(完整版)简单三角恒等变换典型例题

合集下载

完整版简单三角恒等变换典型例题

完整版简单三角恒等变换典型例题

简单三角恒等变换复习、公式体系(1) sin( ) sin cos cos sin sin cos cos sin sin( ) (2) cos()cos cossin sincoscossin sincos()(3) tan(tan tan去分母得tan tan i tan()(1 tantan )1 tan tantantantan()(1 tantan 、倍角公式的推导及其变形:(1) sin 2sin( ) sin coscos sin2 sin cossin1 .cos— sin 2221 sin 2(sincos(2) cos 2cos() cos cos sin sin cos 2 sin 2cos 2cos 2 sin 2 (cossin )(cossin )cos 22• 2 cos 厶 sin2 2COS (1 cos )把1移项得 1 cos22 cos 2或 -4- GQS -2-c2 cos 212【因为 是-的两倍,所以公式也可以写成2cos2 cos 2一 1 或 1 cos 2 cos 2或 - 1 cos —cos 22222因为4 是2的两倍,所以公式也可以写成cos 42 cos 221 或 1 2Once 厶或nee? O12cos 2 22 cossin(1 sin 2) sin 2把1移项得1cos 22s in 2或 -4-1 2sin 22【因为是—的两倍,所以公式也可以写成2cos1 2 sin 2—或1 cos2 sin 2或 4 ---- eos-sin 22222因为4 是2 的两倍,所以公式也可以写成21、和差公式及其变形: 2) )2sin 2、基本题型1、已知某个三角函数,求其他的三角函数:注意角的关系,如(),(4 (1)已知,都是锐角,sin -,cos(5) , (-4)_5 ,求sin的值13)(—)等等4 5(2)已知COS(—) 1,—,sin( )U,0 —,求sin( )的值4 5 4 4 4 13 4. 3(提不:(——)(—) ,只要求出sin( )即可)2、已知某个三角函数值,求相应的角:只要计算所求角的某个三角函数,再由三角函数值求角,注意选择合适的三角函数(1)已知,都是锐角,sin —,cos5,求角的弧度103、T()公式的应用(2) A ABC 中,角A、B 满足(1 tan A)(l tan B) 2 ,求A+B 的弧度4、弦化切,即已知tan ,求与sin, cos相关的式子的值:化为分式,分子分母同时除以cos 或cos? 等(1)已知tansin2 ,求SmQ 1Q in 9 rnQ 7,3sin 2cos2 的值3sin cos 1 sin 2 cos 25、切化弦,再通分,再弦合一(1)、化简:① sin 50° (13 t#TiO°)sin 35°sin 2x x(2)、证明: ________ (1 tan x tan _) tan x2 cos x 26、综合应用,注意公式的灵活应用与因式分解结合②(tan 10 01) cos-100...化简(2 sin2 2 cos4cos 20° sin 40° 的值等于()3cos cos2 的值等于( )——5 511A .C. 2D ・ 4424、已知0AiL cos A 3 那么卡in 2A 等于()2547-_ 12 24A.B .C ・D ・25252525215已知tan ()——,tan( ),则)的值等升( : )544413313 3A •B.—c.-一D.182222186、sinl65o= ()——1A •B.3C. 62 D. 62 22,4J广 47sinl4ocos 16o+sin76ocos74o 的值是 ()1、sin 20°cos40°A. 1B. 3c.1 D. 342r 244 72、若 tan3 , tan,则 tan()等于()31 1 A. 3B. 3-c.D.33A・3 B . 18、已知2x ( ,0),£,COS X24 一,则tan 2x (A . 7 2B —579、化简242s in (JI—x) —• sin (24n:+x), 其结果是4 4A. sin2x cos2x —10 、sin —3 cos 的值是( )12 12A . 0 £-211 、1 tan 2 75 的值为()ji V tan 753 1c. D.2 J 2)24 24C・ D .7 7( )C .—cos2x D. —sin2x5c. 2 D . 2 sin12A. 2 3。

简单的三角恒等变换-高考数学复习

简单的三角恒等变换-高考数学复习

cos 2β=1-2 sin θ cos θ.所以2 cos 2α= cos 2β.
所以4 cos 22α- cos 22β=(2 cos 2α- cos 2β)(2 cos 2α+ cos 2β)
=0.
目录
高中总复习·数学
三角恒等变换的综合应用
【例5】 已知3 sin α=2 sin
2 -1.
2−
2× ×
sin2
2sincos
所以 2


