紫外可见分子吸收光谱法
紫外-可见吸收光谱 - 紫外-可见吸收光谱

2.生色团(发色团) 含有n→π*或π→π*的基团。 例:C=C;C=O;C=S;—N=N— 等
3.助色团 含非键电子的杂原子饱和基团。 例:—OH,—OR,—NH—,—NR2—,—X 4.红移(长移)、蓝移(短移): 由于化合物结构变化(共轭、引入助色团)或采用不同溶
剂后: 吸收峰向长波方向移动,叫红移 吸收峰向短波方向移动,叫蓝移
第一节 紫外-可见吸收光谱
5.增色效应、减色效应 增色效应:使吸收强度增加的效应 减色效应:使吸收强度减弱的效应
6.吸收带 吸收光谱中吸收峰的位置称做吸收带 εmax>104 → 强带 εmax<102 → 弱带
第一节 紫外-可见吸收光谱
四、吸收带类型和影响因素
(一)吸收带类型 • 1.R带:由含杂原子的不饱和基团的n →π*跃迁产生(C
分子中价电子(外层电子)吸收紫外-可见光区的电磁 辐射发生电子能级跃迁
(吸收能量=两个跃迁能级之差)
第一节 紫外-可见吸收光谱
二、紫外-可见吸收光谱的电子跃迁类型
1.有机化合物紫外-可见吸收光谱的电子跃迁类型 从有机物化学键的性质来看,与紫外-可见吸收光谱有关的
电子主要有三种,即形成单键的σ 电子,形成双键π 电子以及 未参与成键的n电子。
水
243 nm 305 nm
迁移
长移 短移
第一节 紫外-可见吸收光谱
第一节 紫外-可见吸收光谱
4. 体系pH的影响
OH OH
O
H+
苯酚在不同pH时的紫外吸收光 谱
=O;C=N;-N=N- )
• λmax≈ 300nm, max<100
• 溶剂极性↑,λmax↓ → 蓝移(短移) 2.K带:由共轭双键的π→ π*跃迁产生
5.紫外-可见吸收光谱法

•双波长分光光度计
双波长分光光度计的优点:是可以在有 背景干忧或共存组分吸收干忧的情况下 对某组分进行定量测定。 岛津UV-2700双光束双波长的
5.4 分析条件的选择 (一)显色反应的选择及类型 选择显色反应时应考虑的因素:
灵敏度高、选择性高、生成物稳定、显色剂在测定波 长处无明显吸收,两种有色物最大吸收波长之差:“对比 度”,要求△ > 60nm。
吸光度A与显色剂用量CR 的关系会出现如图所示的几种 情况。选择曲线变化平坦处。
2.反应体系的酸度
在相同实验条件下,分别测定不同pH值条件 下显色溶液的吸光度。选择曲线中吸光度较大且 恒定的平坦区所对应的pH范围。
3.显色时间与温度
由实验确定。
4.溶剂
一般尽量采用水相测定。
(三) 波长的选择
一般根据待测组分的吸收光谱,选择最大 吸收波长作为测定波长。
收物质最大限度的吸光能力,也反映了光度法测定该物质可 能达到的最大灵敏度。 (5)εmax越大表明该物质的吸光能力越强,用光度法测定该 物质的灵敏度越高。 ε>105:超高灵敏; ε=(6~10)×104 :高灵敏;
ε<2×104 :不灵敏。
3. 吸光度A与透光度T的关系
透过光的强度It与入射光的强度Io之比称 为透光度或透光率,用T表示。 T = I t / I0
⑶ π→π*跃迁
所需能量较小,吸收波长处于远紫外区的近紫外端或近 紫外区,摩尔吸光系数εmax一般在104 L· mol-1· cm-1以上,属于
强吸收。不饱和烃、共轭烯烃和芳香烃类均可发生该类跃迁 。如:乙烯π→π*跃迁的λmax为162 nm,εmax为1×104 L·mol1· cm-1。
