线性代数习题集含答案

合集下载

线性代数习题集带答案

线性代数习题集带答案

线性代数习题集带答案第一部分专项同步练习第一章行列式一、单项选择题1.下列排列是5阶偶排列的是().(A ) 24315 (B ) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B)k n - (C)k n -2! (D )k n n --2)1(3。

n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A ) 0 (B)1- (C) 1 (D ) 25. =0001100000100100()。

(A ) 0 (B)1- (C) 1 (D ) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是()。

(A ) 0 (B)1- (C ) 1 (D) 27。

若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D (). (A ) 4 (B) 4- (C) 2 (D ) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A )ka (B )ka - (C)a k 2 (D)a k 2- 9.已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-,则=x ( )。

(A) 0 (B )3- (C) 3 (D ) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( )。

(A)1- (B )2- (C )3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为().(A)1- (B )2- (C )3- (D )012。

最全线性代数习题及参考答案

最全线性代数习题及参考答案

第一章:一、填空题:1、若a a D ij n ==||,则=-=||ij a D ;解:a a a a a D aa a a a D n nnn nnnn nn )1(11111111-=----=∴==2、设321,,x x x 是方程03=++q px x 的三个根,则行列式132213321x x x x x x x x x = ; 解:方程023=+++d cx bx ax 的三个根与系数之间的关系为:a d x x x a c x x x x x x ab x x x ///321133221321-==++-=++所以方程03=++q px x 的三个根与系数之间的关系为:q x x x p x x x x x x x x x -==++=++3211332213210033)(3321221321333231132213321=--++-=-++=x x x q x x x p x x x x x x x x x x x x x x x3、行列式1000000019980001997002001000= ;解:原式按第1999行展开:原式=!19981998199721)1(0001998001997002001000219981999-=⨯⨯⨯-=+++4、四阶行列式4433221100000a b a b b a b a = ; 解:原式按第一行展开:原式=))(()()(000004141323243243214324321433221433221b b a a b b a a b b b b a a b a b b a a a a b a b b a b a a b b a a --=---=-5、设四阶行列式cdb a a cbda dbcd c ba D =4,则44342414A A A A +++= ;解:44342414A A A A +++是D 4第4列的代数余子式,44342414A A A A +++=0111111111111==d a c d d c c a bd b a c bdd b c c ba6、在五阶行列式中3524415312a a a a a 的符号为 ;解:n 阶行列式可写成∑-=n np p p ta a aD 2211)1(,其中t 为p 1p 2…p n 的逆序数所以五阶行列式中3524415312a a a a a 的符号为5341352412a a a a a 的符号,为1)1()1(5)3,1,5,4,2(-=-=-t7、在函数xx x xxx f 21112)(---=中3x 的系数是 ; 解:根据行列式结构,可知3x 须由a 11=2x ,a 33=x 和第二行的一个元素构成,但此时第三个元素只能取a 22(行、列数均不可重复),所以此式为3332211)3,2,1(2)1(x a a a t -=-,系数为-2。

线代参考答案(完整版)

线代参考答案(完整版)

线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 行列式的定义一.选择题1.若行列式x52231521- = 0,则=x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ C ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ C ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A D ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是 [ B ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,2 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。

线性代数试题及答案解析

线性代数试题及答案解析

线性代数试题及答案解析一、选择题(每题4分,共40分)1. 矩阵A和矩阵B相乘,得到的结果矩阵的行列数为()。

A. A的行数乘以B的列数B. A的行数乘以B的行数C. A的列数乘以B的列数D. A的列数乘以B的行数答案:D解析:矩阵乘法中,结果矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。

2. 向量α和向量β线性相关,则下列说法正确的是()。

A. α和β可以是零向量B. α和β可以是任意向量C. α和β中至少有一个是零向量D. α和β中至少有一个是另一个的倍数答案:D解析:线性相关意味着存在不全为零的系数,使得这些系数乘以对应的向量和为零向量,因此至少有一个向量是另一个向量的倍数。

3. 对于n阶方阵A,下列说法不正确的是()。

A. A的行列式可以是0B. A的行列式可以是负数C. A的行列式可以是正数D. A的行列式一定是正数答案:D解析:方阵的行列式可以是正数、负数或0,因此选项D不正确。

4. 矩阵A和矩阵B相等,当且仅当()。

A. A和B的对应元素相等B. A和B的行数相等C. A和B的列数相等D. A和B的行数和列数都相等答案:A解析:两个矩阵相等,必须满足它们具有相同的行数和列数,并且对应元素相等。

5. 向量组α1,α2,…,αn线性无关的充分必要条件是()。

A. 由这些向量构成的矩阵的行列式不为0B. 这些向量不能构成齐次方程组的非零解C. 这些向量不能构成齐次方程组的非平凡解D. 这些向量可以构成齐次方程组的平凡解答案:C解析:向量组线性无关意味着它们不能构成齐次方程组的非平凡解,即唯一的解是零向量。

6. 矩阵A可逆的充分必要条件是()。

A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式为任何非零数答案:A解析:矩阵可逆当且仅当其行列式不为0。