3
2
2
2 −si
+cos2
2×( )
5
4
5
()
2
=12.
目录
高中总复习·数学
2. 已知函数 f ( x )=4 cos x cos
π
( x + )-
6
3.
(1)求 f ( x )的单调递增区间;
解: f ( x )=4 cos x cos
13
所以 sin β= sin [(β+α)-α]= sin (β+α) cos α- cos (β
+α) sin
12 3
5
4
16
α= × - × = .
13 5
13 5
65
目录
高中总复习·数学
(2)求
sin2
2
+cos2
解:因为 cos
的值.
3
α= ,
5
sin
4
α= ,
5
4 3
5 5
目录
高中总复习·数学
2. 证明三角恒等式的基本方法
(1)从左向右推导或从右向左推导,一般由繁到简;
(2)左右归一法,即证明左右两边都等于同一个式子;

三角恒等变换大题(含详细解答)

三角恒等变换大题(含详细解答)

三角恒等变换1.已知0<α<π4,0<β<π4且3sin β=sin(2α+β),4tan α2=1-tan 2α2,求α+β的值. 2.化简:(1-sinα)(1-sinβ)-⎝⎛⎭⎫sin α+β2-cos α-β2 2. 3.已知sin(2α-β)=35,sinβ=-1213,且α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫-π2,0,求sinα 4.若cos(α+β)cos(α-β)=13,求cos2α-sin2β 5.函数y =12sin2x +sin2x ,x ∈R ,求y 的值域 6.已知0<α<π4,0<β<π4且3sinβ=sin(2α+β),4tan α2=1-tan2α2,求α+β的值. 7.化简:(1-sinα)(1-sinβ)-⎝⎛⎭⎫sin α+β2-cos α-β2 2. 8.已知函数()sin()cos()f x x x θθ=+++的定义域为R ,(1)当0θ=时,求()f x 的单调区间;(2)若(0,)θπ∈,且sin 0x ≠,当θ为何值时,()f x 为偶函数. 9 已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值 10 若,22sin sin =+βα求βαcos cos +的取值范围 11 求值:0010001cos 20sin10(tan 5tan 5)2sin 20-+-- 12 已知函数.,2cos 32sinR x x x y ∈+=(1)求y 取最大值时相应的x 的集合;(2)该函数的图象经过怎样的平移和伸变换可以得到)(sin R x x y ∈=的图象参考答案1. 解:由4tan α2=1-tan 2α2得tan α=2tan α21-tan 2α2=12. 由3sin[(α+β)-α]=sin[(α+β)+α],得3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α,∴2sin(α+β)cos α=4cos(α+β)sin α.∴tan(α+β)=2tan α.∴tan(α+β)=1.又∵0<α<π4,0<β<π4,∴0<α+β<π2,∴α+β=π4评析:首先由4tan α2=1-tan 2α2的形式联想倍角公式求得tan α,再利用角的变换求tan(α+β),据α、β的范围确定角α+β.求角的问题的关键是恰当地选择一个三角函数值,再依据范围求角,两步必不可少.2. 分析:本题由于α+β2+α-β2=α,α+β2-α-β2=β,因此可以从统一角入手,考虑应用和差化积公式. 解:原式=1-(sin α+sin β)+sin αsin β-⎝⎛ sin 2α+β2-⎭⎫2sin α+β2cos α-β2+cos 2α-β2 =1-2sin α+β2cos α-β2+sin αsin β-⎣⎡⎦⎤1-cos(α+β)2+1+cos(α-β)2-2sin α+β2cos α-β2 =sin αsin β+12[cos(α+β)-cos(α-β)]=sin αsin β+12·(-2)sin αsin β=0. 评析:(1)必须是同名三角函数才能和差化积;(2)若是高次函数必须用降幂公式降为一次.3. 解:∵π2<α<π,∴π<2α<2π.又-π2<β<0,∴0<-β<π2.∴π<2α-β<5π2.而sin(2α-β)=35>0,∴2π<2α-β<5π2,cos (2α-β)=45.又-π2<β<0且sin β=-1213,∴cos β=513, ∴cos2α=cos[(2α-β)+β]=cos(2α-β)cos β-sin(2α-β)sin β=45×513-35×⎝⎛⎭⎫-1213=5665. 又cos2α=1-2sin 2α,∴sin 2α=9130,又α∈⎝⎛⎭⎫π2,π,∴sin α=3130130. 评析:由sin(2α-β)求cos(2α-β)、由sin β求cos β,忽视2α-β、β的范围,结果会出现错误.另外,角度变换在三角函数化简求值中经常用到,如:α=(α+β)-β,2α=(α-β)+(α+β),⎝⎛⎭⎫π4+α+⎝⎛⎭⎫π4-α=π2等. 4. 解析:∵cos(α+β)cos(α-β)=13, ∴12(cos2α+cos2β)=13, ∴12(2cos 2α-1+1-2sin 2β)=13, ∴cos 2α-sin 2β=13. 5. 解析:y =12sin2x +sin 2x =12sin2x -12cos2x +12=22sin ⎝⎛⎭⎫2x -π4+12 评析:本题是求有关三角函数的值域的一种通法,即将函数化为y =A sin(ωx +φ)+b 或y =A cos(ωx +φ)+b 的模式.一般地,a cos x +b sin x =a 2+b 2⎝ ⎛⎭⎪⎫a a 2+b 2cos x +b a 2+b 2sin x =a 2+b 2(sin φcos x +cos φsin x )=a 2+b 2sin(x +φ),其中tan φ=a b,也可以变换如下:a cos x +b sin x =a 2+b 2(cos φcos x +sin φsin x )=a 2+b 2cos(x -φ),其中tan φ=b a. 6. 解:由4tan α2=1-tan 2α2 得tan α=2tan α21-tan 2α2=12. 由3sin[(α+β)-α]=sin[(α+β)+α],得3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α, ∴2sin(α+β)cos α=4cos(α+β)sin α. ∴tan(α+β)=2tan α. ∴tan(α+β)=1.又∵0<α<π4,0<β<π4,∴0<α+β<π2, ∴α+β=π4. 评析:首先由4tan α2=1-tan 2α2的形式联想倍角公式求得tan α,再利用角的变换求tan(α+β),据α、β的范围确定角α+β.求角的问题的关键是恰当地选择一个三角函数值,再依据范围求角,两步必不可少.7. 分析:本题由于α+β2+α-β2=α,α+β2-α-β2=β,因此可以从统一角入手,考虑应用和差化积公式. 解:原式=1-(sin α+sin β)+sin αsin β-⎝⎛sin 2α+β2- ⎭⎫2sin α+β2cos α-β2+cos 2α-β2 =1-2sin α+β2cos α-β2+sin αsin β- ⎣⎡⎦⎤1-cos(α+β)2+1+cos(α-β)2-2sin α+β2cos α-β2 =sin αsin β+12[cos(α+β)-cos(α-β)]=sin αsin β+12·(-2)sin αsin β=0. 评析:(1)必须是同名三角函数才能和差化积;(2)若是高次函数必须用降幂公式降为一次.8. 解:(1)当0θ=时,()sin cos )4f x x x x π=+=+ 322,22,24244k x k k x k πππππππππ-≤+≤+-≤≤+()f x 为递增; 3522,22,24244k x k k x k πππππππππ+≤+≤++≤≤+()f x 为递减 ()f x ∴为递增区间为 3[2,2],44k k k Z ππππ-+∈; ()f x 为递减区间为5[2,2],44k k k Z ππππ++∈。

