2坐标系统与时间系统PPT课件

合集下载

坐标及时间系统

坐标及时间系统
1976年开始由国家测绘局、总参测绘局、 水利部、国家地震局共同承担重新布测国 家一等水准网,总长93000多公里,组成 100个水准环,经过平差,建立了1985年 国家高程系。
水准原点高程为:72.260m
坐标及时间系统
4、参考椭球面
(1) 大地水准面——大地水准面由于受地球重力场影响,微小 起伏、不规则、很难用数学方程表示
(2) 大地水准面
– 与平均海水面相吻合的水准面称大地水准面 – 大地水准面是唯一的。 – 大地水准面所包含的形体,称为大地体,它代表了地球的自
然形状和大小。 – 测量工作的高程基准面
坐标及时间系统
我国在青岛设有验潮站,在青岛观象山建立国家水准原点
坐标及时间系统
国家高程基准
1956年通过对青岛验潮站7年观测成果的 计算,求出水准原点高程为: 72.289m以此为基准称为1956年黄海高 程基准。
坐标及时间系统
2.地球的形状和大小
1、地球 (1)由于地球的自转和公转,地球南北极稍扁,赤道稍长,南北 相差43km ,椭球平均半径约为6371km (2) 地球的自然表面并不光滑,形状十分复杂,有高山、丘
陵、平原、盆地、湖泊、河流和海洋等,呈现高低起伏的形 态,如:珠峰+8844.43m, 马里亚纳海沟-11022m,但这样的 高低变化与地球半径6371km相比只有1/600,变化是微小的。 (3) 海洋面积约占71%,陆地面可以忽略时,可将
地球看作圆球体,以球面代替大地水准面,其半径
R=6371km
6、平面
坐标及时间系统
在范围不大时,可以平面代替大地水准面.
WGS-84椭球
美国全球卫星定位系统GPS选用的地球总椭球体。
参数为:

大地测量学基础-第2章坐标系统与时间系统

大地测量学基础-第2章坐标系统与时间系统
的影响,地球的旋转轴在空间围绕黄极缓慢旋转,类似于一个旋 转陀螺,形成一个倒圆锥体(见左下图),其锥角等于黄赤交角 ε=23.5 °。 • 旋转周期为25786年,这种运动称为岁差,是地轴方向在宇宙空 间中的长周期运动(以黄极为中心)。
章动(周期18.6年)
岁差(周期25786年)
23.5 °
黄道 赤道
PS
πS
πN
πS
6、春分点与秋分点
• 黄道与赤道的两个交点称为春 分点和秋分点。
• 从地球上看,太阳沿黄道逆时 针运动。
• 黄道和赤道在天球上存在相距 180°的两个交点,其中太阳沿 黄道从天赤道以南向北通过天 赤道的那一点,称为春分点(3 月21日前后),与春分点相隔 180°的另一点,称为秋分点(9 月23日前后) 。
• GAMT 表示格林尼治平太阳时角。
• 未经任何改正的世界时表示为UT0;
• 经过极移改正的世界时表示为UT1:
UT1=UT0+Δλ
§2-1 地球的运转 §2-2 时间系统 §2-3 坐标系统
§2-1 地球的运转
• 众所周知,我们生存的地球一直处于运动之中。 • 从不同的角度来看,地球的运转可分为四类: (1)与银河系一起在宇宙中运动 (2)与太阳系一起在银河系内运动 (3)与其它行星一起绕太阳旋转(公转) (4)绕其自身旋转轴(瞬时)旋转(自转,或叫周日视运动) • 大地测量学主要研究后两类运动。
• 考虑岁差和章动的共同影响时,相应的旋转轴、天极、天球赤道 等术语前加上“真”,即真旋转轴、真天极、真天球赤道。
• 若只考虑岁差,则分别称作平旋转轴、平天极、平天球赤道。
章动(周期18.6年)
岁差(周期25786年)
23.5 °