7. 矩阵A的特征值是()。

A. 矩阵A的行数B. 矩阵A的列数C. 矩阵A的对角线元素D. 满足|A-λI|=0的λ值答案:D解析:矩阵的特征值是满足特征方程|A-λI|=0的λ值。

线性代数习题集及其答案

线性代数习题集及其答案

第一章行列式一.填空题1.四阶行列式中带有负号且包含a 12和a 21的项为______.解.a 12a 21a 33a 44中行标的排列为1234,逆序为0;列标排列为2134,逆序为1.该项符号为“-”,所以答案为a 12a 21a 33a 44.2.排列i 1i 2…i n 可经______次对换后变为排列i n i n -1…i 2i 1.解.排列i 1i 2…i n 可经过1+2+…+(n -1)=n(n -1)/2次对换后变成排列i n i n -1…i 2i 1.3.在五阶行列式中3524415312)23145()15423()1(a a a a a ττ+-=______3524415312a a a a a .解.15423的逆序为5,23145的逆序为2,所以该项的符号为“-”.4.在函数xx x x x x f 21112)(---=中,x 3的系数是______.解.x 3的系数只要考察234222x x xxx x +-=--.所以x 3前的系数为2.5.设a ,b 为实数,则当a =______,且b =______时,010100=---a b b a .解.0)(11010022=+-=--=---b a ab ba ab b a .所以a =b =0.6.在n 阶行列式D =|a ij |中,当i <j 时a ij =0(i ,j =1,2,…,n ),则D =______.解.nnn n a a a a a a a a 221121222111000=7.设A 为3×3矩阵,|A |=-2,把A 按行分块为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321A A A A ,其中A j (j =1,2,3)是A 的第j 行,则行列式=-121332A A A A ______.解.=-121332A A A A 6||33233211213=-=-=-A A A A A A A A .二.计算证明题1.设4322321143113151||-=A 计算A 41+A 42+A 43+A 44=?,其中A 4j (j=1,2,3,4)是|A |中元素a 4j 的代数余子式.解.A 41+A 42+A 43+A 441111321143113151-=210320206)1(000121013201206114--=-=+=62103202061=--2.计算元素为a ij =|i -j |的n 阶行列式.解.111111110021201110||--------=n n n n n A 每行减前一行由最后一行起,)1(2)1(1000201201121--=--------n n n n n n n列每列加第3.计算n 阶行列式nx x x nx x x nx x x D n n n n +++++++++=212121222111(n ≥2).解.当2>n n x x x n x x x n x x x D n n n n ++++++=222222111+n x x n x x n x x n n ++++++ 2121212211=n x x x x n x x x x n x x x x n n nn++++++ 33322221111+nx x x n x x x n x x x n n n++++++ 323232222111+nx x x n x x x n x x x n n n ++++++ 313131222111+nx x n x x n x x n n ++++++ 32132********=-n x x x n x x x n x x x n n n++++++ 313131222111=-n x x x n x x x n x x x n n n+++ 111222111-nx x nx x n x x n n+++ 3131312211=0当2=n 2122112121x x x x x x -=++++4.证明:奇数阶反对称矩阵的行列式为零.证明:||||)1(||||||,A A A A A A A nTT-=-=-==-=(n 为奇数).所以|A |=0.5.试证:如果n 次多项式nn x C x C C x f ++=10)(对n +1个不同的x 值都是零,则此多项式恒等于零.(提示:用范德蒙行列式证明)证明:假设多项式的n +1个不同的零点为x 0,x 1,…,x n .将它们代入多项式,得关于C i 方程组0010=++nn x C x C C 01110=++n n x C x C C …………10=++n n n n x C x C C 系数行列式为x 0,x 1,…,x n 的范德蒙行列式,不为0.所以010====n C C C 6.设).(',620321)(232x F xx x x x xx F 求=解.x x x x x x x F 620321)(232==x x x x x x 3103211222=x x x x x x 310201222=xxx x x 3102101222=32220021012xxx x x x =26)('x x F =第二章矩阵一.填空题1.设α1,α2,α3,α,β均为4维向量,A =[α1,α2,α3,α],B =[α1,α2,α3,β],且|A |=2,|B |=3,则|A -3B |=______.解.βαααα3222|3|321----=-B A =βαααα38321-⨯-=αααα321(8⨯-56|)|3|(|8)3321=--=-B A βααα2.若对任意n ×1矩阵X ,均有AX =0,则A =______.解.假设[]m A αα 1=,αi 是A 的列向量.对于j =1,2,…,m ,令⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=010 j X ,第j 个元素不为0.所以[]m αα 10010==⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡j α (j =1,2,…,m ).所以A =0.3.设A 为m 阶方阵,存在非零的m ×n 矩阵B ,使AB =0的充分必要条件是______.解.由AB =0,而且B 为非零矩阵,所以存在B 的某个列向量b j 为非零列向量,满足Ab j =0.即方程组AX =0有非零解.所以|A |=0;反之:若|A |=0,则AX =0有非零解.则存在非零矩阵B ,满足AB =0.所以,AB =0的充分必要条件是|A |=0.4.设A 为n 阶矩阵,存在两个不相等的n 阶矩阵B ,C ,使AB =AC 的充分条件是______.解.0||0)(=⇔-=-⇔=≠A C B C B A AC AB C B 非零且且5.[]42121b b b a a a n ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=______.解.[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n n n n b a b a b a b a b a b a b a b a b a b b b a a a 212221212111421216.设矩阵12,23,3211-+-=⎥⎦⎤⎢⎣⎡-=B E A A B A 则=______.解.=2A ⎥⎦⎤⎢⎣⎡-3211⎥⎦⎤⎢⎣⎡-3211=⎥⎦⎤⎢⎣⎡--7841E A A B 232+-==⎥⎦⎤⎢⎣⎡--7841-⎥⎦⎤⎢⎣⎡-9633+⎥⎦⎤⎢⎣⎡2002=⎥⎦⎤⎢⎣⎡--021221||*1==-B B B ⎥⎦⎤⎢⎣⎡--2210=⎥⎥⎦⎤⎢⎢⎣⎡--112107.设n 阶矩阵A 满足12,032-=++A E A A 则=______.解.由,0322=++E A A 得E E A A 3)2(-=+.所以0|3||2|||≠-=+E E A A ,于是A 可逆.由,0322=++E A A 得)2(31,03211E A A AE A +-==++--8.设)9()3(,10002010121E A E A A -+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-则=______.解.=2A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100020101⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100020101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100040201=-E A 92⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---800050208,=+E A 3⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡400050104→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001400050104 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4100010001100050104 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-41000104101100050004 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-41000510161041100010001 ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=+-4100051161041)3(1E A )9()3(21E A E A -+-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-4100051161041⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---800050208=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---2000101029.设.______])2[(______,)(_______,,3342122111*1*1=-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=---A A A A 则解.