在波长200-750nm内,基于分子内电子跃迁的吸收 光谱来确定物质的组成、含量,推测物质结构的一种 分析方法,又称为紫外-可见分光光度法。它属于分子 吸收光谱法。
紫外可见吸收光谱法原理_概述解释说明

紫外可见吸收光谱法原理概述解释说明1. 引言1.1 概述紫外可见吸收光谱法是一种广泛应用于化学分析、生物医药和材料科学等领域的分析技术。
它通过检测样品吸收紫外或可见光的能力,可以确定样品中存在的化合物或物质的浓度。
紫外可见吸收光谱法基于原子、离子或分子在特定波长范围内对电磁辐射的选择性吸收现象,利用这种吸收现象可以获得样品所具有的信息。
本文将对紫外可见吸收光谱法的原理进行详细介绍,并探讨其在化学分析、生物医药和材料科学中的应用。
1.2 文章结构本文共分为五个部分:引言、紫外可见吸收光谱法原理、紫外可见吸收光谱应用领域、实验方法与操作步骤以及结论和展望。
1.3 目的本文旨在向读者介绍紫外可见吸收光谱法的基本原理以及其在不同领域中的应用。
通过阐述紫外可见吸收光谱法的操作方法和实验步骤,希望能为初学者提供一份清晰的指南,使其能够准确、有效地应用该技术进行分析。
同时,我们将对紫外可见吸收光谱法的局限性进行讨论,并展望其未来在科学研究和实际应用中的发展方向。
2. 紫外可见吸收光谱法原理:2.1 光谱的基本概念:光谱是指将某物质在不同波长范围内对电磁辐射的吸收、发射或散射进行分析和测量的方法。
根据电磁辐射的能量不同,可将光谱分为紫外光谱、可见光谱和红外光谱等。
其中,紫外可见吸收光谱法利用物质对紫外及可见光区域(200-800 nm)的吸收特性进行定量和定性分析。
2.2 紫外可见吸收光谱的原理:紫外可见吸收光谱法是通过物质吸收特定波长范围内电磁辐射而产生的能级跃迁来进行分析。
当样品受到入射光线照射后,样品中的某些化学成分会吸收特定波长范围内的能量,并转为高能态。
这些化学成分在高能态时可能会跃迁至更高能级或离子化状态,从而使入射光线中特定波长的能量被吸收,形成明显的吸收峰。
根据琴斯定律(Lambert-Beer定律),光的吸收与样品中物质浓度成正比。
因此,通过测量入射光和透射光之间的吸收差异,可以推算出样品中特定化合物的浓度。
05第5章 紫外可见吸收光谱法

ε=200
苯 甲苯 间二甲苯 1,3,5-三甲苯 六甲苯
其中B带为芳香族的重要特 征吸收带,常用于识别:精 精 细结构是 π → π*与苯环振动 细结构 引起;
λmax(nm) 254 261 263 266 272
ε max 200 300 300 305 300
含带有孤对电子的取代基时,由于n → π*共轭, B带强度 增大简化,红移;对于烷基取代基影响不大。
ε
能级跃迁
电子能级间跃迁 同时,总伴随有 的同时 同时 振动和转动 振动 转动能级间 转动 的跃迁。即电子光 谱中总包含 包含有振动 包含 能级和转动能级间 跃迁产生的若干谱 线而呈现宽谱带 宽谱带。 宽谱带
分子的内能: 分子的内能:电子能量Ee 、振动能量Ev 、转 动能量Er 即: E=Ee+Ev+Er 三种能级都是量子化的, 三种能级都是量子化的,且各自具有相应的能 量。
σ*
K E,B R
∆E
π*
n
π
σ
2):n→σ*跃迁
所需能量较大。 吸收波长为150~250nm,大部分在远紫外区,近紫外区 仍不易观察到。 含非键电子的饱和烃衍生物(含N、O、S和卤素等杂原 子)均呈现n→σ* 跃迁。
化合物 H2O CH3OH CH3CL CH3I CH3NH2 λmax(nm) 167 184 173 258 215 εmax 1480 150 200 365 600