坐标系统和时间系统

坐标系统和时间系统
站心地平直角坐标系
旋转变换 (2-6)
站心赤道直角坐标系
平移变换 (2-5)
地心空间直角坐标系
(三)站心(左手)地平直角坐标系与地心空 间直角坐标系之间的转换
旋转矩阵
X -sinBcosL sinL cosBcosLx
Y
=sinBsinL
cosL
cosBsinLy
Z地心 cosB
0
sinB z地平 (2-7)
通过天球中黄心道,面且与垂赤直道于面黄的道夹面角的直线与 天球的交点
√8.春分点
地球公转的轨道面与天球相交的大圆。 当太阳即在当黄地道球上绕,太从阳天公球转南时半,球地向球北上半的球观测者
运行时,所黄见道到与的天,球太赤阳道在的天交球点上运动的轨迹
(二)天球坐标系的定义
假设地球为均质的球体,且没有其它天体摄动力 的影响;即假定地球的自转轴,在空间的方向是 固定的,春分点在天球上的位置保持不变。
t时刻的瞬 时极地球 坐标系
x
x
y
Rz ( G ) y
z et
z ct
对应格林尼治平子 午面的真春分点时

(2-10)
t时刻的瞬时 极天球坐标

三、天球坐标系与地球坐标系 之间的坐标转换
(二)协议天球坐标系与协议地球坐标系的坐标 转换
协议天球坐标系 瞬时极天球坐标系
(2-11) (2-12)
3、协议地球坐标系与瞬时极地球坐标系 的坐标转换
二者存在旋转关系:
x
x
y Ry xp Rx yp y
zem
zet
(2-13)
(xp , y p ) 为瞬时地极相对于CIO的坐标。
三、天球坐标系与地球坐标系 之间的坐标转换

第二章坐标系统和时间系统(2-3)

第二章坐标系统和时间系统(2-3)

sin X sin Z cos X sinY cos Z
cosY sin Z cos X cos Z sin X sinY sin Z sin X cos Z cos X sinY sin Z
sinY
sin
X
cosY
cos X cosY
坐标转换公式为:
第三节 坐 标 系 统
一般εx ,εy ,εz为微小量,可取
第三节 坐 标 系 统
b.多点定位:在全国范围内观测许多点的天文经度λ,天文纬度φ ,天文方位角α(这样的点称为拉普拉斯点)。利用这些观测成果 和已有的椭球参数,按照广义弧度测量方程,根据使椭球面与当地 大地水准面最佳拟合条件ΣN2=min(或Σζ2=min),采用最小二乘 原理,求出椭球定位参数ΔX0,ΔY0,ΔZ0,旋转参数εX,εy, εZ,椭球几何参数的改正数Δa,Δα(a新=a旧+ Δa,α新=α旧
第三节 坐 标 系 统
第三节 坐 标 系 统
4)地心坐标系 ① 地心空间直角坐标系:原点与地球质心重合,Z轴指向地球北 极,X轴指向格林尼治平均子午面与地球赤道交点,Y轴垂直于 XOZ平面。 ② 地心大地坐标系:椭球中心与地球质心重合,椭球面与大地水 准面最为密合,短轴与地球自转轴重合.点的坐标为大地经度L ,大地纬度B,大地高H.
+Δα.)以及η新,ξ新,N新。 再根据:
求出大地原点新的大地起算数据。
第三节 坐 标 系 统
这样利用新的大地原点数据和新的椭球参数进行新的定位和定 向,从面可建立新的参心大地坐标系。按这种方法进行椭球的定位 和定向,由于包含了许多拉普拉斯点,因此通常称为多点定位法。
参考椭球参数和大地起算数据是一个参心坐标系建成的标志,一 定的参考椭球和一定的大地起算数据确定了一定的坐标系。