|A|=-3-12+8+8+6-6=1→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----100010001334212211 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----104012001570230211 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------104031320015703210211 →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----137320313203131310032103401 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----137322524933100010001 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------372252493100010001 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=-3722524931A ====---||)(,||,||1*1**1A AA A A A A AA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----3342122111131*4)2(||)2()2(|2|)2(---=--=--=-A A A A A A 414)4(])2[(111*===----A A A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----33421221110.设矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=3111522100110012A ,则A 的逆矩阵1-A =______.解.⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-211111121,⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-215331521使用分块求逆公式⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-----1111100B CAB A BC A -⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--11212153⎥⎦⎤⎢⎣⎡--2111=⎥⎦⎤⎢⎣⎡--1173019所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=-21117533019002100111A 二.单项选择题1.设A 、B 为同阶可逆矩阵,则(A)AB =BA(B)存在可逆矩阵P ,使B AP P =-1(C)存在可逆矩阵C ,使BAC C T=(D)存在可逆矩阵P 和Q ,使BPAQ =解.因为A 可逆,存在可逆E AQ P Q P A A A A =使,.因为B 可逆,存在可逆E BQ P Q P B B B B =使,.所以A A AQ P =B B BQ P .于是BQ AQ P P B A A B =--11令A B P P P 1-=,1-=BA Q Q Q .(D)是答案.2.设A 、B 都是n 阶可逆矩阵,则⎥⎦⎤⎢⎣⎡--1002B A T等于(A)12||||)2(--B A n(B)1||||)2(--B A n(C)||||2B A T-(D)1||||2--B A 解.121||||)2(002---=⎥⎦⎤⎢⎣⎡-B A B A n T.(A)是答案.3.设A 、B 都是n 阶方阵,下面结论正确的是(A)若A 、B 均可逆,则A +B 可逆.(B)若A 、B 均可逆,则AB 可逆.(C)若A +B 可逆,则A -B 可逆.(D)若A +B 可逆,则A ,B 均可逆.解.若A 、B 均可逆,则111)(---=A B AB .(B)是答案.4.设n 维向量)21,0,,0,21( =α,矩阵ααTE A -=,ααT E B 2+=其中E 为n 阶单位矩阵,则AB =(A)0(B)-E(C)E(D)ααTE +解.AB =)(ααTE -)2(ααT E +=ααT E -+2ααT -2ααT ααT =E .)21(=ααT (C)是答案.5.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211a a a a a a a a a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=233322322131131211232221a a a a a a a a a a a a B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1000010101P ,设有P 2P 1A =B ,则P 2=(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101010001(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101010001(C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010101(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100010101解.P 1A 表示互换A 的第一、二行.B 表示A 先互换第一、二行,然后将互换后的矩阵的第一行乘以(-1)加到第三行.所以P 2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101010001.(B)是答案.6.设A 为n 阶可逆矩阵,则(-A )*等于(A)-A *(B)A *(C)(-1)n A *(D)(-1)n -1A *解.(-A )*=*111)1()1(1||)1()(||A A A A A n n ----=--=--.(D)是答案.7.设n 阶矩阵A 非奇异(n ≥2),A *是A 的伴随矩阵,则(A)A A A n 1**||)(-=(B)A A A n 1**||)(+=(C)AA A n 2**||)(-=(D)AA A n 2**||)(+=解.1*||-=AA A AA A A A A A A A A A A A n n 211111*1**||||||||)|(|||||)|(|)(-------====(C)是答案.8.设A 为m ×n 矩阵,C 是n 阶可逆矩阵,矩阵A 的秩为r 1,矩阵B =AC 的秩为r,则(A)r >r 1(B)r <r 1(C)r =r 1(D)r 与r 1的关系依C 而定解.n C r C A B n n n m ==⨯⨯)(,,所以1)()()(r n C r A r AC r r =-+≥=又因为1-=BC A ,于是rn C r B r BC r r =-+≥=--)()()(111所以r r =1.(C)是答案.9.设A 、B 都是n 阶非零矩阵,且AB =0,则A 和B 的秩(A)必有一个等于零(B)都小于n (C)一个小于n ,一个等于n(D)都等于n解.若0,0.,)(1===-B AB A n A r 得由存在则,矛盾.所以n A r <)(.同理n B r <)(.(B)是答案.三.计算证明题1.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=243121013A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=143522011B .求:i.AB -BA ii.A 2-B 2iii.B T A T解.=-BA AB ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----1618931717641,=-22B A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----1326391515649=T T A B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--2211531517652.求下列矩阵的逆矩阵i.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------111111*********1ii.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1000cos sin 0sin cos ααααiii.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0001001001001000iv.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-110210000120025解.i.→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------10000100001000011111111111111111 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------1010101001100010220202022001111 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------1001001102102100010220220010101111 →⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------110000110210210210212200220010100101 →⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡----1100002121021021021021220011010100101 →⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-----11110021210210210212104000110010101001→⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-----414141410021210210210212101000110010101001 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------414141414141414141414141414141411000010000100001 ,⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------=-414141414141414141414141414141411A ii.⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--ααααααααcos sin sin cos cos sin sin cos 1.由矩阵分块求逆公式:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---1110000B A B A 得到:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-100cos sin 0sin cos 1ααααA iii.⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-011001101.由矩阵分块求逆公式:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---0000111A B B A 所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-00010010010010001A iv.