讨论: 讨论:
0.005~0.050eV, (1) 转动能级间的能量差ΔΕr:0.005~0.050eV,跃迁 产生吸收光谱位于远红外区。远红外光谱或分子转动光谱; 产生吸收光谱位于远红外区。远红外光谱或分子转动光谱; 约为:0.05~ eV, (2) 振动能级的能量差ΔΕv约为:0.05~1eV,跃迁产 生的吸收光谱位于红外区,红外光谱或分子振动光谱; 生的吸收光谱位于红外区,红外光谱或分子振动光谱; 较大1 20eV。 (3) 电子能级的能量差ΔΕe较大1~20eV。电子跃迁产生 的吸收光谱在紫外-可见光区,紫外— 的吸收光谱在紫外-可见光区,紫外—可见光谱或分子的电 子光谱; 子光谱;
紫外-可见吸收光谱法全

8. B带
芳香族化合物ππ*跃迁产生的特征精细结 构吸收带。
特点: ➢ 230~270nm 呈 一 宽 峰 , 中 心 为 255nm 左 右 ,
且具有精细结构;(用于识别芳香族化合 物) ➢ε~200 L·mol-1·cm-1; ➢ 于极性溶剂中可能消失。
9. E带 也是芳香族化合物ππ*跃迁产生的特征吸 收带。可分为E1和E2带。 特点: E1带约为180nm(ε> 104 L·mol-1·cm-1 ); E2带约为200nm(ε~ 7000L·mol-1·cm-1 )。
测定同一化合物在不同极性溶剂中n* 跃迁吸收带,就能计算其在极性溶剂中氢键 的强度。
例:在水中,丙酮的n*吸收带为264.5 nm,
能量452.99 kJ·mol-1;在己烷中,该吸收带为
279 nm,能量为429.40 kJ·mol-1。
丙酮在水中形成的氢键强度为452.99 - 429.40 =
9.1.2 无机化合物的紫外-可见吸收光谱 9.1.2.1 电荷转移跃迁(强吸收) 1. 金属配合物或水合离子
(FeSCN)2+、Cl-(H2O)n 2. 谱峰位置与给受电子能力有关。
Mn+-Lb- hν M(n-1)+-L(b-1)-
电子受体 电子给体
9.1.2.2 配位场跃迁 d-d跃迁和f-f跃迁 特点:ε小,一般位于可见区。
4. 溶剂的选择 ➢ 尽量选用非极性溶剂或低极性溶剂; ➢ 溶剂能很好地溶解被测物,且形成的溶
液具有良好的化学和光化学稳定性; ➢ 溶剂在样品的吸收光谱区无明显吸收。
9.1.4.3 pH的影响
9.2 紫外-可见分光光度计 9.2.1 仪器的基本构造
光源 单色器 吸收池 检测器 信号指示系统
仪器分析 第三章 紫外可见吸收光谱法

第三章紫外可见吸收光谱法1.定义2.紫外吸收光谱的产生3.物质对光的选择性吸收4.电子跃迁与分子吸收光谱第一节概述11. 定义根据溶液中物质的分子或离子对紫外、可见光谱区辐射能的吸收来研究物质的组成和结构的方法,包括比色分析法与分光光度法。
◆比色分析法:比较有色溶液颜色深浅来确定物质含量的方法。
◆分光光度法:使用分光光度计进行吸收光谱分析测量的方法。
2/紫外-可见波长范围:(真空紫外区)◆远紫外光区:10-200 nm;◆近紫外光区:200-400 nm;◆可见光区:400-780 nm。
◆O2、N2、CO2、H2O等可吸收远紫外区(60-200 nm)电磁辐射。
◆测定远紫外区光谱时,须将光学系统抽真空,并充入惰性气体。
◆准确:近紫外-可见分光光度法(200-780 nm)。
3/方法特点:◆仪器较简单,价格较便宜;◆分析操作简单;◆分析速度较快。