第二章 坐标系统和时间系统

第二章 坐标系统和时间系统

地球坐标系根据描述点位方式的不同分作: 1、地球空间直角坐标系
原点O与地球质心重合,Z轴指向地球北极,X轴 指向格林尼治子午面与地球赤道的交点,Y轴垂 直于XOZ平面,构成右手坐标系统。 P(X,Y,Z)
2、大地坐标系统
参考椭球----参考椭球的中心与地球的质心重合,椭球的短轴与 地球自转轴重合,根据科学家测量的长半轴a和短半轴b来近似模 a b 拟地球的数学球体。
天球赤道面与天球赤道-——通过地球质心与天轴垂直的平 面,称为天球赤道面。该赤道面与天球相交的大圆,称为天 球赤道。 黄道——地球公转的轨道面与天球相交的大圆,即地球上的 观测者所看到的,太阳绕地球运动的轨迹。 春分点——当太阳在黄道上从地球南半球向北半球运行时, 黄道与天球赤道面的交点。春分点不随地球转动。
对应于 WGS-84大地坐标系有一个WGS-84椭球,其常数 采用 IUGG第 17届大会大地测量常数的推荐值。下面给 出WGS-84椭球两个最常用的几何常数: 长半轴: 6378137± 2(m) 扁 率: 1:298.257223563
§2.3坐标系之间的变换
1.
2.
3.
坐标系的变换包括: 不同空间直角坐标系之间的转换(3参数 或7参数) 不同大地坐标系(球面坐标系)之间的转 换(5参数和9参数) 大地坐标系(B,L)转换为高斯平面坐标 (X,Y)
大地坐标系——是建立在参考椭球上,原点与地球质 建立在参考椭球 建立在参考椭球上 心重合,大地纬度B为过某地面点的椭球法线与椭球 赤道面的夹角;大地经度L为过该地面点的椭球子午 面与格林尼治子午面之间的夹角,大地高H为地面点 沿椭球法线至椭球面的距离。 地面点P的大地坐标为 (B,L,H)
对同一空间点,直角坐标系与大地坐标系参数间有如下转换关系:

第2-1章 坐标系统和时间系统

第2-1章 坐标系统和时间系统
张德勒运动(周期 个月 振幅0.2秒) 个月, 张德勒运动(周期14个月,振幅 秒 季节性运动(周期12个月 振幅0.1秒) 个月, 季节性运动(周期 个月,振幅 秒
极 移
G P S 测 量 原 理 及 应 用
中 南 大 学
国际天文学联合会和大地测量学协会在1967建 建 国际天文学联合会和大地测量学协会在 G 采用国际上5个纬度服务站 个纬度服务站, 年的平 P 议,采用国际上 个纬度服务站,以1900-1905年的平 均纬度所确定的平均地极位置作为基准点, S 均纬度所确定的平均地极位置作为基准点 , 平极的 测 位置是相应上述期间地球自转轴的平均位置 , 通常 位置是相应上述期间地球自转轴的平均位置, 量 称 为 国 际 协 议 原 点 ( Conventional International 原 ) 理 Origin——CIO)。与之相应的地球赤道面称为平赤 道面或协议赤道面。 至今仍采用CIO作为协议地极 及 道面或协议赤道面 。 至今仍采用 CIO 作为协议地极 应 ( conventional Terrestrial Pole——CTP) , 以协议 ) 用 地 极 为 基 准 点 的 地 球 坐 标 系 称 为 协 议 地 球 坐 标系 ) 中 (Conventional Terrestrial System——CTS),而与 南 瞬时极相应的地球坐标系称为瞬时地球坐标系。 瞬时极相应的地球坐标系称为瞬时地球坐标系。
G P S 测 量 原 理 及 应 用
中 南 大 学
第二章 坐标系统和时间系统
2.1 天球坐标系和地球坐标系
G P S • 全球定位系统(GPS)的最基本任务是确定用户在空间的 测 位置。而所谓用户的位置,实际上是指该用户在特定坐标 量 系的位置坐标,位置是相对于参考坐标系而言的,为此, 原 首先要设立适当的坐标系。 理 • 为了描述卫星在其轨道上的运动规律,需要建立不随地球 及 自转的地心坐标系--空间固定坐标系(天球坐标系); 应 另一方面观测站是在地球表面,随地球自转而运动,因此 用 需要建立与地球固联的地心坐标系--地固坐标系(地球 坐标系)。 中 • 由上可看出在不同观测时间,其各自的坐标轴指向不同。