由矩阵分块求逆公式:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---111000B A B A 得到:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---=-313100323100005200211A 3.已知三阶矩阵A 满足)3,2,1(==i i A i i αα.其中T)2,2,1(1=α,T )1,2,2(2-=α,T )2,1,2(3--=α.试求矩阵A .解.由本题的条件知:=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---212122221A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---622342641→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---100010001212122221 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----102012001630360221 →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----0313231032001120210221 →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----3231323103232031300210201 →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----9291923103232031100210201 →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---929192919292929291100010001 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=232323235032037929192919292929291622342641A 4.k 取什么值时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=11100001k A 可逆,并求其逆.解.01110001||≠=-=k k A →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10011101000001001 k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--101110010010001001 k →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-111100010010001001k k 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1110100011k k A 5.设A 是n 阶方阵,且有自然数m ,使(E +A )m =0,则A 可逆.解.因为)(1=+==+∑∑==mi i i m mi iimmA c E A c A E所以∑=-=-mi i im E A c A 11)(.所以A 可逆.6.设B 为可逆矩阵,A 是与B 同阶方阵,且满足A 2+AB +B 2=0,证明A 和A +B 都是可逆矩阵.解.因为022=++B AB A ,所以2)(B B A A -=+.因为B 可逆,所以0||)1(||22≠-=-B B n所以0|||)(|2≠-=+B B A A .所以B A A +,都可逆.7.若A ,B 都是n 阶方阵,且E +AB 可逆,则E +BA 也可逆,且AAB E B E BA E 11)()(--+-=+解.AAB E B BA E BA E A AB E B E BA E 11)()())()((--++-+=+-+=AAB E AB E B BA E A AB E BAB B BA E 11))(())((--++-+=++-+=E BA BA E =-+所以A AB E B E BA E 11)()(--+-=+.8.设A ,B 都是n 阶方阵,已知|B |≠0,A -E 可逆,且(A -E )-1=(B -E )T ,求证A 可逆.解.因为(A -E )-1=(B -E )T ,所以(A -E )(B -E )T =E 所以E E B E B A T T =+--)(,TT B E B A =-)(由|B |≠0知11)(--TB B ,存在.所以E B E B A T T =--1))((.所以A 可逆.9.设A ,B ,A +B 为n 阶正交矩阵,试证:(A +B )-1=A-1+B -1.解.因为A ,B ,A +B 为正交矩阵,所以111,,)()(---==+=+B B A A B A B A TTT所以111)()(---+=+=+=+B A B A B A B A T T T 10.设A ,B 都是n 阶方阵,试证明:||E AB BE EA -=.解.因为⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡AB E B E B E E A E A E E E 0000所以ABE BEB E E A E A E E E -=-0000||)1(01)1(2E AB AB E BEB E E A n n --=-=⋅⋅-因为n n )1()1(2-=-,所以||E AB BE EA -=11.设A 为主对角线元素均为零的四阶实对称可逆矩阵,E 为四阶单位矩阵)0,0(00000000000000>>⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=l k l k B i.试计算|E +AB |,并指出A 中元素满足什么条件时,E +AB 可逆;ii.当E +AB 可逆时,试证明(E +AB )-1A 为对称矩阵.解.i.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=44342414342313242312141312000a a a a a a a a a a a a a A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=l k a a a a a a a a a a a a a AB 000000000000000044342414342313242312141312⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0000000000343424231413ka la la ka la ka AB E +⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1001001001343424231413ka la la ka la ka ,2341||kla AB E -=+所以当2341a kl≠时,E +AB 可逆.ii.11111)()]([)(-----+=+=+B A AB E A A AB E 因为A ,B 为实对称矩阵,所以B A +-1为实对称矩阵,所以(E +AB )-1A 为对称矩阵.12.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=λλλ100100A ,求A n .解.使用数学归纳法.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2222210200100100100100λλλλλλλλλλλA =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=λλλλλλλλ1001002102002223A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+323233)21(0300λλλλλλ假设k A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++---k k k k k kk k k λλλλλλ121)11(000则1+k A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++---k k k k k k k k k λλλλλλ121)11(000⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡λλλ100100=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++++-++1111)1()1(0)1(00k k k k k k k k k λλλλλλ 所以n A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++---nn n n n n n n n λλλλλλ121)11(000=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----n n n n n nn n n n λλλλλλ1212)1(00013.A 是n 阶方阵,满足A m =E ,其中m 是正整数,E 为n 阶单位矩阵.今将A 中n 2个元素a ij 用其代数余子式A ij 代替,得到的矩阵记为A 0.证明E A m=0.解.因为A m =E ,所以1||=m A ,所以A 可逆.11*0)(||]|[|)(--===T T T A A A A A A 所以EE A A A A A A m T m m m T m ====---1110||])[(||])(|[|14.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=010101001A i.证明:n ≥3时,E A A A n n-+=-22(E 为三阶单位矩阵)ii.求A 100.解.i.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=010*******A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010101001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=101011001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1010110013A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010101001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=011102001+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-+010*******E A A -⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101011001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0111020013A =所以E A A A -+=-2233假设EA A A k k -+=-22则=-+=-+A A A A k k 311A E A A A k --++-21=EA A k -+-+221)(所以EA A A n n -+=-22ii.