AD ,从而0257AB 2AD cos 222>=⋅-+=∠ BD AB AD BAD所以∠BAD 为锐角所以线段AD 上存在点到点O 的距离小于圆O 的半径,因此Q 选在D 处也不满足规划要求 综上,P 和Q 均不能选在D 处 (3)先讨论点P 的位置当∠OBP<90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP≥90°时,对线段PB 上任意一点F,OF≥OB,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求 设1P 为l 上一点,且P 1B⊥AB由(1)知.P 1B=15.此时PD=P 1 B sin P 1BD=P 1Bcos∠EBA=95315=⨯ 当∠OBP>90°时,在△PP 1B 中.PB>P 1B=15 可知,d≥15再讨论点Q 的位置由(2)知,要使得15≥QA ,点Q 只有位于点C 的右侧,才能符合规划要求 当QA=15时,21322=-=AC QA CQ ,此时,线段QA 上所有点到O 的距离均不小于圆O 的半径 综上,当PB⊥AB,点Q 位于点C 右侧,且213=CQ 时,d 最小, 此时PQ 两点间的距离21317+=++=CQ CD PD PQ 因此, d 最小时,PQ 两点间的距离为21317+ (百米) 解法二 (1)如图,过O 作OH⊥l ,垂足为H以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系因为BD=12,AC=6,所以OH=9,直线l 的方程为9=y ,点A.B 的纵坐标分别为3,-3 因为AB 为圆O 的直径,AB=10.所以圆O 的方程为25y x 22=+ 从而A(4,3),B(-4,-3),直线AB 的斜率为43 因为PB⊥AB,所以直线PB 的斜率为34-直线PB 的方程为32534--=x y所以P(-13,9),153)(94)(-1322=+++=PB因此道路PB 的长为15(百米)(2)①若P 在D 处,取线段BD 点一点)0,4(-E ,则EO=4<5,故P 选在D 处不满足规划要求 ②若Q 在D 处,连结AD,由(1)知D(-4,9) A(4,3),所以线段AD:)44(643≤≤-+-=x x y 在线段AD 上取点)415,3(M ,因为543)415(32322=+<+=OM所以线段AD 上存在点到点O 的距离小于圆O 的半径,因此Q 选在D 处也不满足规划要求综上,P 和Q 均不能选在D 处 (3)先讨论点P 的位置当∠OBP<90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP≥90°时,对线段PB 上任意一点F 、OF≥OB,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求设1P 为l 上一点,且P 1B⊥AB ,由(1)知.P 1B=15.此时PD=P 1 B sin P 1BD=P 1Bcos∠EBA=95315=⨯ 当∠OBP>90°时,在△PP 1B 中.PB>P 1B=15 可知,d≥15再讨论点Q 的位置由(2)知,要使得15≥QA ,点Q 只有位于点C 的右侧,才能符合规划要求 当QA=15时,21322=-=AC QA CQ ,此时,线段QA 上所有点到O 的距离均不小于圆O 的半径 综上,当PB⊥AB,点Q 位于点C 右侧,且213=CQ 时,d 最小, 此时PQ 两点间的距离21317+=++=CQ CD PD PQ 因此, d 最小时,PQ 两点间的距离为21317+ (百米) 19.设函数))()(()(c x b x a x x f ---=,)('x f 为()f x 的导函数. (1)若a b c ==,(4)8f =,求a 的值;(2)若a b ¹,b c =,且()f x 和()f x ¢的零点均在集合{3,1,3}-中,求()f x 的极小值; (3)若0a =,01b <?,1c =,且()f x 的极大值为M ,求证:427M <. 解答:(1)易知3()()f x x a =-,由8)4(=f 解得4=a . (2)易知2()()()f x x a x b =--, )32)((3)('ba xb x x f +--= 令0)('=x f 得32,ba xb x +== 由}3,1,3{32,,-∈+b a b a 易知213a b+=,则3a =,3b =-, 则2()(3)(3)f x x x =-+,=)('x f 3(3)(1)f x x x ¢=+-,0)('=x f 得1,3-=x所以()f x 的极小值为(1)32f =-(3)可知()(1)()f x x x x b =--,b x b x x f ++-=)1(23)('2因为10≤<b ,所以03)12(2>+-=∆b所以)('x f 有两个不同的零点,设为)(,,2121x x x x <311,3112221+-++=+--+=b b b x b b b x所以)(x f 的极大值)(1x f M = 法一:121311)1()(bx x b x x f M ++-==9)1(9)1(2)913)()1(23(121121+++-+-++-=-b b x b b b x b x b x322)1(2729)1(27)1)(1(2++++++-=--b b b b b b b322)1(27227)1()1(227)1(+++-++=-b b b b b b27427227)1(≤++≤b b 法二:因为10≤<b ,所以)1,0(1∈x当)1,0(1∈x 时,2)1()1)(()(-≤--=x x x b x x x f 令2)1()(-=x x x g ,)1,0(1∈x ,)1)(31(3)('--=x x x g 由0)('=x g 得31=x所以31=x 时,)(x g 的极大值即最大值274)31()(max ==g x g所以)1,0(∈x 时,274)()(≤≤x g x f ,因此274≤M 法三:①当1b =时,2()(1)f x x x =-, =)('(31)(1)f x x x ¢=--,此时易知14()327M f ==,成立; ②当01b <<时;32()(1)f x x b x bx =-++,=)('x f 2()32(1)f x x b x b ¢=-++,由于(0)0f b ->,031)31('<-=b f ,01)1('>-=b f (1)10f b ¢=->, 则存在121013x x <<<<,0)(')('21==x f x f ,且易知1()M f x =, 由=)('x f 221111132()32(1)021x x f x x b x b x -¢=-++=?