2、时间系统和坐标系统

2、时间系统和坐标系统
(1)区时 15º 时区地方时 格林尼治0子午线东西个7.5º 为0时区 (2)世界时
格林尼治起始子午线处的平太阳时(地方时)
经极移改正:UTI=UT0+Δλ 1 X P sin YP cos tan 15 经地球自转季节性改正:UT2=UT1+ΔT
T 0.022s sin 2 t 0.012s cos 2 t 0.006s sin 4 t 0.007 s cos 4 t
4.授时和时间对比
5.时钟的主要技术指标
频率标准度、频率漂移率、频率稳定度
(1)频率标准度 与理论频率之差
(2)频率漂移率(频漂) 频率的变化率(老化率)
(3)频率稳定度 随机变化程度
(二)恒星时与太阳时
1.恒星时
以春分点为参考点
恒星时在数值上等于春分点相对于本地子午圈的时角 是地方时 真恒星时与平恒星时
(二)恒星时与太阳时
2.真太阳时和平太阳时
(1)真太阳时
以地球自转为基础,以太阳中心为参考点 太阳时=本地子午圈时角+12 太阳时长度不同,不具备时间系统条件
(2)平太阳时
以地球自转为基础,以平太阳中心为参考点
周年是运动轨迹位于赤道面,角速度恒定 太阳时=平太阳时角+12 由归算得到 是地方时
3. 区时和世界时
更多见教材P26
(3)阴阳历(农)
年以回归年为依据,而月则按朔望月为依据。 单月为30日,双月为29日,每月平均为29.5日; 以新月始见为月首,12个月为一年,总共354日。 每19年中有7年为闰年。闰年中增加一个月,称 为闰月。 更多见教材P26
2.儒略日JD
根据公历的年(Y)、月(M)、日(D)来计算对应的儒略日JD