4/紫外可见吸收光谱:分子中价电子能级跃迁(伴随着振动能级和转动能级跃迁)。
2. 紫外可见吸收光谱的产生价电子的定义?AB 电磁辐射5/◆分子内部三种运动形式:电子相对于原子核的运动;原子核在其平衡位置附近的相对振动;分子本身绕其重心的转动。
◆分子具有三种不同能级:电子能级、振动能级和转动能级(量子化,具有确定能量值)。
◆分子内能:包括电子能量E e、振动能量E v、转动能量Er 。
2.1 电子跃迁与分子吸收光谱6/分子的各能级:◆转动能级能量差:0.005~0.05 eV,跃迁产生吸收光谱位于远红外区(远红外光谱或分子转动光谱)。
◆振动能级能量差:0.05~1 eV,跃迁产生吸收光谱位于红外区(红外光谱或分子振动光谱)。
◆电子能级能量差:1~20 eV。
电子跃迁产生的吸收光谱在紫外-可见光区(紫外-可见光谱或分子的电子光谱)。
7/8/◆电子能级间跃迁的同时,总伴随有振动和转动能级间的跃迁。
◆电子光谱中总包含有振动/转动能级间跃迁产生的若干谱线而呈现宽谱带(带状光谱)。
紫外可见吸收光谱法

-C-C- 如:乙烷: max=135nm C-H 如: 甲烷: max= 125nm
2) n * 跃迁
分子中未共用n电子跃迁到* 轨道
化合物种类:凡含有n电子的杂原子的饱和化合物
特点:跃迁所需要的能量较高
位置:远紫外光区和近紫外光区
150-250nm
ε=100 ~ 1000 L·cm-1 ·mol-1
Mn+-Lb- M(n+1)+-L(b+1)- (hν) [Fe3+-SCN-]2+ [Fe2+-SCN]2+ (这就是配合物λmax=490nm为血红色原因)
金属配合物的电荷转移吸收光谱,有三种类型:
1. 电子从配体到金属离子: 相当于金属的还原; 2. 电子从金属离子到配体; 产生这种跃迁的必要条件是金属离子容易被氧化
白炽光源: 热辐射光源:可见光区,340-2 500nm,影响因素:灯电压
如 钨丝灯和卤钨灯; 气体放电光源: 气体放电发光光源:紫外光
否相同。 在进行紫外光谱法分析时,必须正确选择溶剂。
三、紫外-可见分光光度计
光源 λ1、 λ2、 λ3、 …、 λn
分光系统
λmax
调制放大 记录系统→显示A
检测系统 光→电
I0→样品池→ It
紫外-可见分光光度计主要组成部件
光源
分光系统
样品池
检测系统
记录系统
1、光源
1.光源:提供入射光的元件。
3.电子从金属到金属
配合物中含有两种不同氧化态的金属时,电子可在其间转移,
这类配合物有很深的颜色,如普鲁士蓝 (磷、砷)钼蓝 H8 [SiMo2O5(Mo2O7)5 ]
(整理)紫外吸收光谱法

(整理)紫外吸收光谱法第8章紫外吸收光谱法紫外-可见分⼦吸收光谱法(ultraviolet-visible molecular absorption spectrometry,UV-VIS ),⼜称紫外-可见分光光度法(ultraviolet-visible spectrophotometry )。
它是研究分⼦吸收190~750nm 波长范围内的吸收光谱。
紫外-可见吸收光谱主要产⽣与分⼦价电⼦在电⼦能级间的跃迁,是研究物质电⼦光谱的分析⽅法。
通过测定分⼦对紫外-可见光的吸收,可以⽤于鉴定和定量测定⼤量的⽆机化合物和有机化合物。
在化学和临床实验室所采⽤的定量分析技术中,紫外-可见分⼦吸收光谱法是应⽤最⼴泛的⽅法之⼀。
§9-1 光吸收定律⼀、朗伯-⽐尔定律分⼦吸收光谱法是基于测定在光程长度为b (cm )的透明池中,溶液的透射⽐T 或吸光度A 进⾏定量分析。