-, 则223232111121111111113232()(1)(1)2121x x x x M f x x b x bx x x x x x --==-++=-++--22111(1)12x x x -=-, 令1112(,1)3t x =-?,则22422111(1)12111(2)121616x x t t t t x t t--+==-+-.令211()(2)16g t t t t =-+,1(,1)3t Î,)('t g 2221(31)(1)()(0)16t t g t t --¢=<, 则14()()327g t f <=,则427M <; 综上可知427M <成立,证毕. 20.定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列*{}()n a n N Î满足:245a a a =,321440a a a -+=,求证:数列{}n a 为“M 一数列”;(2)已知数列*{}()n b a N Î满足:11b =,1122n n n S b b +=-,其中n S 为数列{}n b 的前n 项和. ①求数列{}n b 的通项公式:②设m 为正整数,若存在“M -数列”*{}()n c n N Î、对任意正整数k 、当k m £时,都有1k kk c b c +#成立,求m 的最大值.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”. (2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0.因为c k ≤b k ≤c k +1,所以1k kq k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e.列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==.取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k q k -≤也成立. 因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵3122⎡⎤=⎢⎥⎣⎦A (1)求A 2;(2)求矩阵A 的特征值.本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分10分. 解:(1)因为3122⎡⎤=⎢⎥⎣⎦A , 所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A=3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦. (2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==. B.[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭. (1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:(1)设极点为O .在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB =(2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin()242ππ⨯-=. C.[选修4-5:不等式选讲](本小题满分10分) 设x ∈R ,解不等式||+|2 1|>2x x -.本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分. 解:当x <0时,原不等式可化为122x x -+->,解得x <-13; 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N ….已知23242a a a =.(1)求n 的值;(2)设(1na =+*,ab ∈N ,求223a b -的值.本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力解:(1)因为0122(1)C C C C 4n n n n n n n x x x x n +=++++≥,, 所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====,44(1)(2)(3)C 24n n n n n a ---==.因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n =02233445555555C C C C C C =++++a =+解法一:因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-. 解法二:50122334455555555(1C C (C (C (C (C (=+++++02233445555555C C C C C C =--+-. 因为*,a b ∈N,所以5(1a =-.因此225553((1(1(2)32a b a a -=+-=⨯-=-=-. 23.(本小题满分10分)在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n *==∈N令n nn n M A B C =.从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1)当n =1时,求X 的概率分布;(2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示).本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.解:(1)当1n =时,X的所有可能取值是12.X的概率分布为22667744(1),(C 15C 15P X P X ======,22662222(2),(C 15C 15P X P X ======. (2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况. ①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则AB =≤,所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法;③若02b d ==,,则AB =≤因为当3n ≥n ≤,所以X n >当且仅当AB ,此时0 a c n ==,或 0a n c ==,,有2种取法; ④若12b d ==,,则AB =≤,所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法.综上,当X n >时,X22242442(,(C C n n P X P X ++====.因此,2246()1((1C n P X n P X P X +≤=-=-==-.。