第2章坐标系统与时间系统

第2章坐标系统与时间系统
建立球面坐标系统,如图2-1所示.
参考点、线、面和园
第2章坐标系统与时间系统
图2-1 天球的概念
第2章坐标系统与时间系统
天轴与天极 地球自转轴的延伸直线为天轴,天轴与天球的交点 PN 和 PS 称为天极,其中 PN 称为北天极, PS 为南天极。
天球赤道面与天球赤道 通过地球质心 O 与天轴垂直的平面称为天球赤道面。天 球赤道面与地球赤道面相重合。该赤道面与天球相交的大 圆称为天球赤道。
某一观测瞬间地球极所在的位置称为瞬时极,某段时 间内地极的平均位置称为平极。地球极点的变化,导致地 面点的纬度发生变化。 天文联合会(IAU)和大地测量与地球物理联合会(IUGG) 建 议采用国际上5个纬度服务(ILS)站以1900~1905年的平均 纬度所确定的平极作为基准点,通常称为国际协议原点 CIO (Conventional International Origin)
第2章坐标系统与时间系统
国际极移服务 ( IPMS ) 和国际时间局( BIH )等机构分别用 不同的方法得到地极原点。 与CIO相应的地球赤道面称为 平赤道面或协议赤道面 。
第2章坐标系统与时间系统
(3)地球自转速度变化(日长变化)
地球自转不是均匀的,存在着多种短周期变化和长期 变化,短周期变化是由于地球周期性潮汐影响,长期变化 表现为地球自转速度缓慢变小。地球的自转速度变化,导 致日长的视扰动和缓慢变长,从而使以地球自转为基准的 时间尺度产生变化。
春分点与秋分点 黄道与赤道的两个交点称为春分点和秋分点。视太阳在黄 道上从南半球向北半球运动时,黄道与天球赤道的交点称 为春分点,用 γ表示。 在天文学中和研究卫星运动时,春分点和天球赤道面,是 建立参考系的重要基准点和基准面
赤经与赤纬 地球的中心至天体的连线与天球赤道面的夹角称为赤纬, 春分点的天球子午面与过天体的天球子午面的夹角为赤经。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
协调世界时(UTC)、GPS时(GPST)
数GP字S技摄术影与测应量用
辽石宁家工庄程铁技路术职大业学技
影坐像标>系采统样与时间系统>坐标系统
测测绘绘学工院程
§2.1 坐标系统 系
◇研究意义和目的
坐标系统和时间系统是 描述卫星运动、处理观测数 据和表达定位结果的数学与 物理基础。
数GP字S技摄术影与测应量用
一、 概述
在经典大地测量中,为了处理观测成果和传算地面控制网的坐 标,通常须选取一参考椭球面作为基本参考面,选一参考点作为 大地测量的起算点(大地原点),利用大地原点的天文观测量来 确定参考椭球在地球内部的位置和方向。参心坐标系中的“参心” 二字意指参考椭球的中心,所以参心坐标系和参考椭球密切相关。 由于参考椭球中心无法与地球质心重合,故又称其为非地心坐标 系。参心坐标系按其应用又分为参心大地坐标系和参心空间直角 坐标系两种。
辽石宁家工庄程铁技路术职大业学技
影坐像标>系采统样与时间系统>坐标系统
测测绘绘学工院程
§2.1 坐标系统 系
◇坐标系统
坐标系统组成:坐标系和基准 坐标系指的是描述空间位置的表达形式; 基准指的是为描述空间位置而定义的一系 列点、线、面。 在大地测量中的基准一般是指为确定点在 空间中的位置,而采用的地球椭球或参考椭球 的几何参数和物理参数,及其在空间的定位、 定向方式,以及在描述空间位置时所采用的单 位长度的定义。
数GP字S技摄术影与测应量用
辽石宁家工庄程铁技路术职大业学技
影坐像标>系采统样与时间系统>坐标系统
测测绘绘学工院程
§2.1.1参心坐标系系
一、 概述
参心空间大地直角坐 标系是用三维坐标x、y、 z表示点位的,它可按一 定的数学公式与参心大 地坐标系相互换算。通 常在由GPS定位结果 (地心空间大地直角坐 标系)计算参心大地坐 标系时,作为一种过渡 换算的坐标系。
二、1954年北京坐标系(BJZ54(原))
解放初期,我国大地坐标系是采用河北石家庄市的柳新庄一等天 文点作为原点的独立坐标系统,采用该点的天文坐标作为其大地坐 标,以海福特椭球进行定位。