=-+=E A A A298100E A E A A 4950222296-==-+ -⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=50050050500050⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡490004900049⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1050015000115.当⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=21232321A 时,A 6=E .求A 11.解.121232321||=-=A ,所以==-||*1A A A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-21232321因为1112116--===EA A A A E A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=2123232116.已知A ,B 是n 阶方阵,且满足A 2=A ,B 2=B ,与(A -B )2=A +B ,试证:AB =BA =0.解.因为(A -B )2=A +B ,所以))(())(()(3B A B A B A B A B A -+=+-=-于是2222B AB BA A B AB BA A --+=-+-,所以BAAB =BA B BA AB A B A B A +=+--+=-222,)(因为A 2=A ,B 2=B ,所以2AB =0,所以0==BA AB .第三章向量一.填空题1.设)1,2,0,1(),,1,0,1(),0,3,2,4(),5,0,1,2(4321-=-=--=-=ααααk ,则k =______时,α1,α2,α3,α4线性相关.解.考察行列式1102131181105213000011182105213000211142k k k -----=-----=-----316102038++-+--=k k =13k +5=0.135-=k 2.设)0,,3,1(),4,3,5,0(),2,0,2,1(),0,3,1,2(4321t -=-=-=-=αααα,则t =______时,α1,α2,α3,α4线性相关.解.考察行列式4243355504243335551000042030335211012---=----=----t tt t 0603020306020=--+++-=t t .所以对任何t ,α1,α2,α3,α4线性相关.3.当k =______时,向量β=(1,k ,5)能由向量),1,1,2(),2,3,2(21-=-=αα线性表示.解.考察行列式,012513211=--k 得k =-8.当k =-8时,三个向量的行列式为0,于是21,,ααβ线性相关.显然21,αα线性无关,所以β可用21,αα线性表示.4.已知)1,4,0,1,1(),3,1,3,0,2(),10,5,1,2,0(),1,2,2,1,1(4321-=-=-==αααα,则秩(α1,α2,α3,α4)=______.解.将α1,α2,α3,α4表示成矩阵→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---131********210211201→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------21102550211002201201⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------211052110211001101201⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---→20052000200001101201.所以r (α1,α2,α3,α4)=35.设⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=3224211631092114047116A ,则秩(A)=______.解.→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=3224211631092114047116A →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----3224211631711614040921⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------3408012550755110140800921⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---------→8351051510117510815100921⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------→410004030008845000815100921所以r (A )=3.6.已知),2,0,1,0(,)2,1,0,1(=-=βαT矩阵A =α·β,则秩(A )=______.解.A =α·β=()→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-402020100000201020102101⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0020000000002010所以r (A )=1.7.已知向量),6,5,4(),6,5,4,3(),5,4,3,2(),4,3,2,1(4321t ====αααα,且秩(α1,α2,α3,α4)=2,则t =______.解.A =(α1,α2,α3,α4)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=t 654654354324321⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=16630642032104321t ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=700000032104321t 所以当t =7时,r (A )=2.二.单项选择题1.设向量组α1,α2,α3线性无关,则下列向量组线性相关的是(A)α1+α2,α2+α3,α3+α1(B)α1,α1+α2,α1+α2+α3(C)α1-α2,α2-α3,α3-α1(D)α1+α2,2α2+α3,3α3+α1解.由0)()()(133322211=-+-+-ααααααk k k 得)()()(323212131=-+-+-αααk k k k k k 因为向量组α1,α2,α3线性无关,所以得关于321,,k k k 的方程组⎪⎩⎪⎨⎧=+-=+-=-000322131k k k k k k 321,,k k k 的系数行列式为011110011101=-=---.所以321,,k k k 有非零解,所以α1-α2,α2-α3,α3-α1线性相关.(C)是答案.2.设矩阵A m ×n 的秩为R (A )=m <n ,E m 为m 阶单位矩阵,下列结论正确的是(A)A 的任意m 个列向量必线性无关(B)A 的任意一个m 阶子式不等于零(C)若矩阵B 满足BA =0,则B =0(D)A 通过行初等变换,必可以化为(E m ,0)的形式解.(A),(B)都错在“任意”;(D)不正确是因为只通过行初等变换不一定能将A 变成(E m ,0)的形式;(C)是正确答案.理由如下:因为BA =0,所以0)()()()()(B r m m B r m A r B r BA r =-+=-+≥=.所以)(B r =0.于是B =0.3.设向量组(I):T T T a a a a a a a a a ),,(,),,(,),,(332313332221223121111===ααα;设向量组(II):T T T a a a a a a a a a a a a ),,,(,),,,(,),,,(433323133423222122413121111===βββ,则(A)(I)相关⇒(II)相关(B)(I)无关⇒(II)无关(C)(II)无关⇒(I)无关(B)(I)无关⇔(II)无关解.由定理:若原向量组线性无关,则由原向量组加长后的向量组也线性无关.所以(B)是答案.4.设β,α1,α2线性相关,β,α2,α3线性无关,则(A)α1,α2,α3线性相关(B)α1,α2,α3线性无关(C)α1可用β,α2,α3线性表示(D)β可用α1,α2线性表示解.因为β,α1,α2线性相关,所以β,α1,α2,α3线性相关.又因为β,α2,α3线性无关,所以α1可用β,α2,α3线性表示.(C)是答案.5.设A ,B 是n 阶方阵,且秩(A )=秩(B ),则(A)秩(A -B )=0(B)秩(A +B )=2秩(A)(C)秩(A -B )=2秩(A)(D)秩(A +B )≤秩(A )+秩(B )解.(A)取B A ≠且|A |≠0,|B |≠0则A -B ≠0,则r (A -B )≠0.排除(A);(B)取A =-B ≠0,则秩(A +B )≠2秩(A);(C)取A =B ≠0,则秩(A -B )≠2秩(A).有如下定理:秩(A +B )≤秩(A )+秩(B ).所以(D)是答案.三.计算证明题1.设有三维向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111k α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112k α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2113α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=21k k β问k 取何值时i.β可由α1,α2,α3线性表示,且表达式唯一;ii.β可由α1,α2,α3线性表示,但表达式不唯一;iii.β不能由α1,α2,α3线性表示.解.)1(22221111112-=-=k k k k k k i.10≠≠k k 且时,α1,α2,α3线性无关,四个三维向量一定线性相关,所以β可由α1,α2,α3线性表示,由克莱姆法则知表达式唯一;ii.当k =1时→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡121111111111 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010********* .系数矩阵的秩等于增广矩阵的秩为2.所以所以β可由α1,α2,α3线性表示,但表示不惟一;iii.当0=k 时→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡021********* ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡021********* ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→011011100101 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→100011100101 .