三角恒等变换经典例题

三角恒等变换经典例题

三角恒等变换经典例题删除明显有问题的段落,改写每段话如下:三角恒等变换半角公式是根据角度所在的象限来选择符号的。

1.两角和与差的正弦、余弦、正切公式:1)sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ2)cos(α+β)=cosαcosβ-sinαsinβ,cos(α-β)=cosαcosβ+sinαsinβ3)tan(α+β)=tanα+tanβ/(1-tanαtanβ),tan(α-β)=tanα-tanβ/(1+tanαtanβ)2.万能公式:tan(α-β)=tanα-tanβ/(1+tanαtanβ),tan(α+β)=tanα+tanβ/(1-tanαtanβ)3.角度的三角函数值:sinα=1/2,cosα=1/2,tanα=24.降幂公式:sin^2α=(1-cos2α)/2,cos^2α=(1+cos2α)/2,tan^2α=(1-cos2α)/(1+cos2α)5.辅角公式:asinθ+bcosθ=sqrt(a^2+b^2)sin(θ+φ),其中辅助角φ所在象限由点(a,b)所在的象限决定,sinφ=b/sqrt(a^2+b^2),cosφ=a/sqrt(a^2+b^2),tanφ=b/a6.二倍角公式:sin2α=2sinαcosα,cos2α=cos^2α-sin^2α=1-2sin^2α=2cos^2α-17.常见数据:sin15°=cos75°=(sqrt(6)-sqrt(2))/4,sin75°=cos15°=(sqrt(6)+sqrt(2))/4.1.cos2a = 1 + cos2a2.sin2a = 1 - cos2atan15° = 2 - √3.tan75° = 2 + √34.升幂公式:1) 1 + cosα = 2cos2α/22) 1 - cosα = 2sin2α/23) 1 ± sinα = (sinα ± cosα)2/24) 1 = sin2α + cos2α1.解:sin20cos10 - cos160sin10 = sin20cos10 + cos20sin10 = sin30 = 1/2,选B。