2019年高考数学试题(附答案)

2019年高考数学试题(附答案)

2019年高考数学试题(附答案)2019年高考数学试题是许多学生备战高考的重要参考资料。

在这份试题中,涵盖了数学的各个方面,包括代数、几何、概率与统计等。

这些试题不仅考察了学生对数学知识的掌握程度,也考察了他们的逻辑思维能力和解决问题的能力。

下面我们将对2019年高考数学试题进行详细分析,并附上相应的答案,希望能对广大学生有所帮助。

一、选择题部分。

1. 已知集合$A=\{x | -1\leq x\leq 3\}$,$B=\{x | 2\leq x\leq 4\}$,则$A\cap B$的元素个数为()。

A. 0B. 1C. 2D. 3。

解析,$A\cap B$表示集合A和集合B的交集,即同时属于A和B的元素组成的集合。

根据题意可知,$A\cap B=\{x | 2\leq x\leq 3\}$,所以$A\cap B$的元素个数为1,故选B。

2. 曲线$y=\ln x$和直线$y=x-2$的交点坐标为()。

A. (1, -1)B. (1, 1)C. (2, 0)D. (2, 1)。

解析,曲线$y=\ln x$和直线$y=x-2$的交点坐标即为满足方程$\ln x=x-2$的点的坐标。

通过计算可得,当x=2时,$\ln 2=2-2=0$,所以交点坐标为(2, 0),故选C。

3. 在$\triangle ABC$中,已知$\angle A=30^\circ$,$\angle B=45^\circ$,$AB=4$,则$AC$的长度为()。

A. $2\sqrt{2}$B. $2\sqrt{3}$C. $3\sqrt{2}$D. $4\sqrt{2}$。

解析,根据正弦定理可知,$\frac{AB}{\sin B}=\frac{AC}{\sin A}$,代入已知数据可得$AC=\frac{4\sin 30^\circ}{\sin 45^\circ}=2\sqrt{3}$,故选B。

4. 设随机变量X的概率密度函数为$f(x)=\begin{cases} kx^2 & 0<x<1 \\ 0 & others \end{cases}$,则k的值为()。

2019高考数学专题题库及解析 附加题(二项式定理、计数原理)

2019高考数学专题题库及解析 附加题(二项式定理、计数原理)

1.设函数(,)1(0,0)xm f x y m y y ⎛⎫=+>> ⎪⎝⎭. (1)当3m =时,求(6,)f y 的展开式中二项式系数最大的项;(2)若31240234(4,)a a a a f y a y y y y =++++且332a =,求40i i a =∑; (3)设n 是正整数,t 为正实数,实数t 满足(,1)(,)n f n m f n t =,求证:7(2010,)f f t >-.解:(1)展开式中二项式系数最大的项是第4项=33633540C y y ⎛⎫= ⎪⎝⎭; (2分) (2)431240234(4,)(1)a a a a m f y a y y y y y =++++=+,3334322a C m m ==⇒=, 4402(1)811i i a==+=∑; (5分) (3)由(,1)(,)n f n m f n t =可得2(1)(1)()n n n n m m m m m t t+=+=+,即21m m m m t +=+⇒=⇒201020101(1(1)1000f =+=+. 2341234201020102010201011114211227100010001000100033C C C C ⎛⎫⎛⎫⎛⎫>++++>++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭而1)11()1(),2010(20102010<+=+=---t t m t f ,所以原不等式成立. (10分) 2. 从函数角度看,组合数r n C 可看成是以r 为自变量的函数)(r f ,其定义域是{}n r N r r ≤∈,. (1)证明:)1(1)(-+-=r f rr n r f ; (2)利用(1)的结论,证明:当n 为偶数时,n b a )(+的展开式中最中间一项的二项式系数最大.23.(1)已知*k n ∈N 、,且k n ≤,求证:11C C kk n n k n --=;(2)设数列0a ,1a ,2a ,…满足01a a ≠,112i i i a a a -++=(i =1,2,3,…).证明:对任意的正整数n ,011222012()C (1)C (1)C (1)C n n n n n n n n n n p x a x a x x a x x a x --=-+-+-+⋅⋅⋅+是 关于x 的一次式.(1)证明:左边!!C !()!(1)!()!kn n n k k k n k k n k ==⋅=---, 右边(1)!!(1)!()!(1)!()!n n n k n k k n k -=⋅=----, 所以11C C kk n n k n --=;(3分)(2)证明:由题意得数列0a ,1a ,2a ,…为等差数列,且公差为100a a -≠.(5分)则011222012()C (1)C (1)C (1)C n n n n n n n n n n p x a x a x x a x x a x --=-+-+-+⋅⋅⋅+ [][]0110010010C (1)+()C (1)+()C n n n n n n n a x a a a x x a n a a x -=-+--+⋅⋅⋅+- 01111222010C (1)C (1)C ()C (1)+2C (1)C n n n n n n n n n n n n n n a x x x x a a x x x x n x ---⎡⎤⎡⎤=-+-+⋅⋅⋅++---+⋅⋅⋅+⎣⎦⎣⎦[]011211010111(1)()C (1)+C (1)C nn n n n n n n a x x a a nx x x x x -------⎡⎤=-++---+⋅⋅⋅+⎣⎦。