系数矩阵的秩等于2,增广矩阵的秩为3,所以所以β不能由α1,α2,α3线性表示.2.设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,问i.α1能否由α2,α3线性表出?证明你的结论;ii.α4能否由α1,α2,α3线性表出?证明你的结论解.i.α1不一定能由α2,α3线性表出.反例:T )1,1(1=α,T )0,1(2=α,T )0,2(3=α.向量组α1,α2,α3线性相关,但α1不能由α2,α3线性表出;ii.α4不一定能由α1,α2,α3线性表出.反例:T )0,0,2(1=α,T )0,0,1(2=α,T )0,1,0(3=α,T )1,0,0(4=α.α1,α2,α3线性相关,α2,α3,α4线性无关,α4不能由α1,α2,α3线性表出.3.已知m 个向量α1,α2,…αm 线性相关,但其中任意m -1个都线性无关,证明:i.如果存在等式k 1α1+k 2α2+…+k m αm =0则这些系数k 1,k 2,…k m 或者全为零,或者全不为零;ii.如果存在两个等式k 1α1+k 2α2+…+k m αm =0l 1α1+l 2α2+…+l m αm =0其中l 1≠0,则mm l k l k l k === 2211.解.i.假设k 1α1+k 2α2+…+k m αm =0,如果某个k i =0.则k 1α1+…+k i -1αi -1+k i+1αi+1…+k m αm =0因为任意m -1个都线性无关,所以k 1,k 2,…k i -1,k i+1,…,k m 都等于0,即这些系数k 1,k 2,…k m 或者全为零,或者全不为零;ii.因为l 1≠0,所以l 1,l 2,…l m 全不为零.所以m m l l l l ααα12121---= .代入第一式得:0)(2212121=+++---m m m m k k l l l l k αααα 即0)()(1122112=+-+++-m m m k k l l k k l l αα 所以02112=+-k k l l ,…,011=+-m m k k l l 即mm l k l k l k === 22114.设向量组α1,α2,α3线性无关,问常数a ,b ,c 满足什么条件a α1-α2,b α2-α3,c α3-α1线性相关.解.假设0)()()(133322211=-+-+-ααααααc k b k a k 得)()()(323212131=-+-+-αααk c k k b k k a k 因为α1,α2,α3线性无关,得方程组⎪⎩⎪⎨⎧=+-=+-=-000322131ck k bk k k ak当行列式0100110=---cba 时,321,k k k 有非零解.所以1=abc 时,a α1-α2,b α2-α3,c α3-α1线性相关.5.设A 是n 阶矩阵,若存在正整数k ,使线性方程组A k x =0有解向量α,且A k -1α≠0,证明:向量组α,A α,⋯,A k -1α是线性无关的.解.假设01110=+++--αααk k A a A a a .二边乘以1-k A 得010=-αk A a ,0=a 由0111=++--ααk k A a A a .二边乘以1-k A 得011=-αk A a ,1=a ………………………………最后可得011=--αk k A a ,1=-k a 所以向量组α,A α,⋯,A k -1α是线性无关.6.求下列向量组的一个极大线性无关组,并把其余向量用极大线性无关组线性表示.i.)3,2,1,2(),7,4,3,1(),6,5,1,4(),3,1,2,1(4321=----=---==αααα.ii.).10,5,1,2(),0,2,2,1(),14,7,0,3(),2,1,3,0(),4,2,1,1(54321=-===-=ααααα解.解.i.→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------3763245113122141→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------34180039031902141⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---3200320031902141⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→0000320031902141所以321,,ααα是极大线性无关组.由3322114ααααk k k ++=得方程组⎪⎩⎪⎨⎧-==+=-+323924332321k k k k k k 解得2331-==k k ,212=k 所以3214232123αααα-+-=ii.→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--1001424527121203121301→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--24220101103133021301⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--24220313301011021301⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→04000010001011021301所以421,,ααα是极大线性无关组.由4322115ααααk k k ++=得方程组⎪⎪⎩⎪⎪⎨⎧=-=-==+0401233231k k k k k 解得21=k ,12=k ,03=k 所以421502αααα++=由4322113ααααk k k ++=得方程组⎪⎪⎩⎪⎪⎨⎧=-=-==+0401333231k k k k k 解得31=k ,12=k ,03=k 所以421303αααα++=7.已知三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=x yyy x y y yxA ,讨论秩(A)的情形.解.i.0==y x ,)(=A r ii.0,00,0=≠≠=y x y x 或,3)(=A r iii.0≠=y x ,1)(=A r iv.0≠-=y x ,3)(=A r iv.yx y x ±≠≠≠,0,0⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=x y y y x yy yxA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→2222x xyxy xy x xy y y xy ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→2222222200y x y xy y xy y x y y xy ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++→y x yy y x y yx00⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++→)2(00y x x yy x y y x 所以,当y x 2-=时,2)(=A r ;当y x 2-≠时,3)(=A r 8.设三阶矩阵A 满足A 2=E(E 为单位矩阵),但A ≠±E ,试证明:(秩(A -E )-1)(秩(A +E )-1)=0解.由第十一题知3)()(=-++E A r E A r 又因为A ≠±E ,所以0)(≠+E A r ,0)(≠-E A r 所以)(E A r +,)(E A r -中有一个为1所以(秩(A -E )-1)(秩(A +E )-1)=09.设A 为n 阶方阵,且A 2=A ,证明:若A 的秩为r ,则A -E 的秩为n -r ,其中E 是n 阶单位矩阵.解.因为A 2=A ,所以)(=-E A A 所以n E A r A r E A A r --+≥-=)()())((0所以nE A r A r ≤-+)()(又因为n E r A E A r A E r A r E A r A r ==-+≥-+=-+)()()()()()(所以n E A r A r =-+)()(.所以rn E A r -=-)(10.设A 为n 阶方阵,证明:如果A 2=E ,则秩(A +E )+秩(A -E )=n.解.因为A 2=E ,所以))((0E A E A +-=所以n E A r E A r E A E A r --++≥-+=)()()))(((0所以nE A r E A r ≤-++)()(又因为n E r A E E A r A E r E A r E A r E A r ==-++≥-++=-++)2()()()()()(所以n E A r E A r =-++)()(.第四章线性方程组一.填空题1.在齐次线性方程组A m ×n x =0中,若秩(A)=k 且η1,η2,…,ηr 是它的一个基础解系,则r =_____;当k =______时,此方程组只有零解.解.k n r -=,当n k =时,方程组只有零解.2.若n 元线性方程组有解,且其系数矩阵的秩为r,则当______时,方程组有唯一解;当______时,方程组有无穷多解.解.假设该方程组为A m ×n x =b,矩阵的秩r A r =)(.当n r =,方程组有惟一解;当n r <,方程组有无穷多解.3.齐次线性方程组⎪⎩⎪⎨⎧=+=++=++0302032321321x kx x x x x kx x 只有零解,则k 应满足的条件是______.解.03011211≠kk ,53,0623≠≠--+k k k k 时,方程组只有零解.4.设A 为四阶方阵,且秩(A)=2,则齐次线性方程组A *x =0(A *是A 的伴随矩阵)的基础解系所包含的解向量的个数为______.解.因为矩阵A 的秩31412)(=-=-<=n A r ,所以0)(*=A r ,A *x =0的基础解系所含解向量的个数为4-0=4.5.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=112011121A ,则A x =0的通解为______.解.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=000110101110110121112011121A 2)(=A r ,基础解系所含解向量个数为3-2=1.⎩⎨⎧=-=-003231x x x x ,取1,1123===x x x 则.基础解系为(1,1,1)T.A x =0的通解为k (1,1,1)T,k 为任意常数.6.设α1,α2,…αs 是非齐次线性方程组A x =b 的解,若C 1α1+C 2α2+…+C s αs 也是A x =b 的一个解,则C 1+C 2+…+C s =______.解.因为A b A i 且,=α(C 1α1+C 2α2+…+C s αs )=b,所以b b C C s =++)(1 ,11=++s C C .7.方程组A x =0以TT)1,1,0(,)2,0,1(21-==ηη为其基础解系,则该方程的系数矩阵为___.解.方程组A x =0的基础解系为TT)1,1,0(,)2,0,1(21-==ηη,所以2)(=-A r n ,即2)(3=-A r ,)(A r =1.