通常被分析物质的浓度c 与吸光度A 呈线性关系,可⽤下式表⽰:0lg tI A abc I == (9-1)式中各参数的定义如表9-1所⽰。
该式是朗伯-⽐尔定律的数学表达式,它指出:当⼀束单⾊光穿过透明介质时,光强度的降低同⼊射光的强度、吸收介质的厚度以及光路中吸光微粒的数⽬呈正⽐。
由于被分析物质的溶液是放在透明的吸收池中测量,在空⽓/吸收池壁以及吸收池壁/溶液的界⾯间会发⽣反射,因⽽导致⼊射光和透射光的损失。
如当黄光垂直通过空⽓/玻璃或玻璃/空⽓界⾯时,约有8.5%的光因反射⽽被损失。
此外,光束的衰减也来源于⼤分⼦的散射和吸收池的吸收。
故通常不能按表9-1所⽰的定义直接测定透射⽐和吸光度。
为了补偿这些影响,在实际测量中,采⽤在另⼀等同的吸收池中放⼊溶剂与被分析溶液的透射强度进⾏⽐较。
⼆、吸光度的加和性当溶液中含有多种对光产⽣吸收的物质,且各组分间不存在相互作⽤时,则该溶液对波长λ光的总吸收光度A 等于溶液中每⼀成分的吸光度之和,即吸光度具有加和性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:已知铁的相对原子质量为55.85。根据比尔定律得:
a A
0.19
190L g 1 cm1
bc 2 5.0 104
Ma 55.85190 1.1104 L mol1 cm1
二.吸光度的加和性
多组分体系中,只要各种吸光物质之间没有相互 作用,这时体系的总吸光度等于各组分吸光度之 和,即吸光度具有加和性。
严格控制显色反应条件,对偏离加以预测和防治, 以获得较好的测定效果。
Cr2O72-+2H2O 2HCrO4- 2H++2CrO42-
例如,重铬酸钾在水
溶液中存在如下平衡, 如果稀释溶液或增大 溶液pH,Cr2O72-就转 变成CrO42-,吸光质点 发生变化,从而引起 偏离比尔定律。如果 控制溶液在高酸度时 测定,由于六价铬以 重铬酸根形式存在, 就不会引起偏离。
如果c以 g·L-1为单位,则α的单位为L·g-1·cm-1。
如果c以 mol·L-1为单位,则此时的吸光系数称为摩 尔吸收系数,单位为L·mol-1·cm-1。
参比溶液调节仪器:
吸收池为透明的玻璃或石英比色皿,在空气/吸 收池壁、吸收池壁/溶液的界面间会发生反射,导致 入射光和透射光的损失;大分子的散射和吸收池的 吸收也导致光束的衰减。
A lg T lg I0 bc 或 A lg T lg I0 abc
I
I
A lg T lg I0 bc=abc
I
式中:A ——吸光度(absorbance); T ——透光度,T=I/I0; I0——入射光强度; I ——透射光强度; α——吸光系数; ε——摩尔吸收系数 b —— 液池厚度,
A lg (I '0 I"0 )
成直线关系。
(I 'I")
或
A
lg
(I
(I '0 '0 10 'bc
I"0 ) I"0 10 "bc
)
' ",A与c
非直线关系。
§5~2 紫外可见分光光度计
一 、仪器的基本部件
光源 —— 单色器 —— 吸收池 —— 检测器 —— 显示器
适用于常量、微量及多组分的测定。
一、朗伯-比尔定律
朗伯-比尔定律是分光光度法定量的依据,由实验 观察得到的。
当一束平行单色光通过单一均匀的、非散射的吸 光物质溶液时,溶质吸收了光能,光的强度就要 减弱。溶液的浓度c愈大,液层厚度b愈厚,入射 光愈强,则光被吸收的愈多,光强度的减弱也愈 显著。