三角恒等变换(含答案)

三角恒等变换(含答案)

2
4
4
4
从而 sin

4
=

4 5
,因此
tan

4
=

4 3
.故填

4 3

评注:此处的角还可由 cos

4
=
3 5
缩小至 2k +
2

4
2k
+
7 4
(k
Z)
,但没必要.
另外,还可利用
tan

π 4
tan
+
π 4
=
−1 来进行处理,或者直接进行推演,即由题意
cos
+
4
4
5
(A) 7 25
(B) 1 5
(C) − 1 5
(D) − 7 25
【解析】因为
cos
π 4

=
3 5

2 (cos + sin ) = 3,所以 cos + sin = 3
2
5
5
2 ,两边平方得,
1+sin 2 = 18 sin 2 = 7 .故选 D.
25
25
2
解法二:
cos 2
4
= − 1 .选 A 2
2
1+
cos
2
22
2
2
2
4.【2010 新课标文 10】若 sin = − 4 , 是第三象限的角,则 sin( + ) = ( )
5
4
(A) − 7 2 10
(B) 7 2 10
(C) − 2 10

(完整版)三角恒等变换-知识点+例题+练习(2),推荐文档

(完整版)三角恒等变换-知识点+例题+练习(2),推荐文档

实用标准文档2两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式(1)C (α-β): cos(α-β)=cos_αcos_β+sin_αsin_β;(2)C (α+β): cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β): sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β): sin(α-β)=sin_αcos_β-cos_αsin_β;tan α+tan β(5) T (α+β):tan(α+β)=1-tan αtanβ; tan α-tan β(6) T (α-β):tan(α-β)=1+tan αtan β. 2.二倍角的正弦、余弦、正切公式(1) S 2α:sin 2α=2sin_αcos_α;(2) C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;2tan α(3) T 2α:tan 2α=1-tan2α. 3.有关公式的逆用、变形等(1) tan α±tan β=tan(α±β)(1∓tan_αtan_β);1+cos 2α 1-cos 2α (2) cos 2α= 2 ,sin 2α= 2 ;(3) 1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,π(α±)sin α±cos α= sin 4 .4.函数 f (α)=a cosα+b sinα(a ,b 为常数),可以化为 f (α)= a 2+b 2sin(α+φ)或 f (α)= a 2+b 2cos(α-φ),其中 φ 可由 a ,b 的值唯一确定.两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=实用标准文档α+β α-β α-β (α+β) (α+β)2 - 2; 2 =2 - 2 .(2)化简技巧:切化弦、“1”的代换等. 三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦” 、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.双基自测11.(人教 A 版教材习题改编)下列各式的值为4的是().π A .2cos 212-1B .1-2sin 275°2tan 22.5°C.1-tan222.5° D .sin 15°cos 15°sin 2α2.(2011·福建)若 tan α=3,则 cos2α 的值等于( ).23.已知 sin α=3,则 cos(π-2α)等于().π 14.(2011·辽宁)设 sin ( 4+θ)=3,则 sin 2θ=().5.tan 20°+tan 40°+ 3tan 20° tan 40°=.考向一 三角函数式的化简12cos4x -2cos2x +π π2 【例 1】►化简2tan ( 4 -x )sin2( 4 +x ).[审题视点] 切化弦,合理使用倍角公式.β 1 α 2三角函数式的化简要遵循“三看”原则:(1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式; (3)三看“结构特征”,分析结构特征,找到变形的方向.sin α+cos α-1sin α-cos α+1【训练 1】 化简:sin 2α.考向二 三角函数式的求值π【例 2】►已知 0<β< 2 <α<π,且(α- ) (-β)cos2 =-9,sin 2 =3,求 cos(α+β)的值.【训练 2】 已知 α,β∈( )三角函数的给值求值,关键是把待求角用已知角表示:(1) 已知角为两个时,待求角一般表示为已知角的和或差.(2) 已知角为一个时,待求角一般与已知角成“倍的关系”或“互余互补”关系.π4 1(0,2 ),sin α=5,tan(α-β)=-3,求 cosβ 的值.考向三 三角函数的求角问题1 13 π【例 3】►已知 cos α=7,cos(α-β)=14,且 0<β<α< 2 ,求 β.