所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=22111αααk k A ,假设),,(1312111a a a =α.由01=ηA ,得02201),,(1311131211=+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡a a a a a 由02=ηA ,得0110),,(1312131211=-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-a a a a a 取2,1,0111213-===a a a 得.所以)1,1,2(1-=α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=22111αααk k A (其中2,1k k 为任意常数).8.设A x =b,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=112210321A ,则使方程组有解的所有b 是______.解.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=112210321A ,05112210321||≠=-=A ,所以)(A r =3.因为A x =b 有解,所以⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-b r r 112210321112210321所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=123112201321k k k b ,其中321,,k k k 为任意常数.9.设A,B 为三阶方阵,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=110121211A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=11202314k B ,且已知存在三阶方阵X ,使得B AX =,则k =___________.解.由题设B X A =⨯⨯3333,又因为0110121211||=-=A ,所以0||||||==X A B ,即0266411202314=+--=--k k k ,2-=k .二.单项选择题1.要使ξ1=(1,0,1)T ,ξ2=(-2,0,1)T 都是线性方程组0=Ax 的解,只要系数矩阵A 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡112213321(B)⎥⎦⎤⎢⎣⎡-211121(C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡123020010(D)⎥⎦⎤⎢⎣⎡-020010解.因为21,ξξ的对应分量不成比例,所以21,ξξ线性无关.所以方程组0=Ax 的基础解系所含解向量个数大于2.(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112213321A ,3)(,0112213321||=≠=A r A .因为A 是三阶矩阵,所以0=Ax 只有零解,排除(A);(B)2)(,211121=⎥⎦⎤⎢⎣⎡-=A r A .所以方程组0=Ax 的基础解系所含解向量个数:3-1)(=A r .排除(B);(C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=123020010A ,2)(=A r .所以方程组0=Ax 的基础解系所含解向量个数:3-1)(=A r .排除(C);(D)⎥⎦⎤⎢⎣⎡-=020010A ,1)(=A r .所以方程组0=Ax 的基础解系所含解向量个数:3-2)(=A r ,(D)是答案.2.设0,,321=Ax 是ξξξ的基础解系,则该方程组的基础解系还可以表成(A)321,,ξξξ的一个等阶向量组(B)321,,ξξξ的一个等秩向量组(C)321211,,ξξξξξξ+++(C)133221,,ξξξξξξ---解.由0)()(321321211=+++++ξξξξξξk k k ,得0)()(332321321=+++++k k k k k k ξξξ.因为0,,321=Ax 是ξξξ的基础解系,所以321,,ξξξ线性无关.于是⎪⎩⎪⎨⎧==+=++000332321k k k k k k ,所以0321===k k k ,则321211,,ξξξξξξ+++线性无关.它也可以是方程组的基础解系.(C)是答案.(A)不是答案.例如321,,ξξξ和21321,,,ξξξξξ+等价,但21321,,,ξξξξξ+不是基础解系.3.n 阶矩阵A 可逆的充分必要条件是(A)任一行向量都是非零向量(B)任一列向量都是非零向量(C)b Ax =有解(D)当0≠x 时,0≠Ax ,其中Tn x x x ),,(1 =解.对(A),(B):反例⎥⎦⎤⎢⎣⎡=2121A ,不可逆;对于(C)假设A 为n×n 矩阵,A 为A 的增广矩阵.当n A r A r <=)()(时,b Ax =有无穷多解,但A 不可逆;(D)是答案,证明如下:当0≠x 时,0≠Ax ,说明0=Ax 只有零解.所以1,0||-≠A A 存在.4.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r,则0=Ax 有非零解的充分必要条件是(A )n r =(B )n r ≥(C )n r <(D )n r >解.(C )为答案.5.设n m A ⨯为矩阵,m n B ⨯为矩阵,则线性方程组0)(=x AB (A )当m n >时仅有零解.(B )当m n >时必有非零解.(C )当n m >时仅有零解.(D )当n m >时必有非零解.解.因为AB 矩阵为m m ⨯方阵,所以未知数个数为m 个.又因为n A r AB r ≤≤)()(,所以,当n m >时,m n A r AB r <≤≤)()(,即系数矩阵的秩小于未知数个数,所以方程组有非零解.(D )为答案.6.设n 阶矩阵A 的伴随矩阵0*≠A ,若4321,,,ξξξξ是非齐次线性方程组b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系(A )不存在(B )仅含一个非零解向量(C )含有二个线性无关解向量(D )含有三个线性无关解向量解.因为⎪⎩⎪⎨⎧-<-===1)(,01)(,1)(,*)(n A r n A r n A r n A r 因为0*≠A ,所以1)(-≥n A r ;又因为4321,,,ξξξξ是非齐次线性方程组b Ax =的互不相等的解,所以b Ax =的解不唯一,所以1)(-≤n A r ,所以1)(-=n A r .于是:基础解系所含解向量个数1)1()(=--=-=n n A r n (B )为答案.三.计算证明题1.求方程组⎪⎩⎪⎨⎧=----=+-+-=-+-174952431132542143214321x x x x x x x x x x x 的通解,并求满足方程组及条件16354321-=-++x x x x 的全部解.解.将条件方程与原方程组构成矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------56144280287214028721401132511163517409152413113251⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→0000000000287214017409100000000002872140113251 i.条件方程与原方程组兼容,即加上条件后的方程组与原方程组有相同的通解;ii.2)()(==A r A r ,方程组有解.齐次方程组的基础解系含解向量的个数为2)(4=-A r ;iii.齐次方程的基础解系:⎩⎨⎧=-+-=++07214049432421x x x x x x 令27,41,03142=-===x x x x 得令7,90,13142=-===x x x x 得基础解系为:T T)0,7,1,9(,)1,27,0,4(--iv.非齐次方程的通解:⎩⎨⎧=-+--=++2872141749432421x x x x x x 令2,10,02143-====x x x x 得所以全部解为:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-127040719002121k k 2.设有线性方程组⎪⎩⎪⎨⎧=++--=++=++kmx x x x x x x x x 3213213214132303,问m,k 为何值时,方程组有惟一解?有无穷多组解?有无穷多组解时,求出一般解.解.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--110010700131170107001314113230131k m k m k m i.当3)()(,1==-≠A r A r m 时,方程组有惟一解;ii.当)()(,1,1A r A r k m ≠≠-=时,方程组无解;iii.当32)()(,1,1<===-=A r A r k m 时,方程组有无穷多解.此时基础解系含解向量个数为1)(3=-A r 齐次方程组:⎩⎨⎧==++07032321x x x x ,所以02=x .令1,113-==x x 得.基础解系解向量为:T)1,0,1(-.非齐次方程组:⎩⎨⎧==++17032321x x x x ,所以712=x .令73,013-==x x 得.非齐次方程特解为:T)0,71,73(-.通解为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=10107173k x 3.问λ为何值时,线性方程组⎪⎩⎪⎨⎧+=+++=++=+324622432132131λλλx x x x x x x x 有解,并求出解的一般形式.。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、单项选择题(每题2分,共10分)1. 矩阵A的行列式为0,则矩阵A是:A. 可逆的B. 不可逆的C. 正定的D. 负定的答案:B2. 若向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性相关,则:A. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n = 0 \)B. 所有向量都为零向量C. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n \)是零向量D. 所有向量都为非零向量答案:A3. 矩阵A和B的乘积AB等于零矩阵,则:A. A和B都是零矩阵B. A和B中至少有一个是零矩阵C. A和B的秩之和小于A的列数D. A和B的秩之和小于B的行数答案:C4. 向量组\( \beta_1, \beta_2, \ldots, \beta_m \)可以由向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性表示,则:A. m > nB. m ≤ nC. m ≥ nD. m < n答案:B5. 若矩阵A和B合同,则:A. A和B具有相同的行列式B. A和B具有相同的秩C. A和B具有相同的特征值D. A和B具有相同的迹答案:B二、填空题(每题3分,共15分)1. 若矩阵A的特征值为λ,则矩阵A^T的特征值为______。