2019年高考真题——理科数学(北京卷)附答案解析

2019年高考真题——理科数学(北京卷)附答案解析

绝密★启用前
2019年普通高等学校招生全国统一考试(北京卷)
理科数学
本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)
一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知复数z=2+i,则z z
A. 3
B. 5
C. 3
D. 5
【答案】D
【解析】
【分析】
题先求得z,然后根据复数的乘法运算法则即得.
【详解】∵z2i,z z(2i)(2i)5故选D.
【点睛】本容易题,注重了基础知识、基本计算能力的考查.
2.执行如图所示的程序框图,输出的s值为
A. 1
B. 2
C. 3
D. 4。

【真题】2019年江苏省高考数学试题(含附加题+答案)

【真题】2019年江苏省高考数学试题(含附加题+答案)

15.(本小题满分 14 分) 在△ABC 中,角 A,B,C 的对边分别为 a,b,c.
(1)若 a=3c,b=
2
,cosB=
2
,求
c
的值;(2)若
sin
A
cos
B
,求
sin(B
)
的值.
3
a 2b
2
第 3 页 共 18 页
16.(本小题满分 14 分) 如图,在直三棱柱 ABC-A1B1C1 中,D,E 分别为 BC,AC 的中点,AB=BC. 求证:(1)A1B1∥平面 DEC1; (2)BE⊥C1E.
sin A sin B
2b b
从而 cos2 B (2sin B)2 ,即 cos2 B 4 1 cos2 B ,故 cos2 B 4 . 5
因为 sin B 0 ,所以 cos B 2sin B 0 ,从而 cos B 2 5 . 5
因此 sin
B
π 2
cos
B
25 5
.
16.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间 想象能力和推理论证能力.满分 14 分.
10.在平面直角坐标系 xOy 中,P 是曲线 y x 4 (x 0) 上的一个动点,则点 P 到直线 x+y=0 的距离的 x
最小值是 ▲ .
11.在平面直角坐标系 xOy 中,点 A 在曲线 y=lnx 上,且该曲线在点 A 处的切线经过点(-e,-1)(e 为自
然对数的底数),则点 A 的坐标是 ▲ .
置。 3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。 4.作答试题,必须用 0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。 5.如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。 参考公式:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(第21-C 题图)
已知圆C :22
1x y +=在矩阵0=(0,0)0a a b b ⎡⎤>>⎢⎥⎣⎦A 对应的变换作用下变为椭圆22
194x y +=,求a ,b 的值.
解:设(,)P x y 为圆C 上的任意一点,在矩阵A 对应的变换下变为另一个点(,)P x y ''',
则 00x a x y b y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦
,即,.x a x y b y '=⎧⎨'=⎩ …………………………………………………4分 又因为点(,)P x y '''在椭圆22194x y +=上,所以 2222
194a x b y +=. 由已知条件可知,221x y += ,所以 a 2=9,b 2=4.
因为 a >0 ,b >0,所以 a =3,b =2. ………………10分
C .选修4-4:坐标系与参数方程
在极坐标系中,求经过三点O (0,0),A (2,2π),B
(4
π) 的圆的极坐标方程.
解:设(,)P ρθ是所求圆上的任意一点,…………………3分 则cos()4
OP OB θπ=-,
故所求的圆的极坐标方程为)4ρθπ=-. …………10分

:cos()4ρθπ=-亦正确.
7. 变换T 是绕坐标原点逆时针旋转π2
的旋转变换,求曲线22221x xy y -+=在变换T 作用 下所得的曲线方程.
【解】变换T 所对应变换矩阵为0110-⎡⎤=⎢⎥⎣⎦M ,设x y ⎡⎤⎢⎥⎣⎦
是变换后图像上任一点,与之对应的变换前的点是00x y ⎡⎤⎢⎥⎣⎦
,则00x x y y ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦M ,即00,,y x x y =-⎧⎨=⎩,代入220000221x x y y -+=, 即22221x xy y ++=,
所以变换后的曲线方程为22221x xy y ++=. ………………… 10分
(第21-C 题答图)。

相关文档
最新文档