通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;0, π若角的范围是 2 ,选正、余弦皆可;若角的范围是(0,π),选余弦较好;π π (- 2 ,2 )若角的范围为 ,选正弦较好. π π(- ,)【训练3】 已知 α,β∈ 2 2 ,且tanα,tan β 是方程x 2+3 3x +4=0 的两个根,求 α+β 的值.π考向四三角函数的综合应用【例 4】►(2010·北京)已知函数f(x)=2cos 2x+sin2x.( 3)(1)求f的值;(2)求f(x)的最大值和最小值.高考对两角和与差的正弦、余弦、正切公式及二倍角公式的考查还往往渗透在研究三角函数性质中.需要利用这些公式,先把函数解析式化为y=A sin(ωx+φ)的形式,再进一步讨论其定义域、值域和最值、单调性、奇偶性、周期性、对称性等性质.【训练 4】已知函数f(x)=2sin(π-x)cos x. (1)求f(x)的最小正周期;[6 ] 2(2)求f(x)在区间ππ-,上的最大值和最小值.三角函数求值、求角问题策略面对有关三角函数的求值、化简和证明,许多考生一筹莫展,而三角恒等变换更是三角函数的求值、求角问题中的难点和重点,其难点在于:其一,如何牢固记忆众多公式,其二,如何根据三角函数的形式去选择合适的求值、求角方法.一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论.(x+π)tan x【示例】►(2011·江苏)已知tan 4 =2,则tan 2x的值为.二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.1 1 【示例】►(2011·南昌月考)已知tan(α-β)=2,tan β=-7,且α,β∈(0,π),求2α-β的值.( 互相垂直,其中 θ∈ 2 )▲三角恒等变换与向量的综合问题两角和与差的正弦、余弦、正切公式作为解题工具,是每年高考的必考内容, 常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.【示例】► (2011·温州一模)已知向量 a =(sin θ,-2)与 b =(1,cos θ)π 0,.(1) 求 sin θ 和 cos θ 的值;π(2) 若 5cos(θ-φ)=3 5cos φ,0<φ< 2 ,求 cos φ 的值.【课后训练】A 组 专项基础训练 (时间:35 分钟,满分:57 分)一、选择题(每小题 5 分,共 20 分)22π ( )3 3tan 12°-311. (2012·江西)若 tan θ+tan θ=4,则 sin 2θ 等于( )1A.51B.4 1C.3 1D.22. (2012·大纲全国)已知 α 为第二象限角,sin α+cos α= 3 ,则 cos 2α 等于()55 5 5 A .- 3B .- 9C. 9D. 35103. , 则 α+β 等于C. 4 和 4(0, )D .- 4 和-414. (2011·福建)若 α∈()A. 22 ,且 sin 2α+cos 2α=4,则 tan α 的值等于B. 3C.D.二、填空题(每小题 5 分,共 15 分)5. cos 275°+cos 215°+cos 75°cos 15°的值等于.6.4cos212°-2sin 12°=.3 3 0,π7.sin α=5,cos β=5,其中 α,β∈ 2 ,则 α+β=.三、解答题(共 22 分)1+sin α 1-sin α 8. (10 分)已知集合.1-sin α- 1+sin α=-2tan α,试确定使等式成立的 α 的取值3 3已知 α,β 都是锐角,若 sin ()α= 5 , s in β= 10 π 3πA.4 π 3πB. 4π3π3π αα( ,π) 69. (12 分)已知 α∈ 2,且 sin 2 +cos 2 = 2. (1) 求 cos α 的值; (π)(2)若 s in(α-β)=-5,β∈4 1 (-3)2,π ,求 cos β 的值. 4 3+3 =- 2 ×5+2× 5 =- 10 .B 组 专项能力提升 (时间:25 分钟,满分:43 分)一、选择题(每小题 5 分,共 15 分)3( ) 5[π,π]1. (2012·山东)若 θ∈ 4 ( )3A.5 2 ,sin 2θ=4B.5 3 8 ,则 sin θ 等于C. 4D.42 (β-π)1(α+π)2. 已知 tan(α+β)=5,tan ()4 =4,那么 tan 4 等 于1313 A.18 3 B.22 1 C.22ππD.63. 当- 2 ≤x ≤ 2 时,函数 f (x )=sin x + A. 最大值是 1,最小值是-11B. 最大值是 1,最小值是-2C. 最大值是 2,最小值是-2D. 最大值是 2,最小值是-13cos x 的( )二、填空题(每小题 5 分,共 15 分)(π-α)4. 已知锐角 α 满足 cos 2α=cos 4 ,则 sin 2α=. cos 2απ12(0,π) sin (π+α)5. 已知 cos ( 4 -α)=13,α∈4 ,则 4 =.0,π 2sin2x +1 6. 设 x ∈ 2 ,则函数 y = sin 2x 的最小值为 .三、解答题7. (13 分)(2012·广东)已知函数 f (x )=2cos为 10π.(ωx +π) 6 (其中 ω>0,x ∈R )的最小正周期(1) 求 ω 的值;π 56[0, ] (5α+ π) (5β- π) (2)设 α,β∈2 ,f3 =-5,f63 7 7实用标准文档16=17,求 cos(α+β)的值.文案大全“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