答案:λ2. 若矩阵A可逆,则矩阵A的行列式|A|与矩阵A^-1的行列式|A^-1|满足关系|A^-1|=______。

答案:1/|A|3. 若向量组\( \alpha_1, \alpha_2 \)线性无关,则由这两个向量构成的矩阵的秩为______。

答案:24. 矩阵A的秩为r,则矩阵A的零空间的维数为______。

线性代数练习题及答案10套

线性代数练习题及答案10套

1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2

1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案一、选择题(每题2分,共20分)1. 以下哪个矩阵是可逆的?A. [1 0; 0 0]B. [1 2; 3 4]C. [1 0; 0 1]D. [0 1; 1 0]2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行或列的最大数目D. 矩阵的对角线元素的个数3. 线性方程组有唯一解的条件是什么?A. 方程个数等于未知数个数B. 方程组是齐次的C. 方程组的系数矩阵是可逆的D. 方程组的系数矩阵的秩等于增广矩阵的秩4. 向量空间的基具有什么性质?A. 基向量的数量必须为1B. 基向量必须是正交的C. 基向量必须是线性无关的D. 基向量必须是单位向量5. 特征值和特征向量的定义是什么?A. 对于矩阵A,如果存在非零向量v,使得Av=λv,则λ是A的特征值,v是A的特征向量B. 对于矩阵A,如果存在非零向量v,使得A^Tv=λv,则λ是A 的特征值,v是A的特征向量C. 对于矩阵A,如果存在非零向量v,使得A^-1v=λv,则λ是A 的特征值,v是A的特征向量D. 对于矩阵A,如果存在非零向量v,使得Av=v,则λ是A的特征值,v是A的特征向量6. 线性变换的矩阵表示是什么?A. 线性变换的逆矩阵B. 线性变换的转置矩阵C. 线性变换的雅可比矩阵D. 线性变换的对角矩阵7. 以下哪个不是线性代数中的基本概念?A. 向量B. 矩阵C. 行列式D. 微积分8. 什么是线性方程组的齐次解?A. 方程组的所有解B. 方程组的特解C. 方程组的零解D. 方程组的非平凡解9. 矩阵的迹是什么?A. 矩阵的对角线元素的和B. 矩阵的行列式C. 矩阵的秩D. 矩阵的逆10. 什么是正交矩阵?A. 矩阵的转置等于其逆矩阵B. 矩阵的所有行向量都是单位向量C. 矩阵的所有列向量都是单位向量D. 矩阵的所有行向量都是正交的答案:1-5 C C C C A;6-10 D D C A A二、简答题(每题10分,共20分)11. 请简述线性代数中的向量空间(Vector Space)的定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:1.D;2.C;3.A;4.B;5.D。
【3】证明
答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。
【4】计算下列9级排列的逆序数,从而确定他们的奇偶性:
(1)134782695;(2)217986354;(3)987654321。
答案:(1) (134782695)=10,此排列为偶排列。
行列式 =_________
答案:(1) ;(2) ;
(3)-8
【16】选择题
(1)设A是n阶方阵,且满足等式 ,则A的逆矩阵是
(A)A-E;(B)E-A;(C) ; (D) 。
(2)设A,B是n阶可逆矩阵,则下列等式成立的是
A、 ;B、
C、 ;D、
(3)设A,B,C为n阶方阵,且ABC=E,则必成立的等式为
【21】
【22】
.
第二章
【1】填空题设A是三阶方阵, 是A的伴随矩阵,A的行列式 = ,则行列式 ___________。
【2】假设A=( )是一个n阶非零矩阵,且A的元素 (i,j=1,2, ,n)均为实数。已知每一个元素 都等于它自己的代数余子式,求证A的秩等于n,且当n 3时 =1或-1。
【3】判断下列结论是否成立:若成立,则说明理由;若不成立,则举出反例。
(1) , 都是对称矩阵;(2)AB-BA是对称矩阵;(3)AB+BA是反对称矩阵。
【10】求矩阵X,已知:
(1) ;
(2)
答案:(1) ;(2)
【11】已知矩阵A,求A的逆矩阵 ;
(1) ,其中ad-bc=1;(2) ;
(3) ;
答案:(1) ;(2) ;
(3)
【12】在下列矩阵方程中求矩阵X:
(1) ;
(2) (217986354)=18,此排列为偶排列。
(3) (987654321)=36,此排列为偶排列。
【5】计算下列的逆序数:
(1)135 (2n-1)246 (2n);(2)246 (2n)135 (2n-1)。
答案:(1) n(n-1);(2) n(n+1)
【6】确定六阶行列式中,下列各项的符号:
A、ACB=E;B、CBA=E;C、BAC=E;D、BCA=E
(4)设A,B为n阶对称矩阵,m为大于1的自然数,则必为对称矩阵的是
A、 ;B、 ;C、AB;D、 。
(5)设A,B,A+B, 均为n阶可逆矩阵,则( )等于
A、 ;B、A+B;C、 ;D、 。
(1)C;(2)B;(3)D;(4)A;(5)C
(2) ;
答案:(1) ;(2)
【13】证明若一个对称矩阵可逆,则它的矩阵也对称。
【14】假设方阵A满足矩阵方程 ,证明A可逆,并求 。
答案:提示:由 。
【15】填空题
(1)设矩阵A= ,则 =_________
(2)设A是3阶数量矩阵,且 =-27,则 =_________
(3)设A是4阶方阵,且 =-2,则A的伴随矩阵 的
(1) ;(2) ;(3)
答案:(1)正号;(2)负号。
【7】根据定义计算下列各行列式:
(1) ;(2) ;(3) ;
(4)
答案:(1)5!=120;(2) ;
(3) ;(4) 。
【8】计算下列行列式:
(1) ;(2) ;(3) ;
(4) 。
答案:(1)-136;(2)48;(3)12;
(4)(b-a)(c-a)(d-a)(c-b)(d-b)(d-c)
《线性代数》习题集(含答案)
第一章
【1】填空题
(1)二阶行列式 =___________。
(2)二阶行列式 =___________。
(3)二阶行列式 =___________。
(4)三阶行列式 =___________。
(5)三阶行列式 =___________。
答案:1.ab(a-b);2.1;3. ;4. ;5.4abc。
【9】计算下列n阶行列式:
(1) ;(2) ;
(3) ;(4) ;
(5) 。
答案:(1)1+ ;(2)1;(3)n!
(4)2n+1;(5) 。
【10】计算下列行列式:
Hale Waihona Puke (1) ;(2) (n阶);(3) ;
(4) 。
答案:(1)n=2时,行列式等于 ;n≥3,行列式为0;
(2) ;(3) ;
(4)
【11】计算n+1阶行列式:

【6】计算下列矩阵乘积:
(1) ;(2)(x,y,1) 。
答案:(1) ;(2) 。
【7】计算 ,并利用所得结果求 。
答案:提示:用数学归纳法可证 。当 时, 。

【8】已知A,B是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA。
【9】已知A是一个n阶对称矩阵,B是一个n阶反对称矩阵,证明
(1)若矩阵A的行列式 =0,则A=0;
(2)若 =0,则A=E;
(3)若A,B为两个n阶矩阵,则 ;
(4)若矩阵A 0,B 0,则AB 0.
【4】设A,B为n阶方阵,问下列等式在什么条件下成立?
(1) ;
(2) ;
【5】计算AB和AB-BA。已知
(1) ,
(2) , 。
答案:(1) , ;
(2) ,
【2】选择题
(1)若行列式 =0,则x=()。
A-3;B-2;C2;D3。
(2)若行列式 ,则x=()。
A-1, ;B0, ;C1, ;D2, 。
(3)三阶行列式 =()。
A-70;B-63;C70;D82。
(4)行列式 =()。
A ;B ;C ;D 。
(5)n阶行列式 =()。
A0;Bn!;C(-1)·n!;D 。
【17】求下列矩阵的秩
(1) ;(3)
(4) 。
答案:(1)r(A)=2;(2)r(A)=2;(3)r(A)=3;(4)r(A)=2;
【18】求下列矩阵的标准形
(1) ;(2) 。
答案:(1) ;(2) 。
( 0;i=1,2, n)
答案: .
【12】解下列线性方程组:
(1) ;(2) 。
答案:(1) ;
(2) .
【13】计算n阶行列式
于是
【14】证明
由归纳假设,得
【15】计算五阶行列式
可以得到
【16】证明
证明:略
【17】.证明
答案与提示:
提示将左边行列式按定义写成和的形式,再由和函数乘积的微分公式即得右边。
【18】.计算n阶行列式:
(1) ;
(2) 。
答案与提示:
(1)
(2)
【19】.利用拉普拉斯定理计算下列行列式:
(2) ;
(3) ;
(4)
答案与提示:
(2) ;(3)
(4)
【20】.证明下列等式:
(1) ;
(2) 。
答案与提示:
(1)提示:将左边行列式展开可得递推公式,由此递推公式可得结论。
(2)提示:用归纳法证。
相关文档
最新文档