单色器是从连续光谱中获得所需单色光的装置。 常用的有棱镜和光栅两种单色器。
棱镜单色器的缺点是色散率随波长变化,得到的 光谱呈非均匀排列,而且传递光的效率较低。
光栅单色器在整个光学光谱区具有良好的几乎相 同的色散能力。因此,现代紫外—可见分光光度 计上多采用光栅单色器。
单色器
(三)吸收池
1.比尔定律本身的局限性
Beer定律适用的一个前提:稀溶液(假设吸光粒 子是独立的,彼此无相互作用)
浓度过高(通常>0.01mol·L-1),会使C与A关系偏 离定律。
2.化学偏离
被分析物质与溶剂发生缔合、解离及溶剂化反应, 从而形成新的化合物或改变吸收物质的浓度,都将导 致偏离比尔定律。
实际测量中,用溶剂放入吸收池,调节仪器的 透光率T为100,然后测量分析溶液的真实吸光度。
T I溶液 = I I 溶剂 I 0
A lg I溶剂 lg I0Fra bibliotekI 溶液I
例 : 铁()质量浓度为5.0×10-4 g·L-1的溶液, 与1,10-邻二氮杂菲反应,生成橙红色配合物。该 配合物在波长508nm,比色皿厚度为2cm时,测得 A=0.19。计算1,10-邻二氮杂菲亚铁的α及ε。
§ 5-1 光吸收定律
紫外-可见分子吸收光谱:研究分子对190~750nm 范围内光的吸收。光谱主要产生于分子价电子在电 子能级间的跃迁,是研究物质电子光谱的分析方法。
特点:
① 仪器简单,操作简便,便于普及。 ② 灵敏度高,适用于微量组分的测定。 ③ 准确度高,相对误差2~5%。 ④ 选择性好。 ⑤ 应用广泛——定量、定性及简单的结构分析;
A总 =A1 A2 A3 An (1c1 2c2 3c3 ncn )b
式中下角标指吸收组分1,2,…,n。
三、比尔定律应用的局限性
以吸光度为纵坐标, 标准溶液浓度为横坐 标作图。根据朗伯-比 尔定律,应得到一条 通过原点的直线。该 直线称为标准曲线或 工作曲线。 实际工作中,常会发 生偏离。
吸收池是用于盛放溶液并提供一定吸光厚度的 器皿。
它由玻璃或石英材料制成。 玻璃吸收池只能用于可见光区。最常用的吸收
池厚度为1cm。
(四)检测器
检测器的作用是检测光信号。常用的检测器有光 电管和光电倍增管。
1.光电管
光电管由一个半圆筒形阴极和一个金属丝阳极组 成。当照射阴极上光敏材料时,阴极就发射电子。 两端加压,形成光电流。
(一)光源
光源的作用是提供辐射——连续复合光 可见光区 钨灯(320-2500nm )、碘钨灯
优点:发射强度大、使用寿命长 紫外光区
氢灯、氘灯 160-375nm 氘灯的发射强度比氢灯大2 ~3倍 玻璃对这一波长有强吸收,必须用石英光窗。 紫外—可见分光光度计同时具有可见和紫外两 种光源。
(二) 单色器
3.仪器偏离-非单色光引起的偏离
Beer定律应用的重要前提——入射光为单色光
照射物质的光经单色器分光后并非真正单色光; 其波长宽度由入射狭缝的宽度和棱镜或光栅的分
辨率决定; 为了保证透过光对检测器的响应,必须保证一定
的狭缝宽度; 这就使分离出来的光具一定的谱带宽度。
假设入射光仅由两种波长的光组成,两波长下比尔
定律是适用的。
对于',吸光度为A' ,则 A' lg
I'0 I'
,
I'
I '0 10 'bc
对于",吸光度为A",则A" lg I"0
I"
,
I"
I"0 10 "bc
复合光时,入射光强度为(I'0 I"0 ),透 当 '="时,
射光 强度为(I'I"),因此,所得吸光度为:A bc