三角恒等变换经典例题

三角恒等变换经典例题

三角恒等变换1. 两角和与差的正弦、余弦、正切公式:(1)βαβαβαsin cos cos sin )sin(+=+ βαβαβαsin co cos sin )sin(s -=- (2)βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=-(3)βαβαβαtan tan 1tan tan )tan(-+=+ ⇒ ()()tan tan tan 1tan tan αβαβαβ+=+-(4)βαβαβαtan tan 1tan tan )tan(+-=- ⇒ ()()tan tan tan 1tan tan αβαβαβ-=-+(7) sin cos a b αα+=)αϕ+(其中,辅助角ϕ所在象限由点(,)a b 所在的象限决定,sin tan ba ϕϕϕ=== ,该法也叫合一变形). (8))4tan(tan 1tan 1θπθθ+=-+ )4tan(tan 1tan 1θπθθ-=+-2. 二倍角公式(1)a a a cos sin 22sin = (2)1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a a(3)aaa 2tan 1tan 22tan -=3. 降幂公式:(1)22cos 1cos 2a a +=(2) 22cos 1sin 2a a -=4. 升幂公式(1)2cos 2cos 12αα=+ (2)2sin2cos 12αα=-(3)2)2cos 2(sin sin 1ααα±=± (4)αα22cos sin 1+= (5)2cos2sin 2sin ααα=5. 半角公式(符号的选择由2θ所在的象限确定) (1)2cos 12sinaa -±=, (2)2cos 12cos a a +±= , (3)a a a a a a a sin cos 1cos 1sin cos 1cos 12tan-=+=+-±=6. 万能公式:(1)2tan 12tan2sin 2ααα+=, (2)2tan 12tan 1cos 22ααα+-=,(3).2tan 12tan2tan 2ααα-=7,辅角公式)sin(cos sin 22ϕθθθ++=+b a b a 其中2222sin ,cos b a bb a a +=+=ϕϕ,比如:xx y cos 3sin +=)cos )3(13sin )3(11()3(1222222x x ++++=)cos 23sin 21(2x x +=)3sin cos 3cos (sin 2ππx x +=)3sin(2π+=x10.常见数据:sin15cos75cos15︒=︒=︒=︒= 3215tan -=︒, 3275tan +=︒,专题四 三角恒等变形各类题命题点1 和差公式的直接应用1.(2015课标1,2) 0000sin 20cos10cos160sin10-=( ).AB 1.2C - 1.2D2.(2017江苏,5)若1tan()46πα-=,则tan α=_____________ . 3.(2016·杭州模拟)已知sin α=35,α∈(π2,π),则cos 2α2sin (α+π4)=________.4.在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22 B.22 C.12 D .-125.(2016·全国丙卷)若tan α=34,则cos 2α+2sin 2α等于( )A.6425B.4825 C .1 D.16256.(2016·宁波期末考试)已知θ∈(0,π4),且sin θ-cos θ=-144,则2cos 2θ-1cos (π4+θ)等于( )A.23B.43C.34D.327.(2017浙江高考模拟训练冲刺卷四,4)已知4sin25θ=-,3cos 25θ=,则θ属于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 命题点2 角的变换8.设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于( ) A.2525 B.255 C.2525或255 D.55或5259.已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是________.10.设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为________.11.(2016·浙江五校联考)已知3tan α2+tan 2α2=1,sin β=3sin(2α+β),则tan(α+β)等于( )A.43 B .-43 C .-23 D .-3 命题点3 三角函数式的化简12.(2013重庆,9)004cos50tan 40-=()BC 1 13.化简:(1+sin θ+cos θ)(sin θ2-cos θ2)2+2cos θ (0<θ<π);化简4cos 2sin 22+-14.求值:1+cos 20°2sin 20°-sin 10°(1tan 5°-tan 5°).15. 化简:2cos 4x -2cos 2x +122tan ⎝⎛⎭⎫π4-x sin 2⎝⎛⎭⎫π4+x =________.16.(2017·嘉兴第一中学调研)若sin(π+α)=35,α是第三象限角,则sin π+α2-cosπ+α2sin π-α2-cosπ-α2等于A.12 B .-12C .2D .-2 命题点4 给值求值问题17.(2017课标全国3文,4)已知4sin cos 3αα-=,则sin2α=( ) 7.9A - 2.9B - 2.9C 7.9D18.(2016·合肥联考)已知α,β为锐角,cos α=17,sin(α+β)=5314,则cos β=________.19.(2013浙江,6)已知R α∈,sin 2cos αα+=则tan 2α=( ) 4.3A 3.4B 3.4C - 4.3D - 20.(2014江苏,15)已知(,)2παπ∈,sin α=(1)求sin()4πα+的值;(2)求5cos(2)6πα-的值。