数GP字S技摄术影与测应量用
辽石宁家工庄程铁技路术职大业学技
影坐像标>系采统样与时间系统>坐标系统
测测绘绘学工院程
数GP字S技摄术影与测应量用
辽石宁家工庄程铁技路术职大业学技
影坐像标>系采统样与时间系统>坐标系统
测测绘绘学工院程
§2.1.1参心坐标系系
一、 概述
建立一个参心大地坐标系,必须解决以下问题:(1)确定椭球的 形状和大小;(2)确定椭球中心的位置,简称定位;(3)确定椭 球中心为原点的空间直角坐标系坐标轴的方向,简称定向;(4)确 定大地原点。解决这些问题的过程,也就是建立参心大地坐标系的 过程。
影坐像标>系采统样与时间系统>坐标系统
测测绘绘学工院程
§2.1 坐标系统 系
◇ GPS 测量中常用的坐标系统
WGS-84 坐标系 北京54坐标系 西安80坐标系
数GP字S技摄术影与测应量用
辽石宁家工庄程铁技路术职大业学技
影坐像标>系采统样与时间系统>坐标系统
测测绘绘学工院程
§2.1.1参心坐标系系
影坐像标>系采统样与时间系统
测测绘绘学工院程
第二章坐标系统与时间系系统
数GP字S技摄术影与测应量用
辽石宁家工庄程铁技路术职大业学技
影坐像标>系采统样与时间系统
测测绘绘学工院程
第二章坐标系统与时间系系统
主要内容:
◇ GPS坐标系统
坐标系统分类 WGS-84 坐标系、 北京54坐标系 西安80坐标系
◇ GPS时间系统
§2.1.1参心坐标系系
二、1954年北京坐标系(BJZ54(原))
随着我国大地网的扩展,采用海福特椭球元素误差太大,且没有 顾及垂线偏差的影响。为此,1954年总参谋部测绘局在有关方面的建 议与支持下,采取先将我国一等锁与原苏联远东一等锁相连接,然后 以连接呼玛、吉拉林、东宁基线网扩大边端点的原苏联1942年普尔科 沃坐标系的坐标为起算数据,平差我国东北及东部地区一等锁。这样 传算过来的坐标,定名为1954年北京坐标系。该坐标系是以原苏联当 时采用的1942年普尔科沃坐标系为基础建立起来的,所不同的是 1954年北京坐标系的高程异常是以原苏联1955年大地水准面差距重 新平差结果为起算值,且以1956年青岛验潮站求出的黄海平均海水面 为基准面,按我国天文水准路线推算出来的。
数GP字S技摄术影与测应量用
辽石宁家工庄程铁技路术职大业学技
影坐像标>系采统样与时间系统>坐标系统
测测绘绘学工院程
§2.1 坐标系统 系
◇ 坐标系的分类
天球坐标系:与地球自转无关,故称为空固坐 标系或惯性坐标系,其坐标原点和各坐标轴指 向在空间保持不变,用于描述卫星运行位置和 状态;
地球坐标系:则与地球体相固连,故又称为地 固坐标系,用于描述地面点的位置。
数GP字S技摄术影与测应量用
辽石宁家工庄程铁技路术职大业学技
影坐像标>系采统样与时间系统>坐标系统
测测绘绘学工院程
§2.1 坐标系统 系
坐标系统
地球坐标系统
地心坐标系 参心坐标系
WGS84坐标系 北京54坐标系 西安80坐标系
天球坐标系统
数GP字S技摄术影与测应量用Байду номын сангаас
辽石宁家工庄程铁技路术职大业学技
数GP字S技摄术影与测应量用
辽石宁家工庄程铁技路术职大业学技
影坐像标>系采统样与时间系统>坐标系统
测测绘绘学工院程
§2.1.1参心坐标系系
二、1954年北京坐标系(BJZ54(原))
几十年来,我国在该坐标系上完成了大量的测绘工作,实施了天文 大地网局部平差,通过高斯-克吕格投影,得到点的平面坐标。测制 了各种比例尺地形图。但是随着测绘新理论、新技术的不断发展,人 们发现该坐标系存在如下缺点:
参心大地坐标系的应用十分广泛,它是经典大地测量的一种通 用坐标系。根据地图投影理论,参心大地坐标系可以通过高斯投 影计算转化为平面直角坐标系,为地形测量和工程测量提供控制 基础。由于不同时期采用的地球椭球不同或其定位与定向不同, 我国历史上出现的参心大地坐标系,主要有BJZ54(原)、 GDZ80和BJZ54等三种。
(1)因1954年原北京坐标系采用了克拉索夫斯基椭球,与现在的精 确椭球参数相比,长半轴约长109m。
相关文档
最新文档