三角恒等变换练习题及答案

三角恒等变换练习题及答案

角函数公式两角和公式sin(A+B)=sin(A-B)=cos(A+B)=cos(A-B)=tan(A+B)=tan(A-B)=倍角公式tan2α=cos2α=sin2α=半角公式sin^2( α/2)=cos^2( α/2)=tan^2( α/2)=和差化积2sinAcosB=2cosAsinB=2cosAcosB=-2sinAsinB=积化和差公式sinαsinβ=cosαcos=βsin αco=sβ万能公式sin(α)= (2tαn(α/2))/(1+t αn^2(α/2)) cos(α)= (1-t αn^2(α/2))/(1+t αn^2( α/2)) tαn(α)= (2tαn(α/2))/(1-t αn^2( α/2))角函数公式两角和公式sin(Α+B)=sin ΑcosB+cosΑsinB sin(Α-B)=sinΑcosB-sinBcosΑcos(Α+B)=cosΑcosB-sinΑsinB cos(Α-B)=cosΑcosB+sinΑsinBt αn(Α+B)=(tαnΑ+tαnB)/(1-t αnΑt αnB) tαn(Α-B)=(tαnΑ-t αnB)/(1+tαnΑt αnB) 倍角公式cos2 cos 2sin 2 2 c os 2 1 1 2 sin 2;。

sin 2 tan2 2sin2 tancos ;1 tan2半角公式sin^2( α/2)=(1-cos α)/2cos^2( α/2)=(1+cos α)/2tαn^2( α/2)=(1-cos α)/(1+cos α)和差化积2sinΑcosB=sin(Α+B)+sin( Α-B) 2cosΑsinB=sin(Α+B)-sin(Α-B) ) 2cosΑcosB=cos(Α+B)+cos(Α-B)-2sinΑsinB=cos(Α+B)-cos(Α-B)积化和差公式sin(α)sin(β)=—1/2*[cos( α+β)-cos(α-β)] cos(α)cos(β)=1/2*[cos( α+β)+cos(α-β)] sin(α)cos(β)=1/2*[sin( α+β)+sin(α-β)]1. 三角函数式的化简(1)降幂公式sin cos 1sin 22;sin1 cos22;cos1 cos2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单三角恒等变换复习
一、公式体系
1、和差公式及其变形:
(1)βαβαβαsin cos cos sin )sin(±=± ⇔ )sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ⇔ )cos(sin sin cos cos βαβαβα±= (3)β
αβ
αβαtan tan 1tan tan )tan( ±=
± ⇔ 去分母得 )tan tan 1)(tan(tan tan βαβαβα-+=+
)tan tan 1)(tan(tan tan βαβαβα+-=-
2、倍角公式的推导及其变形:
(1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+=
⇔ααα2sin 2
1
cos sin =
⇔2)cos (sin 2sin 1ααα±=±
(2)ααααααααα2
2
sin cos sin sin cos cos )cos(2cos -=-=+=
)sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=⇔
1
cos 2)cos 1(cos sin cos 2cos 22222-=--=-=⇔αααα
αα⇔把1移项得αα2cos 22cos 1=+ 或 αα
2cos 2
2cos 1=+ 【因为α是

的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2
cos 2cos 12α
α=+
因为α4是α2的两倍,所以公式也可以写成
12cos 24cos 2-=αα 或 αα2cos 24cos 12=+ 或 αα
2cos 2
4cos 12=+】
α
ααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=⇔ ⇔把1移项得αα2
sin 22cos 1=- 或
αα
2sin 2
2cos 1=- 【因为α是
2
α
的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2sin 2cos 12αα=- 或 2
sin 2cos 12α
α=-
因为α4是α2的两倍,所以公式也可以写成
αα2sin 214cos 2-= 或 αα2sin 24cos 12=- 或 αα
2sin 2
4cos 12=-】
二、基本题型
1、已知某个三角函数,求其他的三角函数:
注意角的关系,如)4
()4(,)(,)(π
βαπ
βααβαβββαα-++=+-+=-+=等等 (1)已知βα,都是锐角,13
5
)cos(,54sin =+=βαα,求βsin 的值
(2)已知,4
0,1312)45sin(,434,53)4
cos(π
ββππαπαπ
<<-=+<<=
-求)sin(βα+的值 (提示:βαπαπ
βπ++=--+)4
()45(
,只要求出)sin(βαπ++即可)
2、已知某个三角函数值,求相应的角:只要计算所求角的某个三角函数,再由三角函数值求角,注意选择合适的三角函数
(1)已知βα,都是锐角,10
103cos ,55sin ==βα,求角βα+的弧度
3、)(βα+T 公式的应用
(1)求)32tan 28tan 1(332tan 28tan 0
000+++的值
(2)△ABC 中,角A 、B 满足2)tan 1)(tan 1(=++B A ,求A+B 的弧度
4、弦化切,即已知tan ,求与sin ,cos 相关的式子的值:化为分式,分子分母同时除以αcos 或α2
cos 等 (1)已知2tan =α,求
ααα
αα
ααααα2cos 2sin 3,2cos 2sin 12cos 2sin 1,cos sin 3cos 5sin +-++++-的值
5、切化弦,再通分,再弦合一
(1)、化简:① )10tan 31(50sin 0
+ ② 0
35
sin 10cos )110(tan ⋅-
(2)、证明:
x x
x x x tan )2
tan tan 1(cos 22sin =+
6、综合应用,注意公式的灵活应用与因式分解结合 化简4cos 2sin 22+-
1、sin 20cos 40cos 20sin 40+的值等于( )
A .
14 B .2 C .1
2
D .4
2、若tan 3α=,4
tan 3
β=
,则tan()αβ-等于( ) A .3- B .3 C .13- D .1
3
3、cos
5
π
cos
5
2π的值等于( )
A .
41 B .
2
1 C .
2 D .4
4、 已知02A π
<<
,且3
cos 5
A =
,那么sin 2A 等于( )
A .425
B .725
C .12
25
D .2425
5、已知,41)4tan(,52)tan(=-=+πββα则)4
tan(π
α+的值等于 ( )
A .1813 B.223 C.2213 D.18
3
6、sin165º= ( ) A .
21
B .23
C .426+
D .
4
2
6- 7、sin14ºcos16º+sin76ºcos74º的值是( )
A .
23 B .21 C .23 D .2
1
- 8、已知(,0)2
x π
∈-,4
cos 5
x =
,则=x 2tan ( ) A .
247 B .247- C .7
24 D .724-
9、化简2sin (
4π-x )·sin (4
π
+x ),其结果是( ) A.sin2x B.cos2x C.-cos2x D.-sin2x 10、sin
12π—3cos 12
π
的值是 ( ) A .0 B . —2 C .
2 D . 2 sin
12

11、
)( 75tan 75tan 12的值为︒

-
A .32
B .332
C . 32-
D .3
3
2-。